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Introduction

The Bergman kernel, named after Stefan Bergman (1895-1977), is by
definition the reproducing kernel of the space of L? holomorphic n-forms
on any connected n-dimensional complex manifold. Its significance in
complex geometry has been gradually understood through many -
spectacular works in the last century. For instance, C. Fefferman [F-1]
analyzed the boundary behavior of the Bergman kernel on strongly
pseudoconvex domains with C™ boundary, and proved that any
biholomorphic map between such bounded domains in C" extends
smoothly to the closure. Recently, methods for analyzing the Bergman
kernel brought new insights into algebraic geometry and differential
geometry (cf. [Siu-2~5], [Brn-P], [D] and [Mab-1,2]). The purpose of this
article is to review some of the results on the Bergman kernel with
geometric backgrounds, presenting open questions on the way.

§1. Preliminaries — before and after the Bergman kernel

The circle division theory of C. F. Gauss (1777-1855), which was
discovered on 1796/3/30, is a giant leap in mathematics and the first step
towards complex geometry. In the early 19th century, it brought a new
progress in the theory of elliptic integrals, which had been developed by
L. Euler (1707-83) and A.-M. Legendre (1752-1833). Namely, generalizing



the work of Gauss, N.H.Abel (1802-29) was led at first to algebraic
insolvability of equations of degree 5, subsequently discovered that the
inverse functions of elliptic integrals are nothing but doubly periodic
analytic functions in one complex variable (i.e. elliptic functions), and
eventually arrived at a remarkable characterization of principal divisors
in the theory of algebraic functions of one variable (Abel's theorem). The
latter is now regarded as the starting point of algebraic geometry.

As a generalization of Abel's theory on elliptic functions, the theory of
multiply periodic functions was developed in several variables by G.
Jacobi (1804-51), K. Weierstrass (1815-97) and B. Riemann (1826-66).

On the other hand, in spite of an important contribution of H. Poincaré
(1854-1912) on normal functions and a subsequent work of S. Lefschetz
(1884-1972), it was not before the appearance of the celebrated theory of
W. V. D. Hodge (1903-75) [Ho], of harmonic integrals on Kéhler
manifolds, that Abel's theorem on algebraic functions found a proper
context in several variables. This delay is mainly because of the rack of
the viewpoint of orthogonal projection in Hilbert spaces. Recall that it
was only in 1899 that D. Hilbert (1862-1943) awoke Riemann's idea of
Dirichlet's principle from a deep sleep (cf. [R] and [H]) and that the basic
representation theorem of F. Riesz (1880-1956) was not available until
1907. Another historical remark is that such a systemization of abstract
mathematics emerged only after detailed studies of orthogonal
polynomials in the 19th century. Anyway, it culminated in a general.
method of orthogonal projection by H. Weyl (1885-1955). Weyl's method
(cf. [W-1]) became the analytic base of the Hodge theory, which was later
combined with analytic sheaf theory by Kodaira (1915-97) [K-1,2]. That
Weyl anticipated a lot in this method had been modestly suggested in
[W-2]. The Bergman kernel was born around 1922 (cf. [B] and [Bo]) in
such a circumstance. . A

To be more explicit about the orthogonal projection and the Bergman
kernel, let D be the unit disc centered at the origin in the complex plane
with coordinate z, and let L2(@D) be the Hilbert space of L? complex-
valued functions on dD. Then the integral transform

£ o |

oD

of A.-L. Cauchy (1789-1857) gives an orthogonal projection from L2(éD)
onto the subspace of functions which are the boundary values of
holomorphic functions on D in the L2 sense ( i. e. L? functions with
vanishing Fourier coefficients in the negative powers of exp (i arg z) ).
Replacing the integral along dD by the integral on D, one is naturally
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led to the representation of the orthogonal projection from L2(D), the
space of the complex-valued L? functions on D, onto the subspace
consisting of L2 holomorphic functions on D. The corresponding integral

transform is :

R 1 (%)
f(z) - SD G-t d)x;.

Here dAs denotes the Lebesgue measure. The function m-Y(1 -z)"2 is
the Bergman kernel of D, where holomorphic 1-forms on D are
naturally identified with holomorphic functions on D.

Thus, from the viewpoint of orthogonal projection, the Bergman kernel
is a brother of the Cauchy kernel. An advantage of the Bergman kernel is
that it naturally encodes geometric information. Let us recall how it does.

Let M; (j=1,2) be two complex manifolds with Bergman kernels x,, ,
and let 0 : M;—> M; be a biholomorphic map. Then onehasan  ?

equality
1 0™, = %y

which follows easily from the definition. We note that the equality (1)
already suggests a link between the boundary behavior of Bergman
kernels and biholomorphic maps.

To see it more explicitly, taking as M; any simply connected proper
subdomain Q of C, let zg € Q, M, =D, 0(zo) = 0 and 0'(zo) > 0, based on
Riemann's mapping theorem. Then, letting %, = K, (€,z)dtdz, it follows
immediately from (1) that

@ o(z) = /KJS Ko(G, z0)d

)
Z,

holds true for any z € Q. It is obvious from (2) that the boundary
regularity of Kq (G, zo) implies that of o. Efficiency of this reduction lies
in that, as we shall see later, the regularity question on K¢ can be
transformed into a question on the canonical solution operator for the
complex Laplacian. This observation might already suggest the reader the
validity, and even the method of proof, of Fefferman's theorem which was
‘mentioned in the introduction.

That's all for preliminaries. We shall now go into the substantial
material, at first the boundary behavior of the Bergman kernel.
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§2. Studies on the boundary behavior

From now on, let Q be any bounded domain in C" and let
Ao = KQ (z,w)2;ndzl/\ '--bAdzn_®dW1A “AdWn,
where z=(z1,...,2a) and w=(wy,..., wy). Ko (zw) will be referred

to as the Bergman kernel function of €.
An alternate definition of K (z,w) is given by the formula

O Kglaw) =X e;(2)e )
£

where {e1, ez, ...} is any complete orthonormal system of the space, say
A2(Q), of 12 holomorphic functions on & with respect to the Lebesgue
measure. ,

For simplicity we put

@ Ko@) =Ky(z2).

Clearly Kq (z) is strictly plurisubharmonic and strictly positive. It is
also easy to verify that log Kq (z) is strictly plurisubharmonic. The
complex Hessian of log Kg (z), denoted by ddlog Kg (z) by an abuse of
notation, is called the Bergman metric of Q. A fact of basic importance is
that biholomorphic maps are isometries with respect to the Bergman
metric.

For the case Q=B":={z; |z| <1}, where |z|2:= |z1|2+ ‘" + |zn|2
one has

(5) Ko (zw) = a"n! (1—<z,w>) """

where <z,w> :=z; Wi+ * - +z2,Wh.

The expression (5) is an immediate consequence of (1) once the
biholomorphic automorphisms of B™ are explicitly known. Although it is
usually difficult to compute the Bergman kernels, it is obvious that the
Bergman metrics on bounded homogeneous domains are complete. We
note that there exists a complete Kéhler metric on B"- {0} and that the
Bergman metric on B™— {0} is not complete (cf. [G-1]).

One way of describing the boundary behavior of Ko (z,w) is to express
the singularity of Kg (z) as z—> dQ in terms of the function 9,(z) :=
inf { [z—w| ; w&Q} and geometric invariants on 9Q. Here, by geometric
invariants on €2, we mean locally defined systems of functions satisfying
covariance properties under biholomorphic maps, or more instrinsically,
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under CR diffeomorphisms (cf. [Wk]).
For that purpose, the following formula is useful.

6)  Kolz) =sup { |£(z)|2; {(T) € AXQ) and ||f|| =1},

Here ||f]|| denotes the L? norm of f. Note that the supremum is attained
by the function Kgq(G,z)/V Kg(z). Basically, what can be done is to
approximate this function from the geometric data by employing the
techniques of producing L? holomorphic functions on €. As such a
technique, there is a method, due to L. Hérmander [H&-1], of solving the
inhomogeneous Cauchy-Riemann equation du=v with L2 norm estimates
(see also [H6-2]). A similar method of A. Andreotti (1924-80) and E.
Vesentini in [A-V-1,2] is also useful.

In the case where Q is a strongly pseudoconvex domain, it was proved
in [H6-1] that

)  lm Ko@)8n(z)™ = nlsi™L(zo)

holds for any z¢ € 992, where

® L(zo) = lim (-1 det | °= %
Q322 20 / aZk 020 / aZj 8'z'k ,

Recall that € is called a strongly pseudoconvex domain if locally dQ can
be mapped to C2 strictly convex hypersurfaces by appropriate choices of
biholomorphic maps. L(zo) is a geometric invariant on 9 in the above
mentioned sense. ’

Actually, (7) holds for any bounded pseudoconvex domain with
C2 boundary. In fact, the left hand side of (7) vanishes if L(zg) =0. This
can be seen from Cauchy's estimate applied on a sequence of polydiscs in
(2 converging to z.

Hence, strong pseudoconvexity of dQ at zo, i. e. the condition that 9Q
becomes strictly convex at zo after some biholomorphic coordinate
change, is characterized by the condition that

9)  liminf Ko (2)d(=""> 0

2—>2g

holds true.
On the other hand, it is implicitly contained in [Oh-2] that the Levi

flatness of 02 on a neighbourhood U 3 zy (U C 8Q), i.e. the property
that 898 |Ker 8 =0 on U, is characterized by the condition that
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10)  limsupKo(©)aEP < o0
holds for any z€ U.

For the general smooth pseudoconvex domains, "building blocks of the
singularity" of Ko (z) have been studied case by case (cf. [Oh-1], [D-H-
Oh], [D-H], [B-5-Y], [Km], [Ch-Km-Oh). |

Next we shall discuss the boundary behavior of the Bergman kernel on
pseudoconvex domains from slightly more analytic viewpoint.

Although the motivation of Bergman's thesis was to introduce a new
method in the theory of potentials and conformal mappings, it was soon
recognized that analysis of the Bergman kernel would play an important
role in several complex variables, too, for instance to solve the Levi
problem (cf. [H6-3]). (Recall that the Levi problem asks whether or not
every pseudoconvex domain is holomorphically convex.)

Indeed, it is easy to see that Q is holomorphically convex if

@l - .
holds true. The converse is false because the punctured disc D - {0} isa
counterexample. For the domains in C, it recently turned out that (11) is
equivalent to certain growth property of the logarithmic capacity function
on Q (cf. [Zw-2]).

Concerning the Levi problem, which was the principal question in
several complex variables for some time, Kiyoshi Oka (1901-78) first came
up with a solution by the strategy of exhausting pseudoconvex domains
by strongly pseudoconvex ones, constructing holomorphic functions on
strongly pseudoconvex domains by patching locally defined ones by
solving Cousin's problem, and approximating them by globally defined
ones by a theorem of Runge type (cf.[O]). However, all these arguments
are independent of the Bergman kernel.

A counterpart of Oka's theorem on compact manifolds was established
by Kodaira by the method of harmonic integrals (cf. [K-1.2]).

After an important work of C. B. Morrey (1907-84) (cf. [M]), the method
of Oka was extended by H. Grauert [G-2] to prove that strongly
pseudoconvex domains in complex manifolds are holomorphically
convex, and Kodaira's method was extended in [A-V-1,2], [Kh] and
[H6-1] to yield a powerful method of directly and effectively reaching
the basic existence theorems in several complex variables. Especially, it is
remarkable that [H6-1] gave a simple alternate proof to Oka's theorem
by establishing a quantitative solution to the additive Cousin problem by
the method of L2 estimates for the d-operator. Here the d-operator means
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a closed linear operator from LX) to éLZ( Q) defined by of = (9f/ 9z, . .

,0f/0z,) on Domd={f;of/ 0z; €LX(Q), j=1,2,....n}.

Since A%(Q) = Ker 9, Ko mvolves operator theoretic 1nformat10n on 9
as we shall see later.

The Jd-operator is naturally extended to L2 differential forms giving rise
to a complex. Generalizing the situation to the L2 spaces with respect to
arbitrary measures, L2 estimates are formulated as inequalities of the form

(12)  lull s const(||dull + [|6*u]]),

where & denotes the Hilbert space adjoint of 4. L? estimates that work
in several complex variables were planned by P. R. Garabedian
(1927-2010) and D. C. Spencer (1912-2001) [G-S]. Based on the idea of
orthogonal projection and pushed by the complete solution of the Levi
problem for the domains over C"(cf. [O], [Br] and [Ng]), the plan was
realized in the above mentioned papers.

An advantage of this method is that the passage to limits is quite easy,
so that one has effective existence theorems on general pseudoconvex
domains. (7) was obtained as an application of this method.

Inspired by the success of this approach, Skoda [S] and Ohsawa-
Takegoshi [Oh-T] established respectively the L2 variants of Oka's
division theorem and extension theorem. The method of [Oh-T] was
influenced by [D-F] and [Wil].

Skoda's L2 division theorem was applied by Pflug [P] to show that (11)
holds if Q isa pseudoconvex domain satisfying the "generalized cone
condition" (see [P] for the definition). Moreover it tuned out later that the
same technique is available to show, under the assumption that d(2U0d<2)
=9, that Q is pseudoconvex if and only if it carries a complete Kdhler
metric (cf. [D-P)).

On the other hand, by applying the L2 extension theorem in [Oh-T], it
was shown in [Oh-3] that (11) holds if Q is hyperconvex, i.e. if Q admits
a bounded plurisubharmonic exhaustion function.

It is well known that a bounded domainin C is hyperconvex if and
only if its boundary points are regular with respect to the Dirichlet
problem (for the regularity of the boundary points in this sense, see
[Kishi] for instance). We note that (11) holds on some non-hyperconvex
domains, e. g. on { (zw) EC*; |z| <1, |[w| <land |z| < |w] }, so that
hyperconvexity is considered to be a more natural condition than (11).

Pluripotential theory, including the existence of pluricomplex Green
function and Lelong-Jensen measure, has been developed on
hyperconvex domains. Here, to be analyzed as the several variables
version of the Laplace operator is the Monge-Ampeére operator (cf. [KIm]
and [Dm-1]). Recently, geometry of the Nevanlinna counting function is
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discussed on hypercohvex domains (cf. [P-S]).

The condition (11) is very close to the completeness of the Bergman
metric on hyperconvex manifolds. Such a link was first observed in [Kb]
by identifying the Bergman metric with the pull-back of the Fubini-Study
metric on the projectivization of the topological dual A%(2)* of A%(Q2), say
P(A%(Q)*), by the canonically defined holomorphic embedding

(13) L Q > P(A2(Q2)%)
v )
{me AZ(Q)*—{O} ; m(f) = 0if £(z) = 0}.

Z |

By this identification, denoting the distance between (z) and (w) by
‘| z,w |, one has

,\/ Ko Kowd — [Kg(z,w)|2
- |Ka(zw))

The following estimate, which is essentially equivalent to Kobayashi's
criterion for the completeness of the Bergman metric, follows from (14).

(14) |zw| = Arctan

(15) |zw| 2 min (1/2, sup{|f(z) |2/Ko(2) ; f€ A%S), ||£]|=1 and f(w)=0}).

(See also [Oh-8]).

Combining (15) with a recently developed techmque of estimating
integrals of type | Llu |™(80v)*, Btocki-Pflug [B-P] and Herbort [Hb]
independently proved that the Bergman metric is complete if Q is
hyperconvex. It is known that there exist non-hyperconvex domains in C -
whose Bergman metrics are complete (cf. [Zw-1, Theorem 5]).

The Bergman metric on a connected n-dimensional complex manifold
M is defined in the same way as above via the map (13), by taking the
space of L2 holomorphic n-forms instead of A2(£2), as long as the map
corresponding to t is an immersion. A complex manifold is called
hyperconvex if it carries a bounded strictly plurisubharmonic exhaustion
function. It is easily seen by the L? method that every hyperconvex
manifold carries a Bergman metric. In [Ch], the completeness result of [B-
P] and [Hb] was generalized to hyperconvex manifolds.

In view of the fact that singularities of L2 holomorphic functions are
negligible if their Hausdorff dimension is not greater than 2n -2, it
seems natural to ask the following.
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Q1%

1) Let Q beaproper subdomain of B". How "small" (in the sense of
Hausdorff dimension, for instance) can dQNB™ be if the Bergman
metric of Q is complete ?

2) Is there a proper subdomain D of a compact complex manifold M
without nonconstant bounded plurisubharmonic functions such that

the Bergman metric of D is complete ?

As for 1), case studies based on the analysis of Cauchy kernel should be
possible at least for n = 1. As a related result, see [An].

Boundary behavior of the Bergman metric on strongly pseudoconvex
domains was first described by K. Diederich (cf. [Di]). As well as the
Bergman metric on the model domain B", the Bergman metrics on
strongly pseudoconvex domains are complete Kdhler metrics. A famous
result of Lu Qi-Keng [L] says that Q is biholomorphically equivalent to
B" if the Bergman metric on Q is complete and of constant holomorphic
sectional curvature. A natural question asked by S.-Y. Cheng [Chg] is
whether or not Q is equivalent to B™ if the Bergman metric on Q is
Kéhler-Einstein. By Fu and Wong [F-W], this was answered affirmatively
when Q is simply connected and n <2 . Recently, it was pointed out by
Nemirovski and Shafikov [N-S] that Cheng's conjecture follows from the
Ramadanov conjecture (see Q5 below), so that the result of Fu and Wong
holds without assuming that Q is simply connected.

When Q is not strongly pseudoconvex, more case studies seem to be
necessary in order to find how the geometry of Q and 822 determines
the Bergman kernel. For instance, in view of the fact that one can
characterize the strong pseudoconvexity of Q in terms of the boundary
behavior of the Bergman metric (cf. [Kl] and [Di-Oh-1]), the author would
like to ask the following question.

Q2 ¥
Let Q be a bounded pseudoconvex domain in C" with C? boundary and
let zo € 0Q. Is it true that 0Q is Levi flat near zg if and only if there exists
a neighbourhood U of zg in 62 such that

(16) lignsup [§]72| <6dlogKg E®E> - 8(5) 2| £8]2| <

holds for any z € U and for any nonzero holomorphic tangent vector & of C"
at £? Here <, > denotes the natural pairing and | * | the length of vectors.
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This should not be too difficult because it is already known by [D-F-H]
and [C-1] that (16) does not hold if 9Q is of finite type at z.

A related question was raised in [Di-Oh-2] and [Oh-7] on the effective
estimate of the distance function. Let us put it here in a more idealized
form;

Q3mjecture)
Let Q be a bounded pseudoconvex domain in C° with Ct boundary,
let d(z,w) be the distance between z and w with respect to ddlog K, and let
Zo € Q be any point. Then '

(17) lim d(zo,w)/|log d(w)| = 1.
W3R

' An estimate obtained in [Di-Oh-2] is weaker than (17), but still gives a
quantitative completeness result for the Bergman metric. It was improved
by Btocki [Bf]. We note that the infinitesimal variant of (17) asked in
[Oh-7] was negatively solved (cf. [D-H-2]).

Note 1. If we restrict ourselves to a class of bounded homogeneous
domains, it was shown by Nomura [Nm] that bounded symmetric
domains can be characterized by a property of the Bergman kernel, e.g.
the commutativity of the Laplacian with respect to the Bergman metric
and the Berezin transform. (See also [En].) It is known that a complex
manifold equipped with the Bergman metric is homogeneous if and only
if it is equivalent to a bounded homogeneous domain (cf. [PS]).
Exploiting the fact that every bounded homogeneous domain is
equivalent to a domain on which a set of affine transformations acts
transitively (cf. [V-G-PS]), it is easy to see that bounded homogeneous
domains are hyperconvex (cf. [K-Oh]. See also [Dn-3] and [Is]). A
longstanding open question is whether or not, for the n-dimensional
bounded homogeneous domains, the 1.2 d-cohomology groups of type
(p,q) with respect to the Bergman metric are all infinite dimensional if
p +q =n. For the bounded symmetric domains, the assertion was
verified by Gromov [Gm]. Recently, Ishi-Yamaji [I-Y] showed that the
Bergman metric of a bounded homogeneous domain is the pull-back of
that of a bounded symmetric domain by a canonically defined
embedding.

Going back to the theory of Oka and Grauert, the Levi problem on
complex manifolds makes sense only after suitable restrictions or
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modifications because otherwise there exist counterexamples (cf. [G-3],
[Siu-1] and [Oh-10]). Generally speaking, with all conceivably natural
settings, the Levi problem is still far reaching on complex manifolds.
Among the tough questions of this kind, the Shafarevich conjecture is
most attracting. It asks whether or not the universal covering space of any
compact Kéhler manifold is holomorphically convex. It is remarkable that
a recent partial answer to it by Robert Treger [Tr-1,2] is based on the
analysis of the Bergman kernel.

- Optimistically speaking, it is not only challenging but also profitable to
explore methods to characterize the domains of existence of analytic
functions on complex manifolds, because they will lead us to new
boundary value problems with rich contents.

In this spirit, it may be also worthwhile to consider refined Levi
problems on complex manifolds. For instance, let M be a complex
manifold equipped with a volume form dV, let D be a bounded domain
in M, and let A be the embedding of D into D x D as the diagonal.

Qe

Does lim A*x /dV = holdif D is hyperconvex?
229D :

Let CP" denote the complex projective space of dimension n. For CP",
it is known that every pseudoconvex proper subdomain is hyperconvex
(cf. [Oh-S]). The above question is open even in such a restrictive
situation. The main difficulty is that the hyperconvexity of the domain D
does not imply the existence of a strictly plurisubharmonic function on a
neighbourhood of 9D. More precisely, it is false in general (cf. [Di-Oh-4])
and not known even if D is a domain in CP™ (n # 1). Nevertheless, it is
known that the d-equations for (n,q)-forms are solvable with L2 norm
estimates for all q on any pseudoconvex proper subdomain with C2
boundary in CP™(cf. [C-5-W]. See also [H-I] and [Brn-Cha]). So, the
solution for the case M = CP™ should not be too difficult and may clarify
the essential part of Q4. Concerning the related questions, see also [Di-
Oh-3] and [M-Oh].

More intricate relationship between Kg (z) and geometric invariants
on 9Q can be explored when 9Q2 is. C* and everywhere strongly
pseudoconvex. A groundbreaking result in this direction was a theorem
of Fefferman [F-1] assuring that there exist two C~ functions ¢ and
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defined on a neighbourhood of 92 such that
-n—1
(18) Ko(z) = 9(2)3(z)  +¥(2)logd(2)

holds near dQ. (7) implies that ¢(zo) = n!% "L(zo) for any zo € 9Q.

Geometric invariants besides L(zg) are involved in the coefficients of
the asymptotic expansions of ¢ and ¢y in 0 (their expression can be made
simpler after some rescaling), which have been investigated by Fefferman
[F-2], Bailey-Eastwood-Graham [B-E-G] and Hirachi [Hr-1].

The following was a very famous question known as the Ramadanov
conjecture (cf. [Rm]).

Qi kX ) B
Let @ be a strongly pseudoconvex domain with C” boundary, and let zo €
0Q. Suppose that there exists a neighbourhood V 3 zp in C" such

that ¥ =0 on V. Then,is 02 spherical around zo ? Namely, is therea
neighbourhood W3 zg and a C” diffeomorphism @ from ) NW onto

B"N{z;Rez >1-¢} forsome & suchthat ®|QNW is holomorphic ?

The answer is yes if n<2 (cf. [BM], [G] and [Bu]) and turned out to be
no if n =3 (cf. [E-Z] and [Hr-2]). However, it is not known whether or
not the conclusion holds if one strengthens the assumption to "¢ =0 on a
neighbourhood of 6Q".

. Fefferman applied (18) in [F-1] to analyze the geodesics with respect to
the Bergman metric, which is in fact a very hard work.

Another effective way of describing the boundary behavior of Kg (z,w)
is in terms of the operator theoretic properties of the orthogonal
projection, say B, , from the space 1%(Q2) onto A%Q). B, is called the
Bergman projection. '

The principal question in this setting is whether or not

(19) B (C@)cC'@

holds true, where Q :=QU dQ and C°(Q) denotes the set of C”~
functions on Q. (19) is called "condition R" by S. Bell [Bl].

It turned out that the property (19) is directly linked to the smooth
extendibility of biholomorphic maps. It is actually very efficient, because
by this method it is possible to generalize the results to proper
holomorphic maps between the domains of finite type (cf. [W], [B-L], [B-
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C] and [B-B-C]. See also [Oh-7]).

If Q=B" (19) can be verified directly by using (5) (cf. [Cha] and [L-
M]). In order to generalize this to more general classes of pseudoconvex
domains with C* boundary, a natural method is to convert (19) into the
property of another operator No by using Kohn's formula

(20) R =I1d-0*N, 0.

Here Ny, denotes the inverse of d8* on the image of d. N, is called the
Neumann operator. The Neumann operator exists because L is
pseudoconvex (cf. [C-1]. See also [Oh-9]). |

By such an argument, (19) can be verified for the domains of finite type.
The point is that subelliptic estimates hold on them (cf. [C-1]).

On the other hand, it is known that (19) is satisfied by certain domains
of infinite type. For instance, (19) holds whenever Q is a complete
Reinhardt pseudoconvex domain with smooth boundary (cf. [B-B]).

By [K-N]J, it is known that (19) is a consequence of the compactness of
No. If Q is convex, Fu and Straube [F-S] proved that the compactness of
Ng is equivalent to the condition that d€2 does not contain any complex
curve. For the proof, the boundary behavior of Kq(z) is analyzed. In this
context, domains for which (19) does not hold are also of considerable
interest (cf. [Ba] and [Chr]). "

Thus, as a state of art, we understand a general tendency that the
existence of a complex curve in the boundary destroys the regularity
properties of Py and Ng . So, it may be worthwhile to extend Fu-
Straube's theorem to more general domains. A candidate is the class of
lineally convex domains. Recall that € is said to be lineally convex if
every point zg € 9Q is contained in a complex hyperplane H = H(zo)
which does not intersect with €2.

06X .
Suppose that Q is lineally convex. Is it true that Ng is compact if
and only if /2 does not contain any complex curve ?

§3. Asymptotic expansion in tensor powers

We shall now review some results on the asymptotics of the
generalized Bergman kernels for tensor powers of positive line bundles,
as the power tends to infinity. Motivation for considering such a question
is related to algebraic geometry [Serre-1, 2], the heat kernel asymptotics
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[Dn-1] and a supersymmetric field theory [Wi] (see [Dm-3] for instance).

Let M be a connected complex manifold of dimension n and let E be
a holomorphic line bundle over M. The canonical line bundle of M will
be denoted by w,, . Given a fiber metric h of E, we denote by A(E®aw,,)
the space of 1.2 holomorphic sections of E®wy, with respect to h. The
reproducing kernel of A2(E®w,,) will be denoted by %, .

Let A be the diagonal embedding from M into MxM. Then A*x,
is a section of E®w,,®E®wm,,. ®, and A*x, are called the weighted
Bergman kernels, where we shall allow h to be locally of the form e *
for a locally integrable function ¢. Such a generalized fiber metric is
called a singular fiber metric. Similarly as the Bergman kernel function,
the weighted Bergman kernel function is defined whenever a
trivialization of the canonical bundle exists and is fixed. We shall denote
itby K, if h=e?. Generally, the product h-A*x, , being a section of
w,,®Wy,, can be written as g, dV, where dV is a volume form and @, is
a nonnegative function. ¢, measures the size of the Bergman kernel with
respect to dV.

As in the case of the Bergman kernel function, the value of @, at zo
is characterized as the supremum of the squared length at zp of I.2
holomorphic sections of E®wy with L? norm one.

Similarly as in the proof of (7), Bouche [Bou] proved that

(21) lim th =1

m->o00
holds if M is compact and h is C” and of positive curvature, by
extending a work of Tian [Ti], where the Hodge metric is approximated
by 1/m times the curvature form of (A*x,~ ) '. The model case for (21) is
the anti-tautological line bundle over CP" equipped with the fiber metric
induced from the euclidean metric of C™'. Although the method is
similar as in the estimate of the Bergman kernel, what is approximated is
reversed here. Namely, the fiber metric is approximated by the m-th roots
of the Bergman kernels.

In the same spirit, Demailly [Dm-2] applied the L2 extension theorem to
approximate any plurisubharmonic function and its Lelong number in
terms of the weighted Bergman kernels. Recall that, for any
plurisubharmonic function ¢ ona domain Q and for any point zo € Q,

the Lelong number v(g,z9) of @ at zg is defined by

v(¢p,zo) := liminf $(z)

Z > Zg loglz-zol
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Theorem 1. (cf.[Dm-2]) Let Q be a bounded pseudoconvex domain
in C". Then there exist constants C; and C; depending only on n and
the diameter of Q such that the following hold for any plurisubharmonic
function @ on Q and for any positive integer m.

(22)  9(z) - C1/m < (2m) log Kamp(2) < sp #(C) + mi"log(C2/1™)
if z€ Qand r < §(z).
(23)  v(@.20) — n/m < v((2m) log Kamg(2), 20) < V(@,20), 20 € Q.

Since (23) is a comparison between 2mg and log Kime near ¢ = —oo,
one may naturally ask its counterpart near @ = c.

Q8-*%
Let ¢ bea plunsubharmomc function on a bounded pseudoconvex domain Q

in C". Is there a constant C such that { (@@dp()" < Cf (16610qu,(z)) forall R?
0<P<R 0cP<R

Catlin [C-2] and Zelditch [Z] reversed again the role of h and %, in

the approximation and established the asymptotics of A*xy» in m asa
counterpart of (18). The spirit is to construct the orthogonal projection
explicitly from the geometric data. It will be stated below, where the

factor wwm is not explicitly involved, for simplicity.
Let M and (Eh) be as above and let dV be any C” volume form on

M. By A(E) we denote the space of holomorphic sections of E. The length
of s € A(E) with respect to h will be denoted by |s]|;, .
Then we put

lIsli2=[1s|2dV,

Q(@Vh)6) =sup { [s(912/lIs[12; s € AE) - (0}

B(dVh) = o(dV,h)dV/dimA(E), whenever A(E) # {0}
and

® = the curvature form of h.

B(dV,h) is a probability measure on M which is canonically associated to
dV and (Eh). The behavior of B(dV,h™) in m is in question.
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Theorem 2. (cf. [C-2] and [Z]) In the above situation suppose that h
is C* and of positive curvature, then there exist C* functions b; on M

such that
(24)  BEAVE") =Ybynl TV,  bodV =MA(h)/V
J=0
holds asymptotically in m, where MA(h) := (V-10)* and V := L (-10)"

Catlin's proof depends on the analysis of the Bergman kernel of the disc
bundle associated to E¥, the dual of E, and Zelditch's on that of the Szego
kernel. Their approaches are both natural because, letting T be the unit
disc bundle associated to' E*, which is a tubular neighbourhood of the
zero section, o(dV,h™) are naturally identified with the diagonalized
reproducing kernels of (relatively small) subspaces of LXT) or L2(8T)
consisting of holomorphic functions of restricted type on T. However,
their common tool is the microlocal method of Boutet de Monvel and
Sjostrand [BM-S] which extends [F-1]. For an elementary proof of
Theorem 2, see [B-B-S].

In view of such a close relationship between (18) and (24), it seems
natural to ask a counterpart of the Ramadanov conjecture in this context.

For instance, if M =CP?! and E is the anti-tautological bundle, it is
easy to see that the fiber metric h is determined by b up to a constant
factor. When M = CP™ and n > 1, it becomes more difficult to formulate
the question. Of course it will be even more difficult when M and E are
not fixed in advance. We note that, according to the work of Zigin Lu '
[Lu], B(dV,h™) looks like the stress energy in Einstein's equation.

In such a way, the Bergman kernel is related to algebraic geometry and
differential geometry through (pluri-)potential theory. It is remarkable
that Theorem 2 was applied by Donaldson [D] to the stability theory of
projectively embedded manifolds (see also [Mab-1,2]). Motivated by
Donaldson's work, Theorem 2 was extended to a more general context of
symplectic manifolds and orbifolds (cf. [D-L-M]). But let us wait for
another opportunity to enter this fancy topic.

§4. Variations in analytic families

Returning to the formula (2), it suggests, as well as Fefferman's
theorem, that any C” family of biholomorphic maps say {,}o4s - from
a C” family of C* strongly pseudoconvex domains {Q¢}peeeqyin C" to
another C”family {Q}} .4 in C™, extends to the boundaries also
smoothly in t.

In fact, in virtue of the approach of Bell-Ligocka [B-L], the smooth



76

extendibility of {0} is reduced to the smoothness in t of the Bergman
projections, which can be verified, via Kohn's formula, by checking the
corresponding property of the family of Neumann operators (cf. [G-K]).

Hence, (18) relates the Bergman kernel of Q not only to geometric
invariants of 9Q, but also to their variations. So does (24) similarly. Thus
the Bergman kernel is linked not only to the Levi problem, but also to the
moduli problem. In this sense, variational questions for the Bergman
kernels on complex analytic families are particularly interesting. Let us
review some results in this direction.

Let M be a connected complex manifold, let U be a domain in c"
and let w: M —— U be a surjective holomorphic map such that dr is
everywhere of maximal rank. The family of the Bergman kernels on the
fibers of m is called the relative Bergman kernel on M. Forany €U
we put %y = A*®atg). We shall assume, for simplicity, that %, isnot
everywhere zero. Then the collection {x,; Yeeu 18 naturally regarded as a
singular fiber metric of ) L where we put ), = = 00, ®@*0y;)*. We

put By = ¥y byey

There are two model cases :

1) " M=B"",U=B" and ni(z) = z", where z = (z',2"). In this case, the
curvature form of By s is

~83(log (1 - |z" |2 +1log (1 - |2'|"™).
Obviously it is positive on M.

2) M= -U- C" /T, (disjoint union), where Z runs through the set
End'C™:= { ZEEndC"; detImZ >0} and T, stands for the latticein C™
generated by the columns of the nxn unit matrix and those of Z. Here,
End C", the set of complex endomorphisms of C", is naturally identified
with the set of nxn matrices whose entries are complex numbers. Then we
put U=End'C"and n(q) =Z for any q € C"/T; . In this case, the
curvature form of fy;is —dolog(det Im Z), which is easily seen to be not
semipositiveon M if n > 1.

As is well known, —log(det Im Z) becomes strictly plurisubharmonic
when it is restricted to the set of those Z for which *Z=Z and Im Z is
positive definite (cf. [Sg]).
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st
Compute the signature of délog(det Im Z).

It is surprising that nothing general about {1, was known in the last
century, although the semipositivity properties of the direct image sheaf
T W4y had been known in the context of variation of Hodge structures
and its application to the classification theory of algebaric varieties (cf.
[Gr] and [Fj]). (See also [Oh-1].) The first result in this direction, extending
the model case 1), was obtained by Maitani-Yamaguchi [M-Y] in the case
where M is a Stein manifold of dimension 2. Namely, by combining the
analysis of variation of Green functions (cf. [L-Y]) with a characterization
of the Bergman kernel by N. Suita (1933-2002) as the second derivative of
the Green function (cf. [Sui]), they proved that fy; is of semipositive
curvature in this situation. (See also [Mt].)

It is an interesting coincidence that Suita's work was motivated by an
open question raised in a treatise by K. Oikawa (1927-92) and L. Sario,
where the comparison between the Bergman kernel and the capacity of
the boundary of an arbitrary domain W in C was asked (cf. [O-S] p.342,
7). Here, the capacity cg(z) of the boundary B =J0W is defined by

() logcy(z)=lim (g (zw)-log|z-w]),
where g, denotes the (negative valued) Green function of W (cz:=0 if
gw =0). Itis clear that = Kw =3 holds if W = D. In [O-S], it was shown
that Ky = 0if and only if c; = 0. Suita showed that

(26) n Ky(z) > Cg (z)*? forany z€W

holds if W} is an annulus.

KK
Q9 (Suita's conjecture)
(27) n Kw(z) > ¢ (z)*> holds forany z€EW
if g

wE® and W is not equivalent to the unit disc.

The reader may notice that Q9 could have been included in §2. In fact,
after proving the divergence of Kg (z) at dQ for hyperconvex Q in
[Oh-2], the author refined [Oh-T] in [Oh-5] and meanwhile found its
application to Q9 (cf. [Oh-6,7]), in which an inequality 750 Ky, > cz was
obtained. The latter was improved by [Brn-1] and [B]. According to [B],
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2K, > cg holds in the situation of Q9.

After [M-Y], Berndtsson [Brn-2] and Tsuji [Tj] succeeded in generalizing
the result to Stein manifolds of arbitrary dimension, by directly exploiting
the reproducing property of the Bergman kernel. On the other hand, the
method of [M-Y] was extended to explore variational properties of
families of harmonic functions with prescribed singularities and Dirichlet
or Neumann type boundary conditions (cf. [Hm] and [Hm-M-Y]).

Recently, Berndtsson-Piun [Brn-P] obtained a result which is also
related to 2). Motivated by applications to algebraic geometry, they
consider a surjective projective morphism say p : X——> Y between
complex manifolds X and Y, and a holomorphic line bundle (L, h) over
X endowed with a singular fiber metric h. Let I(h) denote the
multiplier ideal sheaf of h (cf. [Dm-3] ). Let YO CY be the Zariski open
set of points that are not critical values of p in Y, and let X° C X be the
inverse image of Y with respect to p. As y varies in Y?, the relative
Bergman metric on w,,y®L over X° is defined similarly as ﬁM/U , only it
is allowed to be identically oo.

Theorem 3. In the above situation, assume the following.
i) the curvature current of (L, h) is semipositive on X.
i) HO(X’ , wy, ®LOI(H)) #0 for some y € Y®, where X, =p ().

Then the relative Bergman kernel metric of the bundle wy\®L | X° is not
identically co. It has semipositive curvature current and extends across
X - X° to a metric with semipositive curvature current on all of X.

For the proof, the assumption that p is projective is crucial. The point
is that every point y €Y admits a neighbourhood V such that p™' (V)
contains a divisor whose complement is Stein. Theorem 3 has interesting
applications to pluricanonical maps via an inequality for the "restricted
volume" (cf. Theorem 0.3 in [B-P]. See also [Tk]). For the asymptotics of
the restricted volume, see [Hs].

Q10¥¢

For which morphism is Theorem 3 valid ?

Analyzing the model case 2) from this viewpoint seems interesting.



79

Any extension of the model case 2) towards this direction will be quite
interesting and fruitful. Berndtsson [Brn-2] has proved Nakano-
semipositivity of the direct images for Kdhler morphisms and applies the
result in [Brn-3] to study variations of K&hler metrics. Moreover, the deep
work of Fang-Lu-Yoshikawa [F-L-Y] on the family of Calabi-Yau
threefolds seems to be closely related to this question.

Note.  If M isa Hartogs domain over U, there is a formula which
relates the weighted Bergman kernels on U to # (cf. [Li]), which is
useful to derive explicit formulae (cf. [Ym]). Computat1on for Hartogs
domains is done also in [M-Y] for the relative Bergman kernels.

§5. Bergman Kernel and L2 Extension

As before, let Q be a domainin C™" and let A%(Q) be the Hilbert space
of 1.2 holomorphic functions on Q with respect to the Lebesgue measure.
Let z=(z,...,z ) bethe coordinate of C"

For any pseudoconvex domain Q in C™, for any plurlsubharmomc
function @ on Q, and for any nonnegative number ¢, we put

A2 (Q) = {f | f is holomorphic on Q and je—?(1+ | Z,,| 2)'—1 “Flf]2 < o}
’ 8L

and, by letting Q={zeQ | zZo=0}, put

AZ () ={f | { is holomorphic on Q' and Se_(’ylf |2 < o }
.QI
Then we have

Theorem 4. (cf. [Oh-T], [Oh-3]) Suppose that Q is pseudoconvex.
Then, for any & > 0, there exists a bounded linear operator

A%,(Q') > A%e (Q)
whose norm does not exceed a constant C. depending only on ¢, such
that I, (f)|Q'=f holds for any fEA%Q)).

Obviously Theorem 4 does not hold for € = 0. The best constant for C,
is not yet known (cf. [Bt]). As was mentioned in §3 and §4, Theorem 4 was
applied to plurisubharmonic functions and to the Bergman kernels .

As before, let M be a complex manifold of dimension n, let E be a
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holomorphic vector bundle over M, and let w,, be the canonical line
bundle of M. Let dV bea C®volume formon M and let h be a C” fiber
metric of E. For any reduced analytic set SC M equipped with a measure
u, A2(S,E®wm,,h®(dV)!,du) will stand for the space of L2 holomorphic
sections of E®wy over S with respect to h®(dVY' and . Since
AY(M,E®wy, h®(dV)!,dV) is independent of dV, we shall denote it by
A%M,E®uy,h) for brevity.
~ Given locally integrable functions 1 : M > [-o0,0), the spaces
A%(SE®uy,€ Yh@(dV)!,dp) and AX(ME®w,,E%h) are defined similarly.
We shall call e%h a singular fiber metric of E. Given any singular fiber
metric fi of E, an L2 extension operator for (E®» ,h®(dV)') from (S,u)
is defined to be a bounded linear operator

1: AYS,E®u, h@(AV)',duw)

> A2(M E®w,,h)

satisfying I(f)|S=f forany f. Let ®: M > [-0,0) be any
continuous function. We shall say that ® is of logarithmic type along S if
the following are satisfied.

&'(~0) =S,
®|(M\S) is C.

e? is not integrable on an open subset U C M whenever
UNS#d.

Given a function ® which is of logarithmic type along S, we say that p
is a residual majorant of (dV,®) if the inequality

limsup g pe’édV SS pdup

1> 00
1<P<-r+1 S

holds for any nonnegative continuous function p with compact support
on M.

We say that (E,h) is ®-positive if there exists a positive number o
such that (Ehe"™®) are Nakano semipositiveon M\ S forany © €
[0, To]. We shall denote the supremum of such to by t(h,®).

- Let T beaclosed subset of M. We say that T is L2negligible if, for
any point p € T and for any neighbourhood W > p, every L2

holomorphic n-form on W\ T is holomorphically extendible to W.



81

In these terms, the main result of [Oh-5] is expressed as follows.

Theorem 5. Let M be a complex manifold with a C volume form dV,
let E be a holomorphic vector bundle over M with a C fiber metric h,
let S be a reduced analytic subset of M equipped with a measure (,

and let ® : M

logarithmic type along S. Suppose that w is a residual majorant of (dV,
®), h is ®-positive, and that there exists an L2-negligible set TCM such
that M\ T isSteinand SN T is nowhere dense in S. Then, for any
plurisubharmonic function ¢ on M, there exists an L? extension operator
for (E®w,, € th®(dV)?) from (S,u) whose norm is bounded by a
constant depending only on t(h,®).

> [-0, 0) be a continuous function which is of

In [Oh-5, Theorem 4], the result is stated for a more restricted class of ®,
but it is easy to see that the proof of this generalized version is completely
similar.

The point of Theorem 5 as well as Theorem 4 is that the norm of the L2
extension operator is estimated by a relatively simple geometric quantity.
Therefore it seems to make sense to ask the following.

Q11-**
Find a reasonable generalization of Theorem 5 for the 8 closed forms of type (0,q) for q = 1.

For a nice but partial answer, see [Kz] for instance.

Finally, let's see how one can derive a division theorem from an
extension theorem in such a way that Theorem 5 yields an L2 division
theorem.

Let E* denote the dual bundle of E, let P(E*) be the projectivization
of E¥ ie. P(E*) =U (E*~{0})/(C-{0}), and let w : P(E*) > M be the
bundle projection.

Recall that, in the presence of such a fiber structure, the sheaf
cohomology groups of P(E*) and those of M are related by the Leray
spectral sequence. Based on this, one has a canonical isomorphism
between the E-valued cohomology groups of M and cohomology
groups of P(E*) with values in a certam line bundle. More precisely, one
has the following.

Theorem 6. (cf. [LP]) Let L(E*) denote the tautological line bundle
over P(E*), i.e. L(E*) = UL(Ej) where L(E?) denotes the tautological line
bundle over P(E}). Then there is a natural isomorphism
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(28) H %M, E) =« H'Y(P(E*), LE*)*.
Here Hp’q( +,+) denotes the Dolbeault cohomology group of type (p,q).

We note that L(E*)* and E are related by the following commutative
diagram.

L(EY* <— w*E > E
’ J
P(E*) >M

Here the morphism w*E > L(E*)* is defined over y EP(E*) as the
natural projection to the quotient space of Egy,, by the kernel of y.

Now, by applying (28), one can transform a division problem on M to
an extension problem on P(E*) as follows.

Let y:E > QQ be a surjective morphism between holomorphic
vector bundles E and Q over M. A (generalized) division problem asks
for conditions for the induced morphisms from H"4M, E) to H*YM, Q)
to be surjective. In view of (28), this surjectivity is equivalent to that of

>HYPQY), LIQY)),

HY(P(E¥), L(E*")

which is nothing but the extendibility because P(Q*) is naturally
identified with a complex submanifold of P(E*) by y* and a canonical
isomorphism between L(E*)*|Q, and L(Q*)* is induced by y.

Thus, by interpreting the conditions in Theorem 5 in this situation, we
shall obtain an L2 division theorem. |
- Infact, given E—> Q as above, any C fiber metric h of E and a
point v € P(E*), let &,(v) denote the fiberwise distance from v to P(Q*)
with respect to the Fubini-Study metric associated to h, normalized in
such a way that sup {8;,(v); v EP(E*) } =1 for every x € M. In this
situation we have the following.

Theorem 7. Let (Eh) and Q be as above. Assume that there exists an
L2-negligible set T C M such that M - T is Stein and, with respect to the
fiber metric of L(E*)* induced from h, L(E*)* is logd-positive. Then the
natural homomorphism

A*M, E®q,, h)

> A2(M, Q®u,, hy)

is surjective. Here hg denotes the fiber metric of Q induced from h.
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Corollary 1. (cf. [Oh-7]) Let Q be a bounded pseudoconvex domain
in C™. Then there exists a constant C depending only the diameter of Q
such that, for any plurisubharmonic function ¢ on Q and for any
holomorphic function f on Q satisfying

gjl |1(z)] 26 2 2"0E ! < 0

there exists a vector valued holomorphic function g=(g,,...,g,) on Q

satisfying

f(z) = TZL% z;8,(z)
j=
and

sz |g(z)lzé‘f’(z)-ztm)log’lz(li % <c iz | f(z)lze-éf(zmntog:z,d L

Here dA denotes the Lebesgue measure.

Remark. It does not seem to be easy to derive Corollary 1 just by
applying the result of [S].
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