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Introduction

The Bergman kemel, named after Stefan Bergman (1895-1977), is by
definition the reproducing kernel of the space of $L^{2}$ holomorphic n-forms
on any connected n-dimensional complex manifold. Its significance in
complex geometry has been $\mathscr{X}^{adual1}y$ understood through many
spectacular works in the last century. For instance, C. Fefferman [F-1]
analyzed the boundary behavior of the Bergman kernel on strongly
pseudoconvex domains with $C^{\infty}$ boundary, and proved that any
biholomorphic map between such bounded domains in $C^{\mathfrak{n}}$ extends
smoothly to the closure. Recently, methods for analyzing the Bergman
kemel brought new insights into algebraic geomehy and differential
geometry (cf. [Siu-2-5], [Brn-P], [D] md[Mab-1,2]). The purpose of this
article is to review some of the results on the Bergman kemel with
geometric $back_{\mathscr{X}}ounds$, presenting open questions on the way.

\S 1. Preliminaries–before and after the Bergman kernel

The circle division theory of C. F. Gauss (1777-1855), which was
discovered on 1796/3/30, is a giant leap in mathematics and the first step
towards complex geometry. In the early 19th century, it brought a new
progress in the theory of elliptic integrals, which had been developed by
L. Euler (1707-83) md A.-M. Legendre (1752-1833). Namely, generalizing
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the work of Gauss, N.H.Abel (1802-29) was led at first to algebraic
insolvability of equations of degree 5, subsequently discovered that the
inverse functions of elliptic integrals are nothin$g$ but doubly periodic
analytic functions in one complex variable (i.e. elliptic functions), and
eventually arrived at a remarkable characterization of principal divisors
in the theory of algebraic functions of one variable (Abel’s theorem). The
latter is now regarded as the starting point of algebraic geometry.

As a generalization of Abel’s theory on elliptic functions, the theory of
multiply periodic functions was developed in several variables by G.
Jacobi (1804-51), K. Weierstrass (1815-97) and B. Riemann (1826-66).

On the other hand, in spite $of’m$ importmt contribution of H. Poincare
(1854-1912) on normal functions and a subsequent work of S. Lefschetz
(1884-1972), it was not before the appearance of the celebrated theory of
W. V D. Hodge (1903-75) $[Ho]$ , of harmonic integrals on K\"ahler
mamifolds, that Abel $|s$ theorem on algebraic functions found a proper
context in several variables. This delay is mainly because of the rack of
the viewpoint of orthogonal projection in Hilbert spaces. Recall that it
was only in 1899 that D. Hilbert (1862-1943) awoke Riemam$|s$ idea of
Dirichlet‘ $s$ principle from a deep sleep (cf. [R] md [H]) and that the basic
representation theorem of F. Riesz (1880-1956) was not available until
1907. Another historical remark is that such a systemization of abstract
mathematics emerged only after detailed studies of orthogonal
polynomials in the 19th century. Anyway, it culmuinated in a general,
method of orthogonal projection by H. Weyl (1885-1955). Weyl$|s$ method
(cf. [W-1]) became the analytic base of the Hodge theory, which was later
combined with analytic sheaf theory by Kodaira (1915-97) [K-1,2]. That
Weyl anticipated a lot in this method had been modestly suggested in
[W-2]. The Bergman kernel was bom around 1922 (cf. [B] and [Bo]) in
such a circumstance.

To be more explicit about the orthogonal projection and the Bergman
kernel, let $D$ be the unit disc centered at the origin in the complex plane
with coordinate $z$, and let $L^{2}(\partial D)$ be the Hilbert space of $L^{2}$ complex-
valued functions on $\partial D$ . Then the integral transform

$f(z)$ –
$\frac{\{}{2\pi\Gamma-1}\int_{\partial D}\frac{f(\zeta)}{\zeta-z}d\zeta$

of A.-L. Cauchy (1789-1857) gives an orthogonal projection from $L^{2}(\partial D)$

onto the subspace of functions which are the boundary values of
holomorphic functions on $D$ in the $L^{2}$ sense $(i$ . $e$ . $L^{2}$ functions with
vanishing Fourier coefficients in the negative powers of $\exp(i\arg z))$ .

Replacing the integral along $\partial D$ by the integral on $D$, one is naturally
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led to the representation of the orthogonal projection from $L^{2}(D)$, the
space of the complex-valued $L^{2}$ functions on $D$, onto the subspace
consisting of $L^{2}$ holomorphic functions on D. The corresponding integral
transform is

$f(z)-$ $\frac{1}{\pi}\int_{D}\frac{f(\zeta)}{(|-\overline{\zeta}z)^{2}}d\lambda_{\zeta}$ .

Here $d\lambda_{\zeta}$ denotes the Lebesgue measure. The function $Jt^{-1}(1-\overline{\zeta}z)^{-2}$ is
the Bergman kernel of $D$, where holomorphic l-forms on $D$ are
naturally identified with holomorphic functions on D.

Thus, from the viewpoint of orthogonal projection, the Bergman kernel
is a brother of the Cauchy kernel. An advantage of the Bergman kernel is
that it naturally encodes geometric information. Let us recall how it does.

Let $M_{j}(\dot{|}^{=}1,2)$ be two complex manifolds with Bergman kemels $\iota$

$M’$

md let $0$ : $M_{1}arrow M_{2}$ be a biholomorphic map. Then one has $m$
$j$

equality

(1)

which follows easily from the $def\ddot{m}tion$ . We note that the equality (1)
already suggests a hnk between the boundary behavior of Bergman
kemels and biholomorphic maps.

To see it more explicitly, taking as $M_{1}$ any $s$imply connected proper
subdomain $\Omega$ of $C$, let $z_{0}\in\Omega,$ $M_{2}=$ D, o$(z_{0})=0$ and $Q^{1}(z_{0})>0$, based on
Riemann’s mapping theorem. Then, letting -,$b^{=}*(\zeta,z)d\zeta$dz, it follows

mmediately from (1) that

(2) $\sigma(z)=\sqrt{\frac{\pi}{k^{(z_{0f}z_{o})}}}\int_{z_{0}}^{z}*(\zeta, z_{0})d\zeta$

holds true for any $z\in\Omega$ . It is obvious from (2) that the boundary
regularity of $K_{\Omega}(\zeta, z_{0})$ implies that of $0$ . Efficiency of this reduction lies
in that, as we shall see later, the regularity question on $K_{\Omega}$ can be
transformed into a question on the canonical solution operator for the
complex Laplacian. This observation might already suggest the reader the
validity, and even the method of proof, of $Fefferman^{1}s$ theorem which was
mentioned in the introduction.

That$|s$ all for preliminaries. We shall now go into the substantial
material, at first the boundary behavior of the Bergman kemel.
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\S 2. Studies on the boundary behavior

From now on, let $\Omega$ be any bounded domain in $C^{n}$ and let

$?\iota_{\Omega}=K_{\Omega}(z,w)2^{-n}dz_{1}\wedge\cdots\wedge dz_{r\iota}\otimes d\overline{w}_{1}\wedge\cdots\wedge d\overline{w}_{\mathfrak{n}\prime}$

where $z=(z_{1}, \ldots, z_{\mathfrak{n}})$ and $w=(w_{1}, \ldots, w_{VL})$ . $K_{\Omega}(z,w)$ will be referred
to as the Bergman kernel function of $\Omega$ .

An alternate definition of $K_{\Omega}(z,w)$ is given by the formula

(3) $K_{\Omega}(z,w)=\sum_{\simeq j1}^{\infty}e_{j}(z)\overline{e_{j}(w})$

where $\{e_{1}, e_{2}, \ldots\}$ is any complete orthonormal system of the space, say
$A^{2}(\Omega)$ , of $L^{2}$ holomorphic functions on $\Omega$ with respect to the Lebesgue
measure.

For simplicity we put

(4) $K_{\Omega}(z)=K_{\Omega}(z,z)$ .

Clearly $K_{\Omega}(z)$ is strictly plurisubharmonic and strictly positive. It is
also easy to verify that $\log \mathscr{K}(z)$ is strictly plurisubharmonic. The
complex Hessian of log&(z), denoted by $\partial\overline{\partial}\log I\langle\Omega(z)$ by an abuse of
notation, is called the Bergman metric of $\Omega$ . A fact of basic importance is
that biholomorphic maps are isometries with respect to the Bergman
metric.

For the case $\Omega=B^{\mathfrak{n}};=\{z,\cdot|z|<1\}$, where $|z|^{2}:=|z_{1}|^{2}+\cdots+|z_{n}|^{2}$ ,
one has

(5) $K_{\Omega}(z,w)=\pi^{-n}n!(1-\prec z,w>)^{-7\iota-\{}$

where $<z,w>;=z_{1}\overline{w}_{1}+\cdots+z_{\mathfrak{n}}\overline{w}_{\tau\iota}$ .
The expression (5) is an immediate consequence of (1) once the

biholomorphic automorphisms of $B^{r\iota}$ are explicitly known. Although it is
usually difficult to compute the Bergman kernels, it is obvious that the
Bergman metrics on bounded homogeneous domains are complete. We
note that there exists a complete K\"ahler metric on $B^{n}-\{0\}$ and that the
Bergman metric on $B^{n}-\{0\}$ is not complete (cf. [G-1]).

One way of describing the boundary behavior of $K_{\Omega}(z,w)$ is to express
the singularity of $K_{\Omega}(z)$ as $zarrow\partial\Omega$ in terms of the function $6_{\Omega}(z)$ $:=$

$id\{| z- w | ; w\not\in\Omega\}$ and geometric invariants on $\partial\Omega$ . Here, by geometric
invariants on $\partial\Omega$, we mean locally defined systems of functions satisfying
covariance properties under biholomorphic maps, or more instrinsically,
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under CR diffeomorphisms (cf. [Wk]).
For that purpose, the following formula is useful.

(6) $K_{\Omega}(z)=\sup\{|f(z)|^{2};f(\zeta)\in A^{2}(\Omega)$ and $||f||=1\}$ .

Here $||f||$ denotes the $L^{2}$ norm of $f$ . Note that the supremum is attained
by the function $Kfi(\zeta,z)/\sqrt{K_{\Omega}(z)}$. Basically; what can be done is to
approximate this function from the geometric data by employing the
techniques of producing $L^{2}$ holomorphic functions on $\Omega$ . As such a
technique, there is a method, due to L. H\"ormander [H\"o-l], of solving the
inhomogeneous Cauchy-Riemann equation $\overline{\partial}u=v$ with $L^{2}$ norm estimates
(see also [H\"o-2]). A similar method of A. Andreotti (1924-80) and E.
Vesentini in [A-V-1,2] is also useful.

In the case where $\Omega$ is a strongly pseudoconvex domain, it was proved
in [H\"o-l] that

(7) $z>z_{0}1\dot{\underline{u}}nK_{\Omega}(z)6_{\Omega}(z)^{\tau\iota+t}=n!\pi^{-\mathfrak{n}}L(z_{0})$

holds for any $z_{0}\cdot\in\partial\Omega$, where

(8)
$L(z_{0})=\Omega\ni 2arrow Z_{0}$

Recall that $\Omega$ is called a strongly pseudoconvex domain if locally $\partial\Omega$ can
be mapped to $C^{2}$ strictly convex hypersurfaces by appropriate choices of
biholomorphic maps. $L(z_{0})$ is a geometric invariant on $\partial\Omega$ in the above
mentioned sense.

Actually, (7) holds for any bounded pseudoconvex domain with
$C^{2}$ boundary. In fact, the left hand side of (7) vanishes if $L(z_{0})=0$ . This
can be seen from Cauchy$|s$ estimate applied on a sequence of polydiscs in
$\Omega$ convergin$g$ to $z_{0}$ .

Hence, strong pseudoconvexity of $\partial\Omega$ at $z_{0}$ , i.e. the condition that $\partial\Omega$

becomes strictly convex at $z_{0}$ after some biholomorphic coordinate
change, is characterized by the condition that

(9) $\lim_{zarrow}\inf_{z_{0}}Q(z)6(z)^{\tau\iota+4}>0$

holds true.
On the other hand, it is implicitly contained in [Oh-2] that the Levi

flatness of $\partial\Omega$ on a neighbourhood $U\ni z_{0}(U\subset\partial\Omega)$, i.e. the property
that $\partial\overline{\partial}6|Ker\partial 6=0$ on $U$, is characterized by the condition that
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(10) $\lim_{\xiarrow}\sup_{z}K_{\Omega}(\zeta)@(\zeta)^{2}<\infty$

holds for any $z\in$ U.
For the general smooth pseudoconvex domains, $||$building blocks of the

singularity“ of $K_{\Omega}(z)$ have been studied case by case (cf. [Oh-l], [D-H-
Oh], [D-H], [B-S-Y], [Km]; [Ch-Km-Oh] $)$ .

Next we shall discuss the boundary behavior of the Bergman kernel on
pseudoconvex domains from slightly more analytic viewpoint.

Although the motivation of Bergman$|s$ thesis was to introduce a new
method in the theory of potentials and conformal mappings, it was soon
recognized that analysis of the Bergman kernel would play an important
role in several complex variables, too, for instance to solve the Levi
problem (cf. [H\"o-3]). (Recall that the Levi problem asks whether or not
every pseudoconvex domain is holomorphically convex.)

Indeed, it is easy to see that $\Omega$ is holomorphically convex if

(11) $\lim_{z\Rightarrow\partial\Omega}K_{\Omega}(z)=\infty$

holds true. The converse is false because the punctured disc $D-\{0\}$ is a
counterexample. For the domains in $C$, it recently turned out that (11) is
equivalent to certain growth property of the logarithmic capacity function
on $\Omega$ (cf. [Zw-2]).

Concerning the Levi problem, which was the principal question in
several complex variables for some time, Kiyoshi Oka (1901-78) first came
up with a solution by the strategy of exhaustin$g$ pseudoconvex domains
by strongly pseudoconvex ones, constructing holomorphic functions on
strongly pseudoconvex domains by patching locally defined ones by
solving $Cou\sin^{I}s$ problem, and approximating them by globally defined
ones by a theorem of Runge type (cf.[O]). However, all these arguments
are independent of the Bergmm kernel.

A counterpart of Oka$|s$ theorem on compact manifolds was established
by Kodaira by the method of harmonic integrals (cf. [K-1.2]).

After an importmt work of C. B. Morrey (1907-84) (cf. [M]), the method
of Oka was extended by H. Grauert [G-2] to prove that strongly
pseudoconvex domains in complex manifolds are holomorphically
convex, and Kodaira $|s$ method was extended in [A-V-1,2], [Kh] md
[H6-1] to yield a powerful method of directly and effectively reaching
the basic existence theorems in several complex variables. Especially, it is
remarkable that [H\"o-l] gave a simple alternate proof to Oka$\dagger_{S}$ theorem
by establishing a quantitative solution to the additive Cousin problem by
the method of $L^{2}$ estimates for the $\overline{\partial}$-operator. Here the $\overline{\partial}$-operator means
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a closed linear operator from $L^{2}(\Omega)$ to $\oplus^{\iota}L^{2}(\Omega)\gamma$ defined by $\overline{\partial}f=(\partial f/\partial\overline{z}_{1},$ . .
., $\partial f/\partial\overline{z}_{n})$ on Dom $\overline{\partial}=\{f, \partial f/\partial\overline{z}_{j}\in L^{2}(\Omega),j=1,2,\ldots,n\}$ .

Since $A^{2}(\Omega)=Ker\overline{\partial},$ $\mathscr{K}$ involves operator theoretic information on $\overline{\partial}$

as we shall see later.
The $\overline{\partial}$-operator is naturally extended to $L^{2}$ differential forms giving rise

to a complex. Generalizing the situation to the $L^{2}$ spaces with respect to
arbitrary measures, $L^{2}$ estimates are formulated as inequalities of the form

(12) $||u||\leq$ const $(||\overline{\partial}u||+||\overline{\partial}^{\star}u||)$,

where $\overline{\partial}^{\star}$ denotes the Hilbert space adjoint of $\overline{\partial}.L^{2}$ estimates that work
in several complex variables were planned by P. R. Garabedian
(1927-2010) and D. C. Spencer (1912-2001) [G-S]. Based on the idea of
orthogonal projection and pushed by the complete solution of the Levi
problem for the domain$s$ over $C^{\mathfrak{n}}$ (cf. [O], [Br] and [Ng]), the plan was
realized in the above mentioned papers.

An advantage of this method is that the passage to himits is quite easy,
so that one has effective existence theorems on general pseudoconvex
domains. (7) was obtained as an application of this method.

Inspired by the success of this approach, Skoda [S] and Ohsawa-
Takegoshi [Oh-T] established respectively the $L^{2}$ varimts of Oka’s
division theorem and extension theorem. The method of [Oh-T] was

fluenced by [D-F] and [Wi].
Skoda$|sL^{2}$ division $\backslash theorem$ was applied by Pflug [P] to show that (11)

holds if $\Omega$ is a pseudoconvex domain satisfying the “generalized cone
condition“ (see [P] for the definition). Moreover it tuned out later that the
same technique is available to show, under the assumption that $\partial(\Omega\cup\partial\Omega)$

$=\partial\Omega$ , that $\Omega$ is pseudoconvex if and only if it carries a complete K\"ahler
metric (cf. [D-P]).

On the other hand, by applying the $L^{2}$ extension theorem in [Oh-T], it
was shown in [Oh-3] that (11) holds if $\Omega$ is hyperconvex, i.e. if $\Omega$ admits
a bounded plurisubharmonic exhaustion function.

It is well known that a bounded domain in $C$ is hyperconvex if and
only if its boundary points are regular with respect to the $D\ddot{m}chlet$

problem (for the regularity of the boundary points in this sense, see
[Kishi] for instance). We note that (11) holds on some non-hyperconvex
domains, e. g. on $\{(z,w)\in C^{l};|z|<1,$ $|w|\prec 1$ and $|z|\prec|w|\}$, so that
hyperconvexity is considered to be a more natural condition than (11).

Pluripotential theory, including the existence of pluricomplex Green
function and Lelong-Jensen measure, has been developed on
hyperconvex domains. Here, to be analyzed as the several variables
version of the Laplace operator is the Monge-Amp\‘ere operator (cf. [Klm]
and [Dm-l] $)$ . Recently, geometry of the Nevanlinna counting function is
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discussed on hyperconvex domains (cf. [P-S]).

The condition (11) is very close to the completeness of the Bergmm
metric on hyperconvex manifolds. Such a link was first observed in [Kb]
by identifying the Bergman metric with the pull-back of the Fubini-Study
metric on the projectivization of the topological dual $A^{2}(\Omega)^{\star}$ of $A^{2}(\Omega)$ , say
$P(A^{2}(\Omega)^{\star})$ , by the canonically defined holomorphic embedding

(13) $\iota:\Omega-P(A^{2}(\Omega)^{\star})$

$w$ $(U$

$z|arrow\{m\in A^{2}(\Omega)^{\star}-\{0\};m(f)=0 if f(z)=0\}$ .

By this identification, denoting the distmce between $\iota(z)$ and $\iota(w)$ by
$|$ z,w $|$ , one has

(14) z,w $|=$ Arctm $\frac{\sqrt{K_{\Omega}(Z)K_{\Omega}(W)-|K_{\Omega^{(z_{\text{ノ}}w)1^{2}}}}}{|K_{\Omega^{(Z,W)|}}}$

The following estimate, which is essentially equivalent to Kobayashi’s
criterion for the completeness of the Bergman metric, follows from (14).

(15) $|$ z,w $| \geq\min(1/2, \sup\{|f(z)|^{2}/K_{\Omega}(z),\cdot f\in A^{2}(\Omega), ||f||=1 and f(w)=0\})$ .

(See also [Oh-8]).
Combinin$g(15)$ with a recently developed technique of estimatin$g$

integrals of type $\int_{\Omega_{\sim}}|u|^{\tau\iota}(\partial\overline{\partial}v)^{\mathfrak{n}}$ , Bfocki-Pflug [B-P] and Herbort [Hb]
independently proved that the Bergman metric is complete if $\Omega$ is
hyperconvex. It is known that there exist non-hyperconvex domain$s$ in $C$ ,

whose Bergman metrics are complete (cf. [Zw-l, Theorem 5]).
The Bergmm metric on a connected n-dimensional complex mamifold

$M$ is defined in the same way as above via the map (13), by takin$g$ the
space of $L^{2}$ holomorphic n-forms instead of $A^{2}(\Omega)$, as long as the map
corresponding to $\iota$ is an immersion. A complex manifold is called
hyperconvex if it carries a bounded strictly plurisubharmonic exhaustion
function. It is easily seen by the $L^{2}$ method that every hyperconvex
manifold carries a Bergman metric. In [Ch], the completeness result of $[B-$

$P]$ and [Hb] was generalized to hyperconvex manifolds.
In view of the fact that singularities of $L^{2}$ holomorphic functions are

negligible if their Hausdorff dimension is not greater than $2n-2$, it
seems natural to ask the following.
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$Q1_{--}^{*\underline{*}}1)Let\Omega be$a $propersubdomainofB^{n}$. $How^{\dagger t}smal1^{\dagger I}(inthesenseof$

Hausdorff dimension, for instance) can $\partial\Omega\cap B^{\mathfrak{n}}$ be if the Bergman
metric of $\Omega$ is complete ?

2$)$ Is there a proper subdomain $D$ of a compact complex manifold $M$

without nonconstant bounded plurisubharmonic functions such that
the Bergman metric of $D$ is complete ?

As for 1), case studies based on the analysis of Cauchy kernel should be
possible at least for $n=1$ . As a related result, see [An].

Boundary behavior of the Bergman metric on strongly pseudoconvex
domains was first described by K. Diederich (cf. [Di]). As well as the
Bergman metric on the model domain $B^{\mathfrak{n}}$ , the Bergman metrics on
strongly pseudoconvex domains are complete K\"ahler metrics. A famous
result of Lu Qi-Keng [L] says that $\Omega$ is biholomorphically equivalent to
$B^{\mathfrak{n}}$ if the Bergman metric on $\Omega$ is complete and of constant holomorphic
sectional curvature. A natural question asked by S.-Y. Cheng [Chg] is
whether or not $\Omega$ is equivalent to $B^{\tau\iota}$ if the Bergman metric on $\Omega$ is
K\"ahler-Einstein. By Fu and Wong [F-W], this was answered affirmatively
when $\Omega$ is simply connected and $n\leq 2$ . Recently, it was pointed out by
Nemirovski and Shafikov [N-S] that Cheng$\{s$ conjecture follows bom the
Ramadmov conjecture (see Q5 below), so that the result of Fu and Wong
holds without assuning that $\Omega$ is simply conmected.

When $\Omega$ is not strongly pseudoconvex, more case studies seem to be
necessary in order to find how the geometry of $\Omega$ and $\partial\Omega$ determines
the Bergman kernel. For instmce, in view of the fact that one can
characterize the strong pseudoconvexity of $\Omega$ in terms of the boundary
behavior of the Bergman metric (cf. [Kl] and [Di-Oh-l]), the author would
like to ask the following question.

$Q—————–Let\Omega beabo\overline{undedpseudoconvexdomaininC^{\mathfrak{n}}withC^{2}boundarymd}$

let $z_{0}\in\partial\Omega$ . Is it true that $\partial\Omega$ is Levi flat near $z_{0}$ if and only if there exists
a neighbourhood $U$ of $z_{0}$ in $\partial\Omega$ such that

(16) linsup $|\xi|^{-2}|<\partial\overline{\partial}\log \mathscr{K},\xi\otimes\xi>-\delta(\zeta)^{-a}|\xi\delta|^{2}|<\infty$

$\zeta|arrow z$

holds for any $z\in U$ and for any nonzero holomorphic tangent vector $\xi$ of $C^{\iota}$

at $\zeta$ ? Here $<,$ $>$ denote$s$ the natural pairing and $|\cdot|$ the length of vectors.
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This should not be too difficult because it is already known by [D-F-H]
and [C-1] that (16) does not hold if $\partial\Omega$ is of finite type at $z$ .

A related question was raised in [Di-Oh-2] and [Oh-7] on the effective
estimate of the distance function. Let us put it here in a more idealized
form;

$Q3(conjecture)————–$-

$**\kappa Let\Omega beaboundedp$

seudoconvex domain in $C^{11}$ with $C^{1}$ boundary,
let d(z,w) be the distance between $z$ and $w$ with respect to $\partial\overline{\partial}\log \mathbb{R}$ , and let
$z_{0}\in\Omega$ be any point. Then

(17) $\lim d(z0,w)/|\log\delta(w)|=1$ .
$w+\partial\Omega$

An estimate obtained in [Di-Oh-2] is weaker than (17), but still gives a
quantitative completeness result for the Bergman metric. It was improved
by Bfocki [Bf]. We note that the infimitesimal variant of (17) asked in
[Oh-7] was negatively solved (cf. [D-H-2]).

Note 1. If we restrict ourselves to a class of bounded homogeneous
domains, it was shown by Nomura [Nm] that bounded symmetric
domains can be characterized by a property of the Bergman kernel, e.g.
the commutativity of the Laplacian with respect to the Bergman metric
and the Berezin transform. (See also [En].) It is known that a complex
mamifold equipped with the Bergmm metric is homogeneous if and only
if it is equivalent to a bounded homogeneous domain (cf. [PS]).
Exploiting the fact that every bounded homogeneous domain is
equivalent to a domain on which a set of affine trmsformations acts
transitively (cf. [V-G-PS]), it is easy to see that bounded homogeneous
domains are hyperconvex (cf. [K-Oh]. See also [Dn-3] and [Is]). A
longstanding open question is whether or not, for the n-dimensional
bounded homogeneous domains, the $L^{2}\partial$-cohomology groups of type
(p,q) with respect to the Bergman metric are all infinite dimensional if
$p+q=n$. For the bounded symmetric domains, the assertion was
verified by Gromov [Gm]. Recently, Ishi-Yamaji [I-Y] showed that the
Bergman metric of a bounded homogeneous domain is the pull-back of
that of a bounded symmetric domain by a canonically defined
embedding.

Going back to the theory of Oka and Grauert, the Levi problem on
complex manifolds makes sense only after suitable restrictions or
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modifications because otherwise there exist counterexamples (cf. [G-3],
[Siu-l] and [Oh-10] $)$ . Generally speaking, with all conceivably natural
settings, the Levi problem is still far reaching on complex manifolds.
Among the tough questions of this kin$d$, the Shafarevich conjectUre is
most attracting. It asks whether or not the universal covering space of my
compact Kffier manifold is holomorphically convex. It is remarkable that
a recent partial answer to it by Robert Treger [Tr-1,2] is based on the
analysis of the Bergman kernel.

optimuistically speakin$g$, it is not only challenging but also profitable to
explore methods to characterize the domain$s$ of existence of malytic
functions on complex manifolds, because they will lead us to new
boundary value problems with rich contents.

In this $sp\ddot{m}t$, it may be also worthwhile to consider refined Levi
problems on complex manifolds. For instance, let $M$ be a complex
manifold equipped with a volume form $dV$, let $D$ be a bounded domain
in $M$, and let $\Delta$ be the embedding of $D$ into $D\cross D$ as the diagonal.

$Q4^{*_{------------}}-------$
Does $\lim_{z\cdot r\partial \mathcal{D}}\Delta^{*}\%/dV=\infty$

hold if $D$ is hyperconvex ?

Let CP“ denote the complex projective space of dimension $n$. For $CP^{n}$,
it is known that every pseudoconvex proper subdomain is hyperconvex
(cf. [Oh-S]). The above question is open even in such a restrictive
situation. The main dfficulty is that the hyperconvexity of the domain $D$

does not imply the existence of a strictly plurisubharmonic function on a
neighbourhood of $\partial D$ . More precisely, it is false in general (cf. [Di-Oh-4])
and not known even if $D$ is a domain in CP$\mathfrak{n}(n\neq 1)$ . Nevertheless, it is
known that the $\overline{\partial}$-equations for (n,q)-forms are solvable with $L^{2}$ norm
estimates for all $q$ on any pseudoconvex proper subdomain with $C^{2}$

boundary in $CP^{\eta,}$(cf. [c-aw]. See also [H-I] and [Brn-Cha]). So, the
solution for the case $M=$ CP’ should not be too difficult and may clarify
the essential part of Q4. Concerming the related questions, see also [Di-
Oh-3] and [M-Oh].

More intricate relationship between $K_{\Omega}(z)$ and geometric invariants
on $\partial\Omega$ can be explored when $\partial\Omega$ is $C^{\infty}$ and everywhere strongly
pseudoconvex. A groundbreaking result in this direction was a theorem
of Fefferman [F-1] assuring that there exist two $C^{\infty}$ functions $\varphi$ and $\psi$
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defined on a neighbourhood of $\partial\Omega$ such that

(18) $K_{\Omega}(z)=\varphi(z)@(z)^{-\uparrow 1-\{}+\psi(z)\log 6(z)$

holds near $\partial\Omega$ . (7) implies that $\varphi(z_{0})=n!\pi^{-t1}L(z_{0})$ for any $z_{0}\in\partial\Omega$ .
Geometric invariants besides $L(z_{0})$ are involved in the coefficients of

the asymptotic expmsions of $\varphi$ and $\psi$ in 6 (their expression can be made
simpler after some rescaling), which have been investigated by Fefferman
[F-2], Bailey-Eastwood-Graham [B-E-G] and Hirachi [Hr-l].

The following was a very famous question known as the Ramadanov
conjecture (cf. [Rm]).

$Q\not\in*_{-}\underline{\lambda}\underline{*})_{------------------------------}Let\Omega beastrong1ypseudoco$

nvex domain with $C^{\infty}$ boundary, $md$ let $z0\in$

$\partial\Omega$ . Suppose that there exists a neighbourhood $V\ni z_{0}$ in $C^{\tau\iota}$ such
that $\psi=0$ on V. Then, is $\partial\Omega$ spherical around $z0$ ? Namely, is there a
neighbourhood $W\ni z0$ and a $C^{\infty}$ diffeomorphism $\Phi$ from $\Omega$ nw onto
$B^{n}\cap[z,$ ${\rm Re} z>1-\epsilon\}$ for some $\epsilon$ such that $\Phi|\Omega\cap W$ is holomorphic ?

The answer is yes if $n\leq 2$ (cf. [BM], [G] and [Bu]) and turned out to be
no if $n\geq 3$ (cf. [E-Z] and [Hr-2]). However, it is not known whether or
not the conclusion holds if one strengthens the assumption to $|\dagger_{\psi=0}$ on a
neighbourhood of $\partial\Omega^{\dagger\dagger}$ .

Fefferman applied (18) in [F-1] to analyze the geodesics with respect to
the Bergman metric, which is in fact a very hard work.

Another effective way of describing the boundary behavior of $K_{\Omega(z,w)}$

is in terms of the operator theoretic properties of the orthogonal
projection, say $P_{\Omega}$ , from the space $L^{2}(\Omega)$ onto $A^{2}(\Omega)$ . $P_{\Omega}$ is called the
Bergmm projection.

The principal question in this setting is whether or not

(19) $P_{\Omega}(C^{\infty}(\overline{\Omega}))\subset C^{\infty}(\overline{\Omega})$

holds hue, where $\overline{\Omega}$ $:=\Omega\cup\partial\Omega$ and $C^{\infty}(\overline{\Omega})$ denotes the set of $C^{\infty}$

functions on $\overline{\Omega}$ . (19) is called “condition $R$“ by S. Bell [Bl].
It turned out that the property (19) is directly linked to the smooth

extendibility of biholomorphic maps. It is actually very efficient, because
by this method it is possible to generalize the results to proper
holomorphic maps between the domains of finite type (cf. [W], [B-L], $[B-$
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$C]$ and [B-B-C]. See also [Oh-7] $)$ .
If $\Omega=B^{\mathfrak{n}},$ (19) can be verified directly by using (5) (cf. [Cha] and [L-

$M])$ . In order to generalize this to more general classes of pseudoconvex
domains with $C^{\infty}$ boundary, a natural method is to convert (19) into the
property of mother operator $N_{\Omega}$ by using Kohn$|s$ formula

(20) $E=Id-\overline{\partial}^{*m5}$.

Here $N_{g}L$ denotes the inverse of $\overline{\partial}\overline{\partial}^{\star}$ on the image of $\overline{\partial}.N_{\Omega}$ is called the
Neumann operator. The Neumam operator exists because $\Omega$ is
pseudoconvex (cf. [C-1]. See also [Oh-9]).

By such an argument, (19) can be verified for the domains of finite type.
The point is that subelliptic estimates hold on them (cf. [C-1]).

On the other hmd; it is known that (19) is satisfied by certain domain$s$

of infinite type. For imstance, (19) holds whenever $\Omega$ is a complete
Remhardt pseudoconvex domain with smooth boundary (cf. [B-B]).

By [K-N], it is known that (19) is a consequence of the compactness of
$N_{\Omega}$ . If $\Omega$ is convex, Fu and Straube [F-S] proved that the compactness of
$N_{\Omega}$ is equivalent to the condition that $\partial\Omega$ does not contain any complex
curve. For the proof, the boundary behavior of $\mathscr{W}(z)$ is analyzed. In this
context, domains for which (19) does not hold are also of considerable
interest (cf. [Ba] md [Chr]).

Thus, as a state of art, we understand a general tendency that the
existence of a complex curve in the boundary destroys the regularity
properties of $P_{\Omega}$ and $N_{\Omega}$ . So, it may be worthwhile to extend Fu-
Straube $|s$ theorem to more general domains. A candidate is the class of
lineally convex domains. Recall that $\Omega$ is said to be lineally convex if
every point $z_{0}\in\partial\Omega$ is contained in a complex hyperplane $H=H(z_{0})$

which does not intersect with $\Omega$ .

$Q6^{\underline{*}}$
Suppose that $\Omega$ is lineally convex. Is it hue that $N_{\Omega}$ is compact if
and only if $\partial\Omega$ does not contain any complex curve ?

\S 3. Asymptotic expansion in tensor powers

We shall now review some results on the asymptotics of the
generalized Bergman kernels for tensor powers of positive line bundles,
as the power tends to infinity. Motivation for considering such a question
is related to algebraic geometry [Serre-l, 2], the heat kernel asymptotics
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[Dn-l] and a supersymmetric field theory [Wi] (see [Dm-3] for instance).
Let $M$ be a connected complex mamifold of dimension $n$ and let $E$ be

a holomorphic line bundle over M. The cmonical line bundle of $M$ will
be denoted by $0$)

$M^{\cdot}$
Given a fiber metric $h$ of $E$, we denote by $A^{2}(E\otimes(0_{N})$

the space of $L^{2}$ holomorphic sections of $E\otimes Q$)
$M$

with respect to $h$ . The
reproducing kernel of $A^{2}(E\otimes(0_{M})$ will be denoted by $7t_{k}$ .

Let $\Delta$ be the diagonal embedding from $M$ into $M\cross$M. Then $\Delta^{*}\uparrow\{h$

is a section of $E\otimes 0)_{MM}\otimes\overline{E\otimes 0)}.\uparrow\{\}_{t}$ and $\Delta^{*}n_{h}$ are called the weighted
Bergman kernels, where we shall allow $h$ to be locally of the form $e$

$-\varphi$

for a locally integrable function $\varphi$ . Such a generalized fiber metric is
called a singular fiber metric. Similarly as the Bergman kemel function,
the weighted Bergman kernel function is defined whenever a
trivialization of the canonical bundle exists and is fixed. We shall denote
it by $K_{\varphi}$ if $h=e^{-\varphi}$ . Generally, the product $h\cdot\Delta^{*}\iota_{1_{1}}$ , , being a section of
$0)\otimes\overline{(o}M\triangleright t$ , can be written as $\rho_{k}dV$, where $dV$ is a volume form and $Q_{k}$ is
a nonnegative function. $\rho\}_{\iota}$ measures the size of the Bergman kernel with
respect to $dV$.

As in the case of the Bergman kernel function, the value of $\rho_{h}$ at $z_{0}$

is characterized as the supremum of the squared length at $z_{0}$ bf $L^{2}$

holomorphic sections of $E\otimes\omega_{M}$ with $L^{2}$ norm one.
Similarly as in the proof of (7), Bouche [Bou] proved that

(21) $\lim_{\ln\Rightarrow\infty}g_{k^{\mathfrak{n}\iota}}^{t/m}=1$

holds if $M$ is compact and $h$ is $C^{\infty}$ md of positive curvature, by
extending a work of Tian [Ti], where the Hodge metric is approximated
by $1/m$ times the curvature form of $(\Delta^{\star}7t_{\iota^{m}})^{-\tau}$ . The model case for (21) is
the anti-tautological line bundle over CP“ equipped with the fiber metric
induced from the euclidean metric of $C^{\mathfrak{n}+t}$ . Although the method is
similar as in the estimate of the Bergman kernel, what is approximated is
reversed here. Namely, the fiber metric is approximated by the m-th roots
of the Bergmm kernels.

In the same spirit, Demailly [Dm-2] applied the $L^{2}$ extension theorem to
approximate any plurisubharmonic function and its Lelong number in
terms of the weighted Bergman kernels. Recall that, for any
plurisubharmonic function $\varphi$ on a domain $\Omega$ and for any point $z_{0}\in\Omega$,
the Lelong number $v(\varphi,z_{0})$ of $\varphi$ at $z_{0}$ is defined by

$v(\varphi,z_{0}):=\lim_{z-\geq}\inf_{z_{0}}\frac{\varphi(z)}{1_{0}g^{|z-z_{0}|}}$ .
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Theorem 1. (cf.[Dm-2]) Let $\Omega$ be a bounded pseudoconvex domain
in $C^{\mathfrak{n}}$ . Then there exist constants $C_{1}$ and C2 dependin$g$ only on $n$ and
the diameter of $\Omega$ such that the following hold for my plurisubharmonic
function $\varphi$ on $\Omega$ md for any positive integer $m$.

(22) $\varphi(z)-C_{1}/m\leq(2m)^{-1}\log K_{2m\varphi}(z)\leq\sup\varphi(\zeta)+m^{-1}\log(C_{2}/r^{\tau\iota})$

$|(-z|<r$

if $z\in\Omega$ and $r<6(z)$ .

(23) $v(\varphi,z_{0})-n/m\leq v((2m)^{-1}\log K_{2m\varphi}(z), z_{0})\leq v(\varphi,z_{0})$ , $z_{0}\in\Omega$ .

Since (23) is a comparison between $2m\varphi$ md $\log K_{2m\varphi}$ near $\varphi=-\infty$,
one may naturally ask its counterpart near $\varphi=\infty$ .

$Q————-$Let $\varphi$ be a plurisubharmonic function on a bounded pseudoconvex domain $\Omega$

in $C^{\mathfrak{n}}$. Is there a constant $C$ such $that\int_{oe\varphi}(i\partial\partial\varphi(z))^{n}<RcJ(i\partial\overline{\partial}\log \mathscr{K}(z))^{t}$
for all $R$ ?

$———————-arrow—\underline{0}\leq\varphi_{-}\sigma_{-}\underline{\hslash}_{--------------------arrow------}$

Cathn [C-2] and Zelditch [Z] reversed again the role of $h$ and $\iota_{h}$ in
the approximation and established the asymptotics of $\Delta^{\star},\iota_{h^{m}}$ in $m$ as a
counterpart of (18). The spirit is to construct the orthogonal projection
explicitly from the geometric data. It will be stated below, where the
factor $0)_{M}$ is not explicitly involved, for simplicity.

Let $M$ and (E,h) be as above and let $dV$ be my $C^{\infty}$ volume form on
M. By A(E) we denote the space of holomorphic sections of E. The length
of $s\in A(E)$ with respect to $h$ will be denoted by $|s|_{h}$ .

Then we put

11 $s||^{2}=\int_{M}|s|_{k}^{2}dV$,

$\rho(dV,h)(x)=\sup\{|s(x)|^{2}/||s||^{2}, s\in A(E)-\{0\}\}$ ,

$\beta(dV,h)=Q(dV,h)dV/d\dot{m}A(E)$ , whenever $A(E)\neq\{0\}$

and

$\Theta=$ the curvature form of $h$ .

$\beta(dV,h)$ is a probabihty measure on $M$ which is cmonically associated to
$dV$ and (E,h). The behavior of $\beta(dV,h^{m})$ in $m$ is in question.
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Theorem 2. (cf. [C-2] and [Z]) In the above situation suppose that $h$

is $C^{\infty}$ and of positive curvature, then there exist $C^{\infty}$ functions $b_{j}$ on $M$

such that

(24) $\beta(dV,h^{m})=\sum^{\infty}b_{j}m^{n-j}dV$, $b_{0}dV=$ $MA$$(h)/V$

j-
holds asymptotically in $m$, where MA(h) $:=(\sqrt{-1}\Theta)^{\mathfrak{n}}$ and V: $= \int_{M}(\sqrt{-1}\Theta)^{\mathfrak{n}}$.

Catlin$|s$ proof depends on the malysis of the Bergman kernel of the disc
bundle associated to $E^{\star}$, the dual of $E$, and Zelditch$|s$ on that of the Szeg\"o
kernel. Their approaches are both natural because, letting $T$ be the umit
disc bundle associated to $E^{\star}$, which is a tubular neighbourhood of the
zero section, $\rho(dV,h^{m})$ are naturally identified with the diagonalized
reproducing kernels of (relatively small) subspaces of $L^{2}(T)$ or $L^{2}(\partial T)$

consisting of holomorphic functions of restricted type on T. However,
their common tool is the microlocal method of Boutet de Monvel and
Sj\"ostrand [BM-S] which extends [F-1]. For $m$ elementary proof of
Theorem 2, see [B-B-S].

In view of such a close relationship between (18) and (24), it seems
natural to ask a counterpart of the Ramadanov conjecture in this context.

For instance, if $M=$ CP 1 and $E$ is the anti-tautological bundle, it is
easy to see that the fiber metric $h$ is determined by $b_{0}$ up to a constant
factor. When $M=$ CP” and $n>1$, it becomes more difficult to formulate
the question. Of course it will be even more difficult when $M$ and $E$ are
not fixed in advance. We note that, according to the work of Ziqin Lu
[Lu], $\beta(dV,h^{\pi\iota})$ looks like the stress energy in Einstein’s equation.

In such a way, the Bergman kernel is related to algebraic geometry and
differential geometry through (pluri-)potential theory. It is remarkable
that Theorem 2 was applied by Donaldson [D] to the stabihty theory of
projectively embedded manifolds (see also [Mab-1,2]). Motivated by
Donaldson$|s$ work, Theorem 2 was extended to a more general context of
symplectic mamifolds and orbifolds (cf. [D-L-M]). But let us wait for
mother opportunity to enter this fancy topic.

\S 4. Variations in analytic families

Returning to the formula (2), it suggests, as well as Fefferman’s
theorem, that any $C^{r}$ family of biholomorphic maps say $\{\alpha_{t}\}_{0<t<t}$ , from
a $C^{\infty}$ family of $C^{\infty}$ strongly pseudoconvex domains $\{\Omega_{t}\}_{0<t<I}$ in $C^{\mathfrak{n}}$ to
mother $C^{\infty}$ famuily $\{\Omega_{t}^{I}\}_{0<t<1}$ in $C^{\tau\iota}$ , extends to the boundaries also
smoothly in $t$ .

In fact, in virtue of the approach of Bell-Ligocka [B-L], the smooth
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extendibihity of $\{\alpha_{t}\}$ is reduced to the smoothness in $t$ of the Bergman
projections, which can be verified, via Kohn’s formula, by checking the
corresponding property of the family of Neumann operators (cf. [G-K]).

Hence, (18) relates the Bergman kernel of $\Omega$ not only to geometric
invariants of $\partial\Omega$, but also to their variations. So does (24) similarly. Thus
the Bergman kernel is linked not only to the Levi problem, but also to the
moduli problem. In this sense, variational questions for the Bergman
kernels on complex analytic families are particularly interesting. Let us
review some results in this direction.

Let $\mathcal{J}4$ be a connected complex manif\‘old, let $U$ be a domain in $C^{\tau \mathfrak{n}}$

and let $\pi:\mathcal{J}4arrow U$ be a $su\dot{\eta}$ective holomorphic map such that $d\pi$ is
everywhere of maximal rank. The family of the Bergman kemels on the
fibers of $\pi$ is called the relative Bergman kernel on $B4$. For any $\zeta\in U$

we put $n_{\zeta}=\Delta^{\star}u_{\pi^{-I}(\zeta)}$ . We shall assume, for simplicity, that $n_{\zeta}$ is not
everywhere zero. Then the collection $\{n_{\zeta}^{-r}\}_{\zeta\epsilon U}$ is naturally regarded as a
singular fiber metric of $\omega_{\mathcal{M}/U}$

, where we put %/U $:=0_{\mathcal{M}}$
) $\otimes(\pi^{\star}\omega_{U})^{\star}$ . We

put $\beta_{\backslash N/U}=\{,c_{\zeta}^{-1}\}_{\zeta\in U}$ .

There are two model cases :

1 $)$ $J4=B^{n+m},$ $U=B^{m}$ and $\pi(z)=z^{||}$, where $z=(z^{1},z^{||})$ . In this case, the
curvature form of $\beta_{\mathcal{M}/U}$ is

$-\partial\overline{\partial}(\log(1-|z^{||}|^{2})^{\mathfrak{n}}+\log(1-|z^{1}|^{2})^{n+1})$ .

Obviously it is positive on $M$.

2$)$ $M=\perp_{z}\perp C^{n}/\Gamma_{Z}$ (disjoint union), where $Z$ runs through the set
$End^{\star}C^{\mathfrak{n}}$ $:=\{Z\in EndC^{\mathfrak{n}}$ , det ImZ $>0\}$ and $\Gamma_{Z}$ stands for the lattice in $C^{n}$

generated by the columns of the $n\cross n$ unit matrix and those of Z. Here,
End $C^{\mathfrak{n}}$, the set of complex endomorphisms of $C^{n}$, is naturally identified
with the set of $n\cross n$ matrices whose entries are complex numbers. Then we
put $U=End^{\dagger}C^{\mathfrak{n}}$ and $\pi(q)=Z$ for my $q\in C^{n}/\Gamma_{Z}$ . In this case, the
curvature form of $\beta_{\mathcal{M}/U}$ is $-\partial\overline{\partial}\log(\det{\rm Im} Z)$ , which is easily seen to be not
semipositive on $f4$ if $n>1$ .

As is well known, $-\log$(det Im Z) becomes strictly plurisubharmonic
when it is restricted to the set of those $Z$ for which ${}^{t}Z=Z$ md ${\rm Im} Z$ is
positive definite (cf. [Sg]).
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$Q8_{---}^{*}Compute$

the signature of $\partial\overline{\partial}\log(\det{\rm Im} Z)$ .

It is surprising that nothing general about $\beta_{MU}$ was known in the last
century, although the semipositivity properties of the direct image sheaf
$\pi_{\#^{\omega_{t}}\lambda 1/U}$ had been known in the context of variation of Hodge structures
md its application to the classification theory of algebaric varieties (cf.
[Gr] and [Fj] $)$ . (See also [Oh-l].) The first result in this direction, extending
the model case 1), was obtained by Maitani-Yamaguchi [M-Y] in the case
where $g4$ is a Stein manifold of dimension 2. Namely, by combinin$g$ the
analysis of variation of Green functions (cf. [L-Y]) with a characterization
of the Bergman kernel by N. Suita (1933-2002) as the second derivative of
the Green function (cf. [Sui]), they proved that $\Re_{t/u}$ is of semipositive
curvature in this situation. (See also [Mt].)

It is an interesting coincidence that Suita$|s$ work was motivated by an
open question raised in a treatise by K. Oikawa (1927-92) and L. Sario,
where the comparison between the Bergman kernel and the capacity of
$\backslash the$ boundary of an arbitrary domain $W$ in $C$ was asked (cf. [O-S] p.342,
7$)$ . Here, the capacity $c_{\beta}(z)$ of the boundary $\beta=\partial W$ is defined by

(25) $\log c_{\beta}(z)=\lim_{w*z}(g_{W}(z,w)-\log| z- w |)$,

where $g_{W}$ denotes the (negative valued) Green function of $W(c_{\beta}:\equiv 0$ if
$g_{W}\equiv 0)$ . It is clear that sc $K_{W}=c_{\beta}^{2}$ holds if $W=$ D. In [O-S], it was shown
that $K_{W}\underline{=}0$ if and only if $c_{\beta}\equiv 0$ . Suita showed that

(26) $\pi K_{W}(z)>c_{\beta}(z)^{2}$ for any $z\in W$

holds if $W$ is an annulus.

$Q9$ (
$Suita^{\uparrow}s**$

conjecture)——————————————————————–

(27) $\pi K_{W}(z)>c_{\beta}(z)^{2}$ holds for any $z\in W$

if $g_{W}\not\equiv-\infty$ and $W$ is not equivalent to the unit disc.

The reader may notice that Q9 could have been included in \S 2. In fact,
after proving the divergence of $K_{\Omega}(z)$ at $\partial\Omega$ for hyperconvex $\Omega$ in
[Oh-2], the author refined [Oh-T] in [Oh-5] md memwhile found its
application to Q9 (cf. [Oh-6,7]), in which an inequality $750\pi K_{W}>c_{\beta}^{2}$ was
obtained. The latter was improved by [Brn-l] and [Bf]. According to [Bf],
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$2\pi K_{W}>q^{2}$ holds in the situation of Q9.

After [M-Y], Berndtsson [Bm-2] and Tsuji [Tj] succeeded in generalizing
the result to Stein mamifolds of arbitrary dimension, by directly exploiting
the reproducing property of the Bergman kernel. On the other hand, the
method of [M-Y] was extended to explore variational properties of
families of harmonic functions with prescribed singularities and Dirichlet
or Neumann type boundary conditions (cf. [Hm] md [Hm-M-Y]).

Recently, $Bemdtsson-P\dot{a}un$ [Bm-P] obtained a result which is also
related to 2). Motivated by applications to algebraic geometry, they
consider a surjective projective morphism say $p$ : $Xarrow Y$ between
complex mamifolds X and $Y$, and a holomorphic lin$e$ bundle $(L, h)$ over
X endowed with a singular fiber metric $h$. Let $I(h)$ denote the
multiplier ideal sheaf of $h$ (cf. [Dm-3]). Let $Y^{0}\subset Y$ be the Zariski open
set of points that are not critical values of $P$ in $Y$, and let $X^{0}\subset X$ be the
inverse image of $Y^{0}$ with respect to $p$ . As $y$ varies in $Y^{0}$, the relative
Bergman metric on $\omega_{x/\gamma}$ \copyright L over $X^{0}$ is defined similarly as $\beta_{y/U}$ , only it
is allowed to be identically $\infty$ .

Theorem 3. In the above situation, assume the following.

i$)$ the curvature current of $(L, h)$ is semipositive on X.

$)$ $H^{0}(Xox,b_{y}\otimes L\otimes I(h))\neq 0$ for some $y\in Y^{0}$, where $X_{\gamma}=p^{-l}(y)$ .

Then the relative Bergman kernel metric of the bundle $\omega_{X/\vee}\otimes L|X^{0}$ is not
identically $\infty$ . It has semipositive curvature current and extends across
$X-X^{}$ to a metric with semipositive curvature current on all of X.

For the proof, the assumption that $p$ is projective is cmcial. The point
is that every point $y\in Y$ admits a neighbourhood V such that $P^{-1}(V)$

contains a divisor whose complement is Stein. Theorem 3 has interesting
applications to pluricanonical maps via an inequality for the $||$restricted
volume“ (cf. Theorem 0.3 in [B-P]. See also [Tk]). For the asymptotics of
the restricted volume, see [Hs].

$Ql0_{-arrow----------arrow---------------------------------------arrow--}^{W}$

For which morphism is Theorem 3 valid ?

Analyzing the model case 2) from this viewpoint seems interesting.
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Any extension of the model case 2) towards this direction will be quite
interesting and fruitful. Berndtsson [Brn-2] has proved Nakano-
semipositivity of the direct images for $Khler$ morphisms and applies the
result in [Brn-3] to study variations of K\"ahler metrics. Moreover, the deep
work of Fang-Lu-Yoshikawa [F-L-Y] on the family of Calabi-Yau
threefolds seems to be closely related to this question.

Note. If OV4 is a Hartogs domain over $U$, there is a formula which
relates the weighted Bergman kernels on $U$ to $\{M$ (cf. [Li]), which is
useful to derive explicit formulae (cf. [Ym]). Computation for Hartogs
domains is done also in [M-Y] for the relative Bergman kernels.

\S 5. Bergman Kernel and $L^{2}$ Extension

As before, let $\Omega$ be a domain in C’ md let $A^{2}(\Omega)$ be the Hilbert space
of $L^{2}$ holomorphic functions on $\Omega$ with respect to the Lebesgue measure.
Let $z=$ $(z , . . . , z)$ be the coordinate of $C^{\mathfrak{n}}$

For any pseudoconvex domain $\Omega$ in $C^{\iota}$

; for any plurisubharmonic
function cp on $\Omega$, and for any nonnegative number $\epsilon$, we put

$A_{\phi,\epsilon}^{2}(\Omega)=$ { $f|f$ is holomorphic on $\Omega$ and $\int_{\Omega}e^{-\varphi}(1+|z_{n}|^{2})^{-l-\epsilon}|f|^{2}<\infty$ }

and, by letting $\Omega‘=\{z\in\Omega|z_{\mathfrak{n}}=0\}$, put

$A_{\varphi}^{2}(\Omega^{I})=$ { $f|f$ is holomorphic on $\Omega$ ‘ and $\int_{x1}e^{-\varphi}|f|^{2}<\infty$ }.

Then we have

Theorem 4. (cf. [Oh-T], [Oh-3]) Suppose that $\Omega$ is pseudoconvex.
Then, for any $\epsilon>0$, there exists a bounded linear operator

$I_{\epsilon}:A_{\varphi}^{2}(\Omega^{1})arrow A_{\varphi\epsilon}^{2}(\Omega)$

whose norm does not exceed a constant $C_{\epsilon}$ depending only on $\epsilon$, such
that $I_{\mathcal{E}}(f)|\Omega‘=f$ holds for any $f\in A^{2}(\Omega^{1})$ .

Obviously Theorem 4 does not hold for $\epsilon=0$ . The best constant for $c_{\epsilon}$

is not yet known (cf. [Bf]). As was mentioned in \S 3 and \S 4, Theorem 4 was
applied to plurisubharmonic functions md to the Bergman kernels.

As before, let $M$ be a complex mamifold of dimension $n$, let $E$ be a

79



holomorphic vector bundle over $M$, and let $\omega_{M}$ be the canonical line
bundle of M. Let $dV$ be a $C^{0\circ}$ volume form on $M$ and let $h$ be a $C^{\omega}$ fiber
metric of E. For any reduced analytic set $S\subset M$ equipped with a measure
$\mu,$

$A^{2}(s,E\otimes m^{h\otimes(dV)^{-1},d\mu)}$ will stmd for the space of $L^{2}$ holomorphic
sections of $E\otimes\omega_{M}$ over $S$ with respect to $h\otimes(dV)^{\dashv}$ and $\mu$ . Since
$A^{2}(M,E\otimes\omega_{M},h\otimes(d\eta^{1},dV)$ is independent of $dV$, we shall denote it by
$A^{2}(M,E\otimes Qh^{h)}$ for brevity.

Given locally integrable functions $\psi:Marrow[-\infty,\infty)$ , the spaces
$A^{2}(S,E\otimes\omega_{M},e^{\sim\psi}h\otimes(dV)^{\dashv},d_{[\lambda)}$ md $A^{2}(M,E\otimes w^{e^{-\psi}h)}$ are defined similarly.
We shall call $e^{-1}\gamma h$ a singular fiber metric of E. Given any singular fiber
metric $\hat{h}$ of $E$, an $L^{2}$ extension operator for $(E\otimes\omega,\hat{h}\otimes(dV)^{-1})$ from $(S,\mu)$

is defined to be a bounded linear operator

I: $A^{2}(s,E\otimes\%^{\hat{h}\otimes(dV)^{-(},d\mu)}arrow A^{2}(M,E\otimes W^{\hat{h})}$

satisfying $I(f)|S=f$ for my $f$. Let $\Phi:Marrow[-\infty,0)$ be any
continuous function. We shall say that $\Phi$ is of logarithmic type along $S$ if
the following are satisfied.

$\Phi^{-1}(-\infty)=$ S.

$\Phi|(M\backslash S)$ is $C^{\infty}$

$e^{arrow\Phi}$ is not integrable on an open subset $U\subset M$ whenever
$U\cap S\neq\otimes$ .

Given a function $\Phi$ which is of logarithmic type along $S$, we say that $\mu$

is a residual majorant of $(dV,\Phi)$ if the inequality

$\lim_{\gamma-\prime}\sup_{\infty}$

$\zeta$

$pe^{\sim\Phi}dV$
$\leq\int$ pdpt

$-r<\Phi<-r+1$ $S$

holds for any nonnegative continuous function $p$ with compact support
on M.

$suchthat(E,he^{-(|\gamma\tau})areNakmosemipositiveonM\backslash Sformy\tau\in wesaythat(E_{d^{is\Phi-positiveifthereexistsapositivenumber\tau_{0}}},h$

$[0, \tau_{0}]$ . We shall denote the supremum of such $\tau_{0}$ by $\tau(h,\Phi)$ .
Let $T$ be a closed subset of M. We say that $T$ is $L^{2}$-negligible if, for

any point $p\in T$ and for my neighbourhood $W\ni p$, every $L^{2}$

holomorphic n-form on $W\backslash T$ is holomorphically extendible to W.
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In these terms, the main result of [Oh-5] is expressed as follows.

Theorem 5. Let $M$ be a complex manifold with a $\sigma_{volume}$ form $dV$,
let $E$ be a holomorphic vector bundle over $M$ with a $C$ fiber metric $h$,
let $S$ be a reduced analytic subset of $M$ equipped with a measure $\mu$ ,

md let $\Phi$ : $Marrow[-\infty, 0)$ be a continuous function which is of

logarithmic type along S. Suppose that $\mu$ is a residual majorant of $(dV$,
$\Phi),$ $h$ is $\Phi$-positive, and that there exists an $L^{2}$-negligible set $T\subset M$ such
that $M\backslash T$ is Stein and $S\cap T$ is nowhere dense in S. Then, for any
plurisubharmonic function $\psi$ on $M$, there exists $mL^{2}$ extension operator
for $(h$ , from $(S,\mu)$ whose norm is bounded by a
constmt depending only on $\tau(h,\Phi)$ .

In [Oh-5, Theorem 4], the result is stated for a more restricted class of $\Phi$,
but it is easy to see that the proof of this generalized version is completely
similar.

The point of Theorem 5 as well as Theorem 4 is that the norm of the $L^{2}$

extension operator is estimated by a relatively simple geometric quantity.
Therefore it seems to make sense to ask the following.

$Q11^{\underline{**}}-$
Find a reasonable generalization ofTheorem 5 for the $\partial$ closed forms of type (O,q) for $q\succeq 1$ .

For a nice but partial answer, see [Kz] for instmce.

Finally, let’s see how one can derive a division theorem from an
extension theorem in such a way that Theorem 5 yields $mL^{2}$ division
theorem.

Let $E^{\star}$ denote the dual bundle of $E$, let $P(E^{\star})$ be the projectivization
of $E^{\star}$, i.e. $P(E^{\star})=\cup(E^{\star}-\{0\})/(C-\{0\})$ , and let $\varpi:P(E^{\star})arrow M$ be the
bundle projection.

Recall that, in the presence of such a fiber structure, the sheaf
cohomology groups of $P(E^{\star})$ and those of $M$ are related by the $I_{\lrcorner}eray$

spectral sequence. Based on this, one has a canonical isomorphism
between the E-valued cohomology groups of $M$ and cohomology
groups of $P(E^{\star})$ with values in a certain line bundle. More precisely, one
has the following.

Theorem 6. (cf. [LP]) Let $L(E^{*})$ denote the tautological line bundle
over $P(E^{*})$, i.e. $L(E^{\star})=\cup L(E_{x}^{\star})x\epsilon M$ , where $L(E_{x}^{\star})$ denotes the tautological line
bundle over $P(E_{x}^{\star})$ . Then there is a natural isomorphism
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(28) $I\mathscr{K}^{q}’(M, E)\cong H^{p,q}(P(E^{\star}), L(E^{\star})^{\star})$ .

Here $H^{\rho q}(\cdot,.)$ denotes the Dolbeault cohomology group of type (p,q).

We note that L(E$*$) $*$ and $E$ are related by the following commutative
diagram.

$L(E^{\star})^{\star}<-\varpi^{*}Earrow E$

1 $\Downarrow$

$P(E^{\star})->M$

Here the morphism $\varpi^{\star}Earrow L(E^{*})^{\star}$ is defined over $y\in P(E^{*})$ as the
natural projection to the quotient space of $E_{\alpha(y)}$ by the kernel of $y$.

Now, by applying (28), one can transform a division problem on $M$ to
an extension problem on $P(E^{\star})$ as follows.

Let $Y$ : $Earrow Q$ be a $su\dot{\eta}$ective morphism between holomorphic
vector bundles $E$ md $Q$ over M. A (generalized) division problem asks
for conditions for the induced morphisms from $H^{p,q}(M, E)$ to $H^{p,\mathfrak{q}}(M, Q)$

to be surjective. In view of (28), this $su\dot{\eta}ectivity$ is equivalent to that of

$H^{t,\uparrow}(P(E^{\star}), L(E^{\star})^{\star})arrow H^{P,t}(P(Q^{\star}), L(Q^{\star})^{\star})$ ,

which is nothing but the extendibility because $P(Q^{\star})$ is naturally
identified with a complex submanifold of $P(E^{\star})$ by $\gamma^{*}$ and a cmonical
isomorphism between $L(E^{\star})^{\star}|Q$, and $L(Q^{\star})^{\star}$ is induced by $\gamma$ .

Thus, by interpreting the conditions in Theorem 5 in this situation, we
shall obtain an $L^{2}$ division theorem.

In fact, given $Earrow Q$ as above, any $C$ fiber metric $h$ of $E$ and a
point $v\in P(E^{\star})$, let $8_{h}(v)$ denote the fiberwise distance from $v$ to $P(Q^{*})$

with respect to the Fubini-Study metric associated to $h$, normalized in
such a way that $\sup\{6_{h}(v);v\in P(E^{*})\}=1$ for every $x\in$ M. In this
situation we have the following.

Theorem 7. Let (E,h) and $Q$ be as above. Assume that there exists an
$L^{2}$-negligible set $T\subset M$ such that M-T is Stein $md$, with respect to the
fiber metric of $L(E^{\star})^{\star}$ induced from h, L$(E^{\star})^{\star}$ is log6-positive. Then the
natural homomorphism

$A^{2}(M, E\otimes_{0}b, h)arrow A^{2}(M, Q\otimes_{0}b, h_{Q})$

is surjective. Here $h_{Q}$ denotes the fiber metric of $Q$ induced from $h$ .
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Corollary 1. (cf. [Oh-7]) Let $\Omega$ be a bounded pseudoconvex domain
in $C^{\tau t}$ . Then there exists a constant $C$ depending only the diameter of $\Omega$

such that, for any plurisubharmonic function $\varphi$ on $\Omega$ and for any
holomorphic function $f$ on $\Omega$ satisfying

$\int_{\Omega}|f(z)|^{2}ed\lambda<\infty-\varphi(z)-2\mathfrak{n}|og^{|_{Z}|}$

there exists a vector valued holomorphic function $g=(g_{4},\ldots, g_{\iota})$ on $\Omega$

satisfying

$f(z)=\sum_{\sim,j-1}^{n}z_{j}g_{j}(z)$

and

$\int_{\Omega}|g(z)|2^{-\varphi(Z)^{-2(n-1)|_{0}}g}ed\lambda|z|\leq Cb|f(z)|^{2}e^{-\varphi \mathfrak{n}}(Z)-2|_{\circ g|z|}d\lambda$ .

Here $d\lambda$ denotes the Lebesgue measure.

Remark. It does not seem to be easy to derive Corollary 1 just by
applying the result of [S].
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