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0. INTRODUCTION.

Let X be a compact complex manifold. Holomorphic vector bundles on X contain
various informations on analytic subsets of X. For a holomorphic vector bundle $E$

on X, the zero set Z of a section is an analytic subset of X, and we can get the
properties of Z by studying E. If the rank of E is 1, then Z is a divisor on X.
Since line bundles and divisors are relatively easy objects, we are mainly interested
in the vector bundles with rank $>$ 1. Then we usually get an analytic subset with
codim Z $\geq$ 2. Thus vector bundles with rank $>$ 1 are related to analytic subsets
of codimension $>$ 1. For example, the Serre’s construction gives a link between a
codimension 2 subset Z and a vector bundle E of rank 2. By studying E, we can
get informations of Z. In particular, if we know E is a direct sum of line bundles,
then we can conclude that Z is a complete intersection of two divisors. We can also
get informations on the Chow group of X.

In the theory of vector bundles, a fundamental question is the existence of vector
bundles. Since a direct sum of line bundles gives a vector bundle, we are interested in
indecomposable vector bundles. If this problem is solved, then the next fundamental
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problem is the classification of vector bundles. Due to the lack of the author’s ability,
we only treat the moduli spaces over projective surfaces.

Notation.
Let $X$ be a compact complex manifold. Pic(X) is the Picard group of $X$ , that

is, the set of line bundles on $X$ . Let NS(X) $:=$ im$(Pic(X)\lrcorner^{c_{\}}H^{2}(X, \mathbb{Z}))$ be the
Neron-Severi group. It is the set of topological line bundles which have holomorphic
structures.

For a projective manifold $X$ , CH$*(X)$ denotes the Chow ring of $X$ . Then there is
a natural map CH$*(X)arrow H^{*}(X)$ and the Chern classes of a coherent sheaf can be
defined as element of CH$*(X)$ .

For a coherent sheaf $E$ , there is an analytic subset $Z$ such that $E_{|X\backslash Z}$ is a locally
free sheaf. We denote the rank of $E_{|X\backslash Z}$ by rk $E$ . If $E$ is torsion free, then codim $Z\geq$

$2$ . Since a reflexive sheaf of rank 1 on a smooth manifold is locally free, $\det E$ $:=$

$(\wedge^{rkE}E_{|X\backslash Z})$
vv is a line bundle. Since $H^{2}(X, \mathbb{Z})arrow H^{2}(X\backslash Z, \mathbb{Z})$ is an isomorphism,

$c_{1}(\det E)=c_{1}(E)$ .

1. CONSTRUCTION OF HOLOMORPHIC VECTOR BUNDLES.

For the existence and the classffication of vector bundles, we need a good method
of construction.

Problem$***1$ . Find a good method to construct vector bundles.

We explain known methods for the construction.

Example 1.1 (Extension method). Serre construction.

$0arrow \mathcal{O}_{X}arrow Earrow I_{Z}(L)arrow 0$.

$E$ is locally free iff the extension class induces a surjective homnomorphism

$\mathbb{C}\otimes \mathcal{O}_{X}arrow Ext^{1}(I_{Z}(L), \mathcal{O}_{X})\otimes \mathcal{O}_{X}arrow \mathcal{E}xt_{o_{X}}^{1}(I_{Z}(L), \mathcal{O}_{X})$ .

Since
$\mathcal{E}xt_{o_{X}}^{1}(I_{Z}(L), \mathcal{O}_{X})\cong\wedge^{2}N_{Z}(L^{\vee})$ ,

$N_{Z}(L^{\vee})\cong \mathcal{O}_{X}$ . In particular, if (i) $\wedge^{2}N_{Z}$ can be extended to a line bundle $L$ on $X$

and (ii) $H^{2}(X, L^{\vee})=0$ , then we have a vector bundle of rank 2 with a section whose
zero is $Z$ . Since $\omega_{X|Z}\cong\omega_{Z}\otimes(\wedge^{2}N_{Z})^{\vee}$ , if $\omega_{Z}$ can be extended to a line bundle on
$X$ , then (i) holds. In particular, if $\omega_{Z}=\mathcal{O}_{Z}$ , then (i) holds.

Example 1.2. Let $Z$ be an abelian surface in $\mathbb{P}^{4}$ , then there is a vector bundle $E$ of
rank 2 with a section whose zero is Z. $E$ is the Horrocks-Mumford bundle.

If $X=\mathbb{P}^{r},$ $r\geq 6$ , then the assumption (i) and (ii) are satisfied for codimension 2
submanifold $Z$ of $X$ .

Example 1.3 (Basic operations). (i) Tensor products of vector bundles. e.g.,
$E\otimes F,$ $S^{n}(E),$ $\wedge^{n}E$ .

(ii) Pull-backs: $\pi^{*}(E)$ by $\pi$ : $Yarrow X$ .
2
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(iii) The (higher) direct images: For a proper morphism $\pi$ : $Xarrow Y,$ $R^{i}\pi_{*}(E)$

are coherent sheaves on $Y$ . It is difficult to study the properties (e.g. the
torsion freeness, the locally freeness and the stability) of $R^{i}\pi_{*}(E)$ . If $X,$ $Y$

are smooth and $\pi$ is finite, then $\pi_{*}(E)$ is a vector bundle, where $E$ is a
vector bundle on Y. Schwarzenberger showed that every vector bundle of
rank 2 is the direct image of a vector bundle on a double cover of $X$ .

Assume that $X$ is a complex torus. Let $Yarrow X$ be an etale cover of $X$

and $L$ a line bundle on Y. Then $\pi_{*}(L)$ is a projectively flat vector bundle on
X. Conversely all simple and projectively flat vector bundles are obtained
in this way.

Example 1.4 (Elementary transformation). Let $E$ be a vector bundle on $X$ . Let $F$

be a vector bundle on a divisor $D$ of $X$ and $\phi$ : $Earrow F$ a surjective homomorphism.
Then $E’$ $:=ker\phi$ is a vector bundle on X. $E’$ is the elementary transformation of
$E$ along $F$ . This operation was introduced by Maruyama as a generalization of the
elementary transformation of ruled surfaces. If $\dim X\leq 3$ , then all vector bundles
on projective manifolds are the elementary transforms of $\mathcal{O}_{X}^{\oplus r}$ .

Sumihiro generalized the notion of the elementary transformation and proved that
every vector bundle is obtained from a trivial vector bundle by his elemenraty trans-
form. Unfortunately it is not so easy to construct non-trivial example of Sumihiro‘s
elementary transform.

Example 1.5 (Fourier-Mukai transform). A Fourier-Mukai transform $\Phi$ is an equiv-
alence of the derived categories of the categories of coherent sheaves: $\Phi$ : $D(Y)arrow$

$D(X)$ . By Orlov, there is an object $E\in D(X\cross Y)$ such that
$\Phi(y)=Rp_{X}(p_{Y}^{*}(y)\otimes E),$ $y\in D(Y)$ .

If $E=\mathcal{O}_{\Gamma_{f}}\otimes p_{Y}^{*}(L)[n],$ $L\in$ Pic $(Y)$ and $\Gamma_{f}$ is the graph of an isomorphism $f$ :
$Yarrow X$ , then $\Phi(E)=f_{*}(E\otimes L)[n]$ . This is a trivial Fourier-Mukai transform.
For an abelian variey, a $K3$ surface, or an elliptic surface, there are non-trivial
Fourier-Mukai transforms. These are very useful to study coherent sheaves on these
manifolds.

Although it is not explicit, we can construct vector bundles as a deformation of
torsion free sheaves.

2. THE EXISTENCE OF VECTOR BUNDLES.

2.1. Some problems. For the existence of holomorphic vector bundles, the prob-
lem is divided into two parts:

(i) The existence of topological vector bundles.
(ii) The existence of holomorphic structures on topological vector bundles.

We set
(2.1) $Vect_{top}^{r}(X)$ $:=$ { $E$ : topological vector bundle of rank $r$ }.
We have a bijection:

(2.2) $Vect_{top,E}^{\dim X}(X)$
$arrow$ $Vect_{top}^{r}(X)$

.
$\mapsto 3$

$E\oplus \mathbb{C}^{r-\dim X}$
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Hence for the classification of topological vector bundles, it is sufficient to study
topological vector bundles $E$ with rk $E\leq\dim X$ .

Remark 2.1. Assume that $X$ is a projective manifold with an ample divisor $H$ . Then
for a vector bundle $E$ with rk $E\geq\dim X$ , there is an exact sequence

$0arrow \mathcal{O}_{X}(-nH)^{\oplus(rkE-\dim X)}arrow Earrow Farrow 0$ ,

where $F$ is a vector bundle on $X$ . Thus for the study of holomorphic vector bundles
on projective manifolds, it is important to study vector bundles $E$ with rk $E\leq$

$\dim X$ .

We have the Chen class map

$Vect_{top,E}^{r}(X)$
$arrow$ $\oplus_{i=1}^{\dim X}H^{21}(X, \mathbb{Z})$

$\mapsto$ $(c_{1}(E), c_{2}(E), \ldots, c_{\dim X}(E))$

So the following natural question appears.

Problem$***2$ . Characterize the Chern classes of holomorphic vector bundles.

This problem is not solved yet even for non-projective surfaces.
Assume that $X$ is a projective manifold. We are interested in constructing in-

decomposable vector bundles. If $X$ is a projective manifold, then Maruyama con-
structed many stable vector bundles of rank $\geq\dim X$ . So we are interested in the
following question.

Problem$***3$ . Let $X$ be a projective manifold. Find an indecomposable vector
bundles of rank $r$ with $r<\dim X-1$ .

Remark 2.2. In [Ma, Prop. A.l], Maruyama constructed a stable bundle $E$ for any
$c_{1}(E)$ and $(c_{2}(E), H^{\dim X-2})\gg 0$ , where $H$ is the ample divisor. So Maruyama‘s
result does not imply the characterization of Chern classes.

For a torsin free sheaf $E$ on $X$ , there is a proper birational map $\pi$ : $Yarrow X$ such
that $\pi^{*}(E)^{\vee\vee}$ is a vector bundle on $Y$ . In this sense, we are interested in vector
bundles on manifolds which does not have any birational contraction into a smooth
manifold. If $\pi_{1}(X)$ is non-trivial, then we have (projectively) flat vector bundles.
So we also assume that $X$ is simply connected. In particular, we are interested in
the following problem.

Problem$***4$ . (i) Is there a non-split vector bundle of rank 2 on $\mathbb{P}^{n},$ $n\geq 5$?
(ii) Is there an indecomposable vector bundle of rank 2 on $\mathbb{P}^{4}$ except the Mumford-

Horrocks vector bundle?

These problems are related to the properties of codimension 2 submanifolds via
the Serre construction.

2.2. The case where $\dim X=2$ .
Proposition 2.3 (Wu). Assume that $\dim X=2$ . We have a bijection:

(2.3) $Vect_{top,E}^{r}(X)$ $\mapstoarrow$

$H^{2}(X, \mathbb{Z})\cross H^{4}(X, \mathbb{Z})$

$(c_{1}(E), c_{2}(E))$

4
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Thus the topological vector bundles are classffied by the Chern classes. Next we
want to know when a topological vector bundle has a holomorphic structure. If $X$

is an algebraic surface, then by using Serre’s construction, we have a simple answer
to this problem.

Theorem 2.4 (Schwarzenberger). Let $E$ be a topological vector bundle on X. If $X$

is an algebraic surface, then $E$ has a holomorphic structure iff $c_{1}(E)\in$ NS(X).

Proof. Assume that there is a holomorphic line bundle $L$ with $c_{1}(L)=c_{1}(E)$ . Let
$H$ be an ample divisor on $X$ . We want to consider a torsion free sheaf $F$ fitting in
the exact sequence:

$0arrow \mathcal{O}_{X}(-nH)arrow Farrow I_{Z}\otimes L(nH)arrow 0$.
For $n\ll 0,$ $H^{2}(X, L^{\vee}(-2nH))\cong H^{0}(X, L(2nH+K_{X}))^{\vee}=0$ . By the local-global
spectral sequence, the restriction map

Ex$t^{}$ $(I_{Z}\otimes L(nH), \mathcal{O}_{X}(-nH))arrow H^{0}(X, \mathcal{E}xt_{o_{X}}^{1}(I_{Z}\otimes L(nH), \mathcal{O}_{X}(-nH)))$

is surjective. If $Z$ consists of distinct $m$ points $p_{1},p_{2},$ $\ldots,p_{m}$ , then for a general
extension, $F$ is a locally free sheaf with $(c_{1}(F), c_{2}(F))=(c_{1}(L),$ $-(c_{1}(L)+nH, nH)+$

$m)$ . Since $c_{2}(E)+(c_{1}(L)+nH, nH)>0$ for $n\ll 0$ , we may set $m$ $:=c_{2}(E)+(c_{1}(L)+$

$nH,$ $nH)$ . Then $F\oplus \mathcal{O}_{X}^{\oplus(rkE-2)}$ gives a holomorphic structure on E. $\square$

Remark 2.5. By the proof, obviously $E$ is not stable. Indeed the Bogomolov inequal-
ity implies that there is no stable vector bundle with $2rc_{2}(E)-(r-1)(c_{1}(E)^{2})<0$ .

Assume that $X$ is not algebraic.

Theorem 2.6 (Banica-LePotier). Let $E$ be a holomorphic vector bundle of rank $r$

on a non-algebmic surface. Then

$\Delta(E):=c_{2}(E)-\frac{r-1}{2r}(c_{1}(E)^{2})\geq 0$ .

Problem$*5$ . Let $X$ be a non-algebraic compact complex surface and $\xi\in$ NS(X).
Let $E$ be a topological vector bundle on $X$ of rank $r$ and $c_{1}(E)=\xi$ . Find a condition
on $c_{2}(E)$ such that $E$ has a holomorphic structure.

Proposition 2.7. Let $X$ be a non-algebmic complex surface.
(i) If $X$ is a complex torus, then the condition is $\Delta(E)\geq 0$ ([T2],[KY]).
(ii) If $X$ is a $K3$ surface, then the condition is also known, although it is very

complicated $\mathscr{W}T-T$], [KY] $)$ .
(iii) If $X$ is a primary Kodaira surface, then the condition is $\Delta(E)\geq 0$ ([ABT]).
(iv) If $X$ is a Hopf surface, then the condition is $\Delta(E)\geq 0$ ([B-L]).

Remark 2.8. If $X$ is a Hopf surface, then $X$ is diffeomorphic to $S^{1}\cross S^{3}$ . So
$H^{2}(X, \mathbb{Z})=0$ . Thus $c_{1}(E)=0$ and $\Delta(E)=c_{2}(E)$ .

$Br\hat{l}nz\dot{a}nescu$ and Moraru ([BMI],[BM2],[BM3]) studied rank two vector bundles
on non-K\"ahler elliptic surfaces by using the relative Fourier-Mukai transforms.

Problem$*6$ . Generalize the results of $Br\hat{l}nz\dot{a}nescu$ and Moraru to higher rank
cases.

5
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Definition 2.9. Let $E$ be a holomorphic vector bundle on $X$ .
(i) $E$ is irreducible, if there is no subsheaf $F$ with rk $F<$ rk $E$ .

(ii) $E$ is filtrable, if there is a filtration
$0\subset F_{1}\subset F_{2}\subset\cdots\subset F_{r}=E$

such that $F_{i}$ are subsheaves with rk $F_{i}=i$ .

Remark 2.10. If $X$ is projective, then all torsion free sheaves are filtrable.

For a non-algebraic surface, Banica and LePotier proved that there are irreducible
vector bundles if $\Delta(E)\gg 0$ . If $X$ is a complex torus of algebraic dimension $0$ , then
there is an irreducible vector bundle $E$ iff $v(E)\neq v_{0}+nv_{1},$ $v_{0},$ $v_{1}\in \mathbb{Z}\oplus$ NS $(X)\oplus \mathbb{Z}$ ,
$\langle v_{0}^{2}\rangle=\langle v_{1}^{2}\rangle=0$ and $\langle v_{0},$ $v_{1}\rangle=1$ , where $v(E)$ is the Mukai vector of $E$ (see subsection
3.2).

Problem$*7$ . Find a condition for the existence of irreducible vector bundles.

For non-K\"ahler elliptic surfaces, the relative Fourier-Mukai transforms are useful
to this problem.

2.3. The case where $\dim X\geq 3$ .
Proposition 2.11. Assume that $\dim X=3$ .

(i) We have a bijection:

(2.4) $Vect_{top}^{3}(X)arrow\{(c_{1}, c_{2}, c_{3})c_{3}\equiv c_{1}c_{2}+c_{1}(X)c_{2}mod 2c_{i}\in H^{2i}(X,\mathbb{Z}),$$i=1,2,3\}$ .

(ii) For $X=\mathbb{P}^{3}$ , we also have the Chem class map

(2.5) $Vect_{top}^{2}(\mathbb{P}^{3})arrow\{(c_{1}, c_{2})c_{1}c_{2}\equiv 0mod 2c_{i}\in H^{2i}(\mathbb{P}^{3},\mathbb{Z}),i=1,2\}$

is surjective. If $c_{1}\equiv 1mod 2$ , then it is bijective. If $c_{1}\equiv 0mod 2$ , then
the fiber is classified by the $\alpha$-invariant. If $E$ is a holomorphic structure and
$c_{1}(E)=0$ , then $\alpha(E)=h^{0}(E(-2))+h^{1}(E(-2))mod 2$ .

Remark 2.12. $B\dot{a}nic\dot{a}$ and Putinar [B-P] showed that a topological vector bundle $E$

with rk $E=3$ on a projective manifold has a holomorphic structure iff the Chern
classes are represented by algebraic cycles.

If there is a fibration $\pi$ : $Xarrow T$ , we can study vector bundles on $X$ by using the
structure of the fibration. If a general fiber of $\pi$ is a projective line, then we can use
Grothendieck $s$ classffication of vector bundles on $\mathbb{P}^{1}$ . If a general fiber has a trivial
canonical bundle, then we may use the theory of relative Fourier-Mukai transforms
$[BrMa]$ .

Problem$*8$ . Let $X$ be a smooth projective 3-fold with a fibration $Xarrow T$ such
that a general fiber is an elliptic surface, an abelian surface or a $K3$ surface. Study
vector bundles on $X$ .

6
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3. CLASSIFICATION OF VECTOR BUNDLES.

3.1. Moduli of stable sheaves. We cannot expect a good holomorphic structure
on the set of all vector bundles. One of the reason is the behavior of the automor-
phism groups of vector bundles under deformations. So we need some requirements
on the structure of vector bundles. Simpleness and the stability are introduced to
get a nice space.

Definition 3.1. A coherent sheaf $E$ is simple, if $Hom(E, E)\cong \mathbb{C}$ .

Theorem 3.2. The set of simple sheaves has a structure of algebmic space, which
is non-Hausdorff in general.

Definition 3.3. Let $g$ be a Gauduchon metric and $\omega_{g}$ the associated (1, 1)-form,
that is, $\overline{\partial}\partial\omega_{g}^{d-1}=0$ . A holomorphic vector bundle $E$ on $X$ is $\omega_{g}$-stable, iff for any
subsheaf $F$ of $E$ with rk $F<$ rk $E$ ,

$\frac{(c_{1}(F),\omega_{g}^{d-1})}{rkF}<\frac{(c_{1}(E),\omega_{g}^{d-1})}{rkE}$ .

If $X$ is a projective manifold and $g$ the Hodge metric associated to an ample divisor
$H$ , then this notion is the $\mu$-stability of $E$ with respect to $H$ .

For a projective manifold, we have a refined notion of stability called Gieseker-
Maruyama stability.

Theorem 3.4 (Gieseker-Maruyama). The set $M_{H}(v)$ of (S-equivalence classes of)
semi-stable sheaves $E$ with a topological invariant $v$ has a structure of projective
scheme.

For a torsion free sheaf $E$ , there is a unique filtration
$0\subset F_{1}\subset F_{2}\subset\cdots\subset F_{s}=E$

such that $E_{i}$ $:=F_{i}/F_{i-1}$ are semi-stable sheaves with

$\frac{\chi(E_{1}(nH))}{rkE_{1}}>\frac{\chi(E_{2}(nH))}{rkE_{2}}>\cdots>\frac{\chi(E_{s}(nH))}{rkE_{s}},$ $(n\gg 0)$ .

So the classffication of vector bundles is reduced to the classffication of stable sheaves
modulo the classification of successive extensions.

For the classification of vector bundles, the following problem is important.

Problem$***9$ . Construct (general) members of the moduli spaces explicitly.

If we have an explicit family of stable sheaves, then we will know (the birational
type of) the moduli space. Conversely, if we know the structure of the moduli
spaces well, then we may also construct a family of stable sheaves. Unfortunately
this problem is not easy. Let $E$ be a holomorphic vector bundle of rank $r$ on a
projective manifold $X$ and $H$ an ample divisor. Then we have an exact sequence

$0arrow \mathcal{O}_{X}(-nH)^{\oplus(r-1)}arrow Earrow I_{Z}(n(r-1)H)\otimes\det Earrow 0$ ,

where $Z$ is a subscheme of $\dim Z<\dim X-1$ . So we can expect to construct stable
sheaves (or more generally a flat family

$of7$
stable sheaves) as extensions of $I_{Z}\otimes L_{1}$
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by $L_{2}^{\oplus(r-1)},$ $L_{1},$ $L_{2}\in$ Pic(X), but this information is not so useful unless $\dim X=1$ .
For example, assume that $\dim X=2$ . Then

$Ext^{1}(I_{Z}(nH)\otimes\det E, \mathcal{O}_{X}(-nH))$

(3.1) $\cong Ext^{1}(\mathcal{O}_{X}(-nH), I_{Z}(nH+K_{X})\otimes\det E)^{\vee}$

$\cong H^{1}(X, I_{Z}(2nH+K_{X})\otimes\det E)^{\vee}$ .

Since $\chi(I_{Z}(2nH+K_{X})\otimes\det E)=\chi(E(nH+K_{X}))-(r-1)\chi(\mathcal{O}_{X}(K_{X}))>0$ for $n\gg$

$0,$ $Ext^{1}(I_{Z}(nH)\otimes\det E, \mathcal{O}_{X}(-nH))\neq 0$ implies that $Z$ is a special configuration
of points of $X$ . This makes the construction of a family of vector bundles difficult.
Indeed the following holds.

Theorem 3.5 (Mukai, J. Li, $0$ ‘Grady). (i) Let $X$ be a projective surface with
$\mathcal{O}_{X}(K_{X})\cong \mathcal{O}_{X}$ . Then the moduli of simple sheaves has a holomorphic
symplectic structure.

(ii) Let $X$ be a minimal surface of geneml type with $p_{g}>0$ . Under suitable
assumptions, the moduli spaces of stable sheaves is of geneml type.

Remark 3.6. If $\dim X=1$ , then $Z=\emptyset$ implies that we have “enough” families of
vector bundles. Thus we can construct all member of small deformations of $E$ .

In order to compute the Kodaira dimension, we need to study the canonical bundle
of a desingularization of the moduli space.

Problem 10. (i) Study the singularities of the moduli spaces.
(ii) Let $X$ be a minimal surface of general type with $p_{g}=0$ . Study the bira-

tional geometry of the moduli spaces. In particular, compute the Kodaira
dimension.

For other problems, we pick up 3 problems.

Problem$*11$ . Let $E$ be a stable sheaf and $M$ the moduli of stable sheaves con-
taining $E$ . Let $\theta$ : $K(X)arrow \mathbb{Z}$ be the homomorphism such that $\theta(F)=\chi(E\otimes F)$ .
If $\theta$ is surjective, then $M$ is a fine moduli space, that is, there is a universal family.
Is the surjectivity necessary?

Problem$**12$ . Compute the topological invariants (e.g. the Betti numbers) of
the moduli spaces $M_{H}(v)$ for $\triangle\gg 0$ . In particular, show that $b_{1}(M_{H}(v))=2b_{1}(X)$

and $b_{2}(M_{H}(v))=b_{2}(X)+1+(^{2b_{1}(X)}2)$ for $\triangle\gg 0$ .

Remark 3.7. The claim are known for $r=2$ by J. Li ([Li2]). If these assertions are
correct, then Problem$*11$ has an affermative answer.

Problem$**13$ . Study the holomorphic Euler characteristic of line bundles on the
moduli spaces.

This problem is related to LePotier‘s strange duality conjecture, and also the
Donaldson type invariant of $X$ [GNY].

8
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3.2. Moduli spaces of stable sheaves on an abelian or a $K3$ surface. Let $X$

be a $K3$ surface or an abelian surface defined over $\mathbb{C}$ . We define a lattice structure
$\langle$ , $\rangle$ on $H^{ev}(X, \mathbb{Z})$ $:=\oplus_{i=0}^{2}H^{2i}(X, \mathbb{Z})$ by

$\langle x,$ $y \rangle:=-\int_{X}x^{\vee}\cup y$

(3.2)
$= \int_{X}(x_{1}\cup y_{1}-x_{0}\cup y_{2}-x_{2}\cup y_{0})$ ,

where $x_{i}\in H^{2i}(X, \mathbb{Z})$ $($resp. $y_{i}\in H^{2i}(X,$ $\mathbb{Z}))$ is the 2i-th..component of $x$ (resp.
y$)$ and $x^{\vee}=x_{0}-x_{1}+x_{2}$ . It is now called the Mukai lattice. Mukai lattice has a
weight-2 Hodge structure such that the $(p, q)$ -part is $\oplus_{i}H^{p+i,q+i}(X)$ . For a coherent
sheaf $E$ on $X$ ,

$v(E):=$ ch$(E)\sqrt{td_{X}}$

(3.3)
$=$ rk$(E)+c_{1}(E)+(\chi(E)-\epsilon rk(E))\rho_{X}\in H^{ev}(X, \mathbb{Z})$

is called the Mukai vector of $E$ , where $\epsilon=0,1$ according as $X$ is an abelian surface
or a $K3$ surface and $\rho_{X}$ is the fundamental class of $X$ . Since the Mukai vector
determine the underlying topological structure of $E$ , we use the Mukai vector as the
topological invariant $v$ of $M_{H}(v)$ .
Problem$*14$ (Duality of $K3$ surfaces). Let $(X, H)$ be a polarized $K3$ surface. Let
$Y$ be a $K3$ surface which is a fine moduli of $\mu$-stable vector bundles on $X$ . Then there
is a natural polarization on $Y$ . Let $\mathcal{E}$ be a universal family. Show the $\mu$-stability of
$\mathcal{E}_{|Y\cross\{x\}}$ by a differential geometric way. This will be a conceptual proof.

Remark 3.8. There is an algebraic proof by using the theory of Fourier-Mukai trans-
forms. This method also works for the moduli of stable sheaves, but is not so
natural.

Problem$**15$ . Describe a general member of the moduli space for the following
cases.

(i) $X$ is an abelian surface.
(a) The Mukai vector $v$ is not written as $v=v_{0}\pm nv_{1}$ where $\langle v_{0}^{2}\rangle=\langle v_{1}^{2}\rangle=0$

and $\langle v_{0},$ $v_{1}\rangle=\pm 1$ .
(b) The Mukai vector $v$ is written as $v=v_{0}\pm nv_{1},$ $\langle v_{0}^{2}\rangle=\langle v_{1}^{2}\rangle=0$ and

$\langle v_{0},$ $v_{1}\rangle=\pm 1$ , but $\rho(X)\geq 2$ .
(ii) $X$ is a $K3$ surface.

(a) The Mukai vector $v$ is not written as $v=v_{0}\pm nv_{1}$ where $\langle v_{0}^{2}\rangle=-2$ ,
$\langle v_{1}^{2}\rangle=0$ and $\langle v_{0},$ $v_{1}\rangle=\pm 1$ .

(b) The Mukai vector $v$ is written as $v=v_{0}\pm nv_{1},$ $\langle v_{0}^{2}\rangle=-2,$ $\langle v_{1}^{2}\rangle=0$ and
$\langle v_{0},$ $v_{1}\rangle=\pm 1$ .

(1) For the case (b), the choice of $(v_{0}, v_{1})$ is not unique. Since $\langle v_{1}^{2}\rangle=0$ and
$\langle v_{0},$ $v_{1}\rangle=\pm 1,$ $Y$ $:=M_{H}(v_{1})$ is a surface and has a universal family. Hence we have a
Fourier-Mukai transform $\Phi$ : $D(X)arrow D(Y)$ . Then it is expected that for a special
choice of $(v_{0}, v_{1}),$ $\Phi$ induces a birational correspondence from $M_{H}(v)$ to the moduli
of rank 1 sheaves on Y. $\mathbb{R}om$ this correspondence, we will get a description of a
general member of the moduli spaces $(cf_{9}Remark3.10)$ . If $X$ is an abelian surface,
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then Orlov proved that every Fourier-Mukai transform is induced by the moduli of
stable sheaves. In particular, it is determined by the pair $(v_{0}, v_{1})$ . So the remaining
problem is to choose the pair $(v_{0}, v_{1})$ .

On the other hand, if $X$ is a $K3$ surface, then we don’t have a classification of
the Fourier-Mukai transforms. In particular, the Fourier-Mukai transform is not
determined by the pair $(v_{0}, v_{1})$ .

Example 3.9. (i) We note that $M_{H}(v_{1})$ depends on the choice of $H$ . So there
are many Fourier-Mukai transforms associated to $v_{1}$ , if $\rho(X)\geq 2$ .

(ii) Let $\mathcal{E}$ be the universal family on $X\cross M_{H}(v_{1})$ . In general $\Phi(E),$ $E\in M_{H}(v_{0})$

is not a sheaf up to shift functor. Then the family of complexes $\{\Phi(E)|E\in$

$M_{H}(v_{1})\}$ gives a Fourier-Mukai transform which does not comes from the
moduli of stable sheaves.

(iii) Let $C$ be a smooth (-2)-curve on $X$ . Then the complex
$\mathcal{E}$ $:=$ Cone $(\mathcal{O}_{C}(a)\otimes \mathcal{O}_{C}(a)^{\vee}arrow \mathcal{O}_{\triangle})$

gives a Fourier-Mukai transform, where $\mathcal{O}_{C}(a)^{\vee}$ is the dual of $\mathcal{O}_{C}(a)$ in
$D(X)$ .

Problem** 16. Let $X$ be a $K3$ surface. Assume that two Mukai vectors $v\in$

$H^{ev}(X, \mathbb{Z})$ and $\pm w\in H^{ev}(Y, \mathbb{Z})$ are related by a Fourier-Mukai transform $\Phi$ :
$D(X)arrow D(Y)$ . Is there a Fourier-Mukai transform $\Phi’$ : $D(X)arrow D(Y)$ such
that $\Phi’(v)=\pm w$ and $\Phi’$ induces a birational map $M_{H}(v)\cdotsarrow M_{H’}(w)$ , where $H$

and $H’$ are general ample divisors on $X$ and Y.

Problem$**17$. Classify Fourier-Mukai transforms on $K3$ surfaces.

An explicit construction of $\Phi$ will give (ii) (b). For $\Phi=id_{X},$ Problem** 16 is
reduced to the following problem.

Problem$*18$ . Does the birational type of $M_{H}(v)$ depend on a general $H$?

Remark 3.10. For an abelian surface, a similar problem to Problem$**16$ was proved
in [Y2]. Moreover if NS(X) $=\mathbb{Z}$ , then (i) (b) was treated in [YY]. As a consequence,
we described a general member of the moduli space in terms of projectively flat
bundles (that is, semi-homogeneous vector bundles). Since projectively flat bundles
are most fundamental and also simple vector bundles, our description is a good one.

For related problems to Problem$**17$, we pick up 3 problems.

Problem* 19. Assume that $X$ is a $K3$ surface. Construct many examples of
Fourier-Mukai transforms whose kernel are not sheaves, and study their properties.

Problem$**20$ . Assume that $X$ is a $K3$ surface. Introduce a stability condition
on complexes, and construct the moduli space as a projective scheme.

Problem$*21$ . Assume that $X$ is a $K3$ surface. Find a nice condition to preserve
the stability of $E\in M_{H}(v_{0})$ .
Remark 3.11. Bridgeland introduced stability conditions on the objects of $D(X)$ .
Inaba [In] introduced a stability condition which has a projective moduli. So it is
interesting to find a non-trivial example of Inaba’s stability condition.
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(2) A more difficult but interesting case is (a). In this case, the technique of the
Fourier-Mukai transforms is not sufficient and need other ideas.

4. RELATED PROBLEMS.

4.1. The Chow group.

Theorem 4.1 (Beauville-Voisin [BV]). Let $X$ be a $K3$ surface. Let $R_{X}$ be a subgmup
of $CH^{*}(X)$ generated by $e^{D},$ $D\in$ NS(X) and $\rho_{X}$ is a point class lying on a mtional
curve. Then $R_{X}=\mathbb{Z}\oplus$ NS $(X)\oplus \mathbb{Z}\rho_{X}$ .

Since vector bundles on projective surfaces are related to codimension 2 subsets,
we can study the Chow group by vector bundles. Huybrechts proved the following
interesting result.

Theorem 4.2 (Huybrechts [H]). Let $\Phi$ : $D(X)arrow D(Y)$ be a Fourier-Mukai tmns-
form. Then $\Phi(R_{X})=R_{Y}$ if $\rho(X)\geq 2$ .

Problem 22. (i) $\Phi(R_{X})=R_{Y}$ for all $X$?
(ii) Let $E$ be a rigid and simple vector bundle on $X$ . Does ch$(E)$ belong to $R_{X}$ ?

Huybrechts showed that (ii) implies (i).

4.2. Twisted sheaves. Let $\pi$ : $Yarrow X$ be a projective bundle over $X$ . Then
there is an analytic open covering $X= \bigcup_{i}U_{i}$ such that $Y_{|\pi^{-1}(U_{i})}\cong \mathbb{P}(E_{i})$ , where
$E_{i}$ are locally hee sheaves on $U_{i}$ . We may assume that there are isomorphisms
$\phi_{ij}$ : $E_{i|U_{t}\cap U_{j}}\cong E_{j|U_{i}\cap U_{j}}$ . In general $E:=(\{E_{i}\}, \{\phi_{ij}\})$ does not satisfy the patching
condition, but satisfy $\phi_{ki}\phi_{jk}\phi_{ij}=\alpha_{ijk}id_{E_{l}}|U_{i}\cap U_{j}\cap U_{k}$ , where $\alpha$ $:=\{\alpha_{ijk}\}$ is a 2-cocycle
of $\mathcal{O}_{X}^{\cross}$ . For a covering $\{U_{i}\}$ and a 2-cocycle $\alpha$ $:=\{\alpha_{ijk}\}$ , we call $E:=(\{E_{i}\}, \{\phi_{ij}\})$

the $\alpha$-twisted sheaf. We can define Gieseker‘s stability for $\alpha$-twisted sheaves and
constructed their moduli spaces [Yl]. Almost all problems in section 3 are gener-
alized to these cases. Let $E$ be a topological vector bundle on a $K3$ surface with
$\langle v(E)^{2}\rangle\geq-2$ . In order to have a holomorphic structure, $c_{1}(E)$ is of type (1, 1).
On the other hand, the associated projective bundle $\mathbb{P}(E)$ always has a holomorphic
structure. Even if $E$ has a holomorphic structure, under a deformation of $X,$ $E$ does
not always deform to a holomorphic vector bundle. On the other hand, we have a
holomorphic deformation of $\mathbb{P}(E)$ , if $H^{0}(E^{\vee}\otimes E)=\mathbb{C}$ . This is a benefit to consider
projective bundles or twisted sheaves.
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