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ABSTRACT. The notion of an isovariant map, i.e, an equivariant map preserving
the isotropy subgroups, plays an important role in equivariant topology. In this
article, we shall illustrate existence and classification results on isovariant maps
and provide some examples.

1. ISOVARIANT MAPS

Let $G$ be a compact Lie group. All maps considered are continuous. We first
recall the notion of an isovariant map which was introduced by Palais [12].

Definition. (1) A G-map $f$ : $Xarrow Y$ is called G-isovariant if $f$ preserves the
isotropy subgroups, i.e., $G_{f(x)}=G_{x}$ for all $x\in X$ .

(2) A G-homotopy $F$ : $X\cross Iarrow Y$ between isovariant maps is called a G-
isovariant homotopy if $F$ is G-isovariant.

We denote by $[X, Y]_{G}^{isov}$ the isovariant homotopy set, i.e., the set of isovariant
homotopy classes of G-isovariant maps from $X$ to $Y$ . As usual $[X, Y]_{G}$ denotes the
set of equivariant homotopy classes of G-equivariant maps from $X$ to $Y$ .

Example 1.1. (1) If both $X$ and $Y$ are free G-spaces, then an arbitrary G-map
$f$ : $Xarrow Y$ is isovariant.

(2) An injective G-map $f$ is G-isovariant.
(3) Suppose that $X$ is a G-space with nontrivial action and $Y$ has a G-fixed

point. Then a constant map $f$ : $Xarrow Y^{G}\subset Y$ is equivariant, but not
isovariant.

Let $C_{n}$ be the cyclic group of order $n$ . Let denote by $U_{k}(=\mathbb{C})$ the unitary
representation of $C_{n}$ on which a generator $c\in C_{n}$ acts by $c\cdot z=\xi^{k}z$ , where $z\in U_{k}$

and $\xi=\exp(2\pi\sqrt{-1}/n)$ .
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For simplicity, we consider the case of $G=C_{pq}$ , where $p,$ $q$ are distinct primes.
Set

$U_{1}^{r}=U_{1}\oplus\cdots\oplus U_{1}$ ( $r$ times)
and

$W=U_{p}\oplus U_{q}$ .

Consider the unit spheres $SU_{1}^{r}$ and $SW$ . Then $G$ acts freely on $SU_{1}^{r}$ . On the other
hand $G$ does not act freely on $SW$ and the singular set (i.e., nonfree part)

$SW^{>1}=SU_{p} \prod SU_{q}$

is a Hopf link.

Question. Does there exist a $C_{pq}$ -isovariant map from $SU_{1}^{r}$ to $SW$ ?

In equivariant case, a $C_{pq}$-map does exist for any $r\geq 1$ as a result from equivari-
ant obstruction theory, see [15]. What about a $C_{pq}$-isovariant map?

If $r=1$ , then there exists an isovariant map. For example, the equivariant map
$f_{0,0}:SU_{1}arrow SW$ can be defined by

$f_{0,0}(z)=(z^{p}, z^{q})/\sqrt{2}$ ,

and it is isovariant. In fact, $f_{0,0}$ is an injective G-map.
If $r\geq 2$ , the answer is No.” This is proved by a Borsuk-Ulam type theorem.

Many generalizations of the Borsuk-Ulam theorem are known. The following result
is one of them.

Theorem 1.2 ($mod p$ Borsuk-Ulam theorem). Assume that $C_{p}$ ($p$ : prime) acts
freely on mod $p$ homology spheres $\Sigma_{1}$ and $\Sigma_{2}$ . If there is a $C_{p}$-map $f$ : $\Sigma_{1}arrow\Sigma_{2}$ ,
then $\dim\Sigma_{1}\leq\dim\Sigma_{2}$ . In other words, if $\dim\Sigma_{1}>\dim\Sigma_{2_{f}}$ then there is no $C_{p}$ -map
from $\Sigma_{1}$ to $\Sigma_{2}$ .

The nonexistence of an isovariant map is proved as follows. Suppose that $f$ :
$SU_{1}^{r}arrow SW$ is a $C_{pq}$-isovariant map. By restricting the action, we regard $f$ as a
$C_{p}$-isovariant map. Since $f(SU_{1}^{r})\subset SW\backslash SW^{C_{P}}$ , we obtain a $C_{p}$-map $f$ : $SU_{1}^{r}arrow$

$SW\backslash SW^{C_{P}}$ . Since $SW\backslash SW^{C_{P}}$ is $C_{p}$-homotopy equivalent to $SU_{q}$ , we obtain a
$C_{p}$-map $g$ : $SU_{1}^{r}arrow SU_{q}$ between free $C_{p}$-spheres. The $mod p$ Borsuk-Ulam theorem
says that

$2r-1=\dim SU_{1}^{r}\leq\dim SU_{q}=1$ ,

however this is a contradiction when $r\geq 2$ .
The above example is generalized as follows. Set

$R_{G}=\{$ $\mathbb{Z}\mathbb{Z}/|G|$

if $\dim G=0$ ,
if $\dim G>0$ .
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Definition. A smooth closed G-manifold $\Sigma$ is called an $R_{G}$ -homologically linear
G-sphere if for every (closed) subgroup $H$ , the H-fixed point set $\Sigma^{H}$ is an $R_{G^{-}}$

homology sphere or the empty set; namely,

$H_{*}(\Sigma^{H}, R_{G})\cong H_{*}(S^{m(H)};R_{G}),$ $m(H)=\dim\Sigma^{H}$ .

For convenience, we set $\dim\Sigma^{H}=-1$ if $\Sigma^{H}$ is empty.

Theorem 1.3 (Isovariant Borsuk-Ulam theorem [7]). Let $G$ be a solvable compact
Lie group. Let $\Sigma_{1}$ and $\Sigma_{2}$ be $R_{G}$ -homologically linear G-spheres. If there is a
G-isovariant map $f:\Sigma_{1}arrow\Sigma_{2}$ , then the inequality

$\dim\Sigma_{1}-\dim\Sigma_{1}^{G}\leq\dim\Sigma_{2}-\dim\Sigma_{2}^{G}$

holds.

Remark. Wasserman first proved this type of result for representation spaces.

If $G$ is nonsolvable, the above result does not hold. In fact, using a result of Oliver
[11], we can construct a counterexample for an arbitrary nonsolvable compact Lie
group. Thus we obtain that

Theorem 1.4 ([7]). For homologically linear actions, the isovariant Borsuk-Ulam
theorem holds if and only if $G$ is solvable.

Remark. For (ordinary) linear actions, it is known [16] that there are nonsolvable
groups for which the isovariant Borsuk-Ulam theorem holds.

Remark. A similar result is already known in equivariant case. In fact, Bartsch
[1] showed that for linear actions, the Borsuk-Ulam theorem holds (in a certain
equivariant sense) if and only if $G$ is of prime power order.

Using the isovariant Borsuk-Ulam theorem, we obtain a generalization of the
nonexistence result mentioned before.

Corollary 1.5 ([8]). Let $G$ be a finite group and $\Sigma$ an $R_{G}$ -homology sphere with
free G-action. Let $SW$ be a representation sphere of G. If

$\dim\Sigma\geq\dim SW-\dim SW^{>1}$ ,

then there is no G-isovariant map form $\Sigma$ to $SW$ . Here $SW^{>1}= \bigcup_{1\neq H\leq G}SW^{H}$

(the singular set of $SW$).

As seen before, there is a $C_{pq}$-isovariant map

$f_{0,0}:SU_{1}arrow S(U_{p}\oplus U_{q})$ .

This is generalized as follows.
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Proposition 1.6 ([8]). Let $G$ be a finite group. Let $M$ be a free G-manifold and
$SW$ a representation sphere of G. Suppose

$\dim M<\dim SW-\dim SW^{>1}$

Then there exists a G-isovariant map from $M$ to $SW$ .

This follows from the fact that the complement of the singular set $SW\backslash SW^{>1}$

is $(d-2)$-connected, where $d=\dim SW-\dim SW^{>1}$ .

2. CLASSIFICATION PROBLEM

Next we discuss the classification problem on isovariant maps. Historically Hopf
showed that the degree of maps provides a bijection $deg:[M, S^{n}]arrow \mathbb{Z}$ , where $M$

is a connected, oriented, closed n-manifold $M$ . We call this kind of result a Hopf
type theorem. Several equivariant versions of Hopf $s$ theorem (i.e., equivariant Hopf
type theorems) have been studied by many researchers, e.g., Rubinsztein [13], tom
Dieck [2], Tornehave [14], Laitinen [6], Kushkuley-Balanov [5], Ferrario [3], etc.

We would like to consider an isovariant version. Let $G=C_{pq}$ again. For each
$(\alpha, \beta)\in \mathbb{Z}\oplus \mathbb{Z}$ , we can define a G-isovariant map

$f_{\alpha,\beta}:SU_{1}arrow S(U_{p}\oplus U_{q})$

by
$f_{\alpha,\beta}(z)=(z^{p(1+\alpha q)}, z^{q(1+\beta p)})/\sqrt{2}$ .

(The map $f_{0,0}$ is the same one defined previously.) Then we obtain

Proposition 2.1. If $f_{\alpha,\beta}$ and $f_{\alpha’,\beta’}$ are isovariantly homotopic if and only if
$(\alpha,\beta)=(\alpha’, \beta’)$ .

To show this, we introduce the multidegree as an isovariant homotopy invariant.
Set $SW=S(U_{p}\oplus U_{q})$ and $SW_{free}=SW\backslash SW^{>1}$ . If $f$ is an isovariant map, then
we obtain a G-map

$f:SU_{1}arrow SW_{free}$

Consider the induced homomorphism

$f_{*}:H_{1}(SU_{1})arrow H_{1}(SW_{free})$ .

Since $SW_{free}$ is the complement of a Hopf link in $S^{3}$ , which is homotopy equivalent
to $S^{1}\cross S^{1}$ , we obtain that

$\pi_{1}(SW_{free})\cong H_{1}(SW_{free})\cong \mathbb{Z}\oplus \mathbb{Z}$ .

We define the multidegree $mDeg(f)$ of $f$ by

$mDeg(f)=f_{*}([SU_{1}])\in \mathbb{Z}\oplus \mathbb{Z}$ .
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Lemma 2.2. The multidegree of $f_{\alpha,\beta}$ is

$mDegf_{\alpha,\beta}=(q(1+\beta p),p(1+\alpha q))$ .

This shows that if $(\alpha, \beta)\neq(\alpha’, \beta’)$ , then $mDegf_{\alpha,\beta}\neq mDegf_{\alpha’,\beta’}$ . Thus the
isovariant maps $f_{\alpha,\beta}$ mutually represent different isovariant homotopy classes.

The converse is proved by equivariant obstruction theory. There is a commuta-
tive diagram:

$[SU_{1}, SW_{free}]_{G}arrow^{\gamma_{G}\cong}H^{1}(SU_{1}/G, \pi_{1})=\mathbb{Z}\oplus \mathbb{Z}$

$\epsilon\downarrow$ $\downarrow\pi^{*}$

$[SU_{1}, SW_{free}]$
$arrow^{\cong}$

$H^{1}(SU_{1}, \pi_{1})=\mathbb{Z}\oplus \mathbb{Z}$ ,
$\gamma$

where $\pi_{1}=\pi_{1}(SW_{free})\cong \mathbb{Z}\oplus \mathbb{Z}$ . The vertical map $\epsilon$ is the forgetful map. The
horizontal maps are defined by

$\gamma_{G}([f])=0_{G}(f, f_{0,0})$ and $\gamma([f])=o(f, f_{0,0})$

by using the (equivariant) obstruction to construct a G-homotopy between $f$ and
$f_{0,0}$ . The homomorphism $\pi^{*}$ is the induced homomorphism of the orbit map $\pi$ ,
which is multiplication by $|G|=pq$ . In particular $\pi^{*}$ is injective. By calculation of
the obstruction class, we obtain

Proposition 2.3.
$\pi^{*}(o_{G}(f, f_{0,0}))=0(f, f_{0,0})=mDegf-mDegf_{0,0}\in pq(\mathbb{Z}\oplus \mathbb{Z})$ .

We define a map
$D:[SU_{1}, SW_{free}]_{G}arrow \mathbb{Z}\oplus \mathbb{Z}$

by
$D([f])=(mDegf-mDegf_{0,0})/pq$ .

Since $D([f_{\alpha,\beta}])=(\beta, \alpha),$ $D$ is surjective. Furthermore $D$ is injective. In fact,
if $D([f])=D([g])$ , then it follows from the above proposition that $o_{G}(f, f_{0,0})=$

$0_{G}(g, f_{0,0})$ . This implies $o_{G}(f, g)=0$ , and hence $f$ and $g$ are G-homotopic. Thus
$D$ is a bijection. Since $[SU_{1}, SW]_{G}^{isov}=[SU_{1}, SW_{free}]_{G}$ , we obtain the following
classification result.

Proposition 2.4. There is a bijection

$D:[SU_{1}, SW]_{C_{pq}}^{isov}arrow \mathbb{Z}\oplus \mathbb{Z}$ .

In particular, the maps $f_{\alpha,\beta}$ represent all isovariant homotopy classes.

The above proposition is generalized as follows. We assume the following.
$\bullet$ $G$ is a finite group.
$\bullet$ $M$ is a connected, closed free G-manifold.
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$\bullet$ $SW$ is a unitary representation sphere of $G$ .
$\bullet$ $\dim M=\dim SW-\dim SW^{>1}-1$ .

We set
$\mathcal{A}=\{H\in$ Iso $W|\dim SW^{H}=\dim SW^{>1}\}$ ,

and
$\mathcal{A}/G=\{(H)|H\in \mathcal{A}\}$ .

We have

Theorem 2.5 (Orientable case [9]). If $M$ is orientable and the G-action on $M$ is
orientation-preserving, then there is $a$ one-to-one correspondence

$[M, SW]_{G}^{isov} \cong\bigoplus_{(H)\in A/G}\mathbb{Z}$
.

Every isovariant homotopy class is determined by the multidegree.

Remark. If the G-action is not orientation-preserving, the multidegree does not
always determine isovariant homotopy classes. Indeed, $\mathbb{Z}/2$ components appear in
$[M, SW]_{G}^{isov}$ , see [9] for the detail.

Theorem 2.6 (Nonorientable case [10]). If $M$ is nonorientable, then there is a
one-to-one correspondence

$[M, SW]_{G}^{isov} \cong\bigoplus_{(H)\in A/G}\mathbb{Z}/2$
.

If $G$ is of odd order, then every isovariant homotopy class is determined by the mod
2 multidegree.

Remark. If $G$ is not of odd order, then the $mod 2$ multidegree does not always
determine isovariant homotopy classes.
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