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Abstract

For eigenvalue problem of Laplace operator over polygonal domain $\Omega(\subset R^{2})$

of arbitrary shape, we proposed an algorithm based on finite element method
to bound the leading eigenvalues with indices guaranteed. The algorithm is
developed by well use of max-min and min-max principles and newly constructed
a priori error estimation for FEM solution. The efficiency of the algorithm is
demonstrated by several computation examples.

1 Introduction
The eigenvalue problem of Laplacian has been well investigated in history from

various viewpoints. Here, we pay attention to giving accurate bounds for eigenvalues
with indices guaranteed. For such a purpose, Lehmann-Goerisch method is well known
as a effective way to give sharp bounds for eigenvalues once a quantity $\nu$ satisfying
$\lambda_{k}<\nu\leq\lambda_{k+1}$ is available, where $\lambda_{k}$ denotes the eigenvalues with increasing order on
magnitude. To find such a $\nu$ is not an easy work. In [8], M. Plum developed homotopy
method based on operator comparison theorem to give a computable lノ．As base problem
with explicit eigenvalues is necessary when we apply the homotopy method, domain
mapping is used to construct the base problem, which brings difficulties to solving
problems over general domain.

In this paper, starting from an early work of Birkhoff, de Boor, Swartz and Wendroff
[2], we propose a new method to give guaranteed estimation for leading k-th eigenvalue
on arbitrary polygonal domain, where the finite element method(FEM) is used to give
approximate eigenvalues with computable error bounds. The estimate of $\lambda_{k}$ obtained
by using sparse domain triangulation will be relatively rough, but it can work as a
good candidate of ノ mentioned above $Thus$ , if $needed$ , the bounds can be sharpened
by further applying Lehmann-Goerisch method. The method proposed here can deal
with three types homogeneous boundary conditions associated with function space:
Dirichlet, Neumann and mixed one. To explain the method in a concise way, we only
show details for the Dirichlet case. Also, it is possible to extend the method for general
elliptic problem.

At the end of this paper, we show computation results on triangle and L-shaped
domain.

2 Preliminaries
$Let_{\mathfrak{l}}\zeta]$ be polygonal domain with arbitrary shape, convex or non-convex. We in-

troduce function space $V=H_{0}^{1}(\Omega)=\{v\in H^{1}(\Omega)|v=0 on \partial\Omega\}$ . The notation $\Vert v\Vert_{L_{2}}$

denotes the $L_{2}$ norm of $v\in L_{2}$ and $|v|_{H^{k}(\Omega)}(k=1,2)$ the semi-norms in $H^{k}(\Omega)$ . Let

数理解析研究所講究録
第 1733巻 2011年 31-39 31



$\mathcal{T}^{h}$ be one triangularization of $\Omega$ , which has polygon boundary. The variational form
of eigenvalue problem is defined as below:

Find $\lambda\in R$ and $u\in V$ s.t. $(\nabla u.\nabla v)=\lambda(u, v)$ , $\forall v\in V$. (1)

The classical continuous piecewise linear finite element(FE) space $V_{h}\subset V$ will be
used as approximation space. The Ritz method is to solve the variational problem in
$V_{h}$ ,

Find $\lambda^{h}\in R$ and $u_{h}\in V_{h}$ s.t. $(\nabla u_{h}, \nabla v_{h})=\lambda^{h}(u_{h}, v_{h})$ . $\forall v_{h}\in V_{h}$ . (2)

Supposing the bases of $V_{h}$ to be $\{\phi_{i}\}_{i=1}^{n}$ , the problem of (2) is in fact a generalized
matrix eigenvalue problem:

$A^{h}x=\lambda^{h}B^{h}$ , where $A_{i,j}^{h}=(\nabla\phi_{i}, \nabla\phi_{j})_{L_{2}},$ $B_{i,j}^{h}=(\phi_{i}, \phi_{j})_{L_{2}}$ . (3)

The eigenvalues $\lambda_{k}^{h}$ can be evaluated accurately by applying verified computations, c.f.,
[1, 7, 9]. Denote by $\{\lambda_{i}, u_{i}\}$ (resp. $\{\lambda_{i}^{h},$ $u_{i}^{h}\}$ ) the eigenpairs of (1) (resp. (2)) with
eigenfunction being orthogonally normalized under $L_{2}$-norln. These eigenpairs are just
the stationary values and critical points of Rayleigh quotient on space $V$ (resp. $V_{h}$ ):

$R(u)$ $:=(\nabla u, \nabla u)/(u.u)$ . (4)

Since an upper bound for $\lambda_{i}$ as $\lambda_{i}\leq\lambda_{i}^{h}$ is easy to obtain from min-max principle, we
will pay attention to find satisfactory lower bounds for eigenvalues. The eigenfunction
estimation will not be discussed here.

Let’s introduce two constants $C_{i,h}(i=0,1)$ to be used later, which are related to
function interpolations $\pi_{i}(i=0,1)$ over triangle element $K$ . For $u\in L_{2}(K),$ $\pi_{0}u$ is
constant function s.t.

$\pi_{0}u\equiv\int_{K}u(x)dx/\int_{K}1dx$ , (5)

and for $u\in H^{2}(K),$ $\pi_{1}u$ is linear function s.t.

$(\pi_{1}u)(x)=u(x)$ on each vertex of K. (6)

Global interpolations $\pi_{0,h}$ and $\pi_{1,h}$ are just the extension of $\pi_{0}$ and $\pi_{1}$ . Define $h$ by the
mesh size and $C_{0,h}$ and $C_{1,h}$ the constants over triangulation $\mathcal{T}_{h}$ ,

$C_{i,h}$ $:= \max C_{i}(K)/h$ $(i=0,1)$ , (7)
$K\in \mathcal{T}^{h}$

where

$C_{0}(K):= \sup_{v\in H^{1}(K)\backslash \{0\}}|\pi_{0}u-u|_{L_{2}}/|u|_{H^{1}}$
. $C_{1}(K):= \sup_{v\in H^{2}(K)\backslash \{0\}}|\pi_{1}u-u|_{H^{1}}/|u|_{H^{2}}$

.

3 Lower bound of eigenvalues by adopting min-
max and max-min principle

In this section, we will introduce two methods to give lower bound for eigenvalues, all
of them adopting computable a priori estimate of Ritz-Galerkin solution of Poisson‘s
problem. Let $u\in H_{0}^{1}(\Omega)$ be the solution of following variation problem,

$(\nabla u, \nabla v)=(f, v)$ $\forall v\in H_{0}^{1}(\Omega)$ . (8)

32



The solution $u\in H_{0}^{1}(\Omega)$ , in meaning of distribution, satisfies the partial differential
$equation-\triangle u=f$ . Whether $u$ belongs to $H^{2}(\Omega)$ or not depends on the domain shape.

Let $P_{h}$ be the orthogonal projection of $u\in V$ into $V_{h}$ ,

$(\nabla u-\nabla P_{h}u, \nabla v_{h})=0$ $\forall v_{h}\in V_{h}$ . (9)

We will deduce a computable a apriori error estimate in the form as below,

$|u-P_{h}u|_{H^{1}}\leq M\Vert f\Vert_{L_{2}},$ $\Vert u-P_{h}u\Vert_{L_{2}}\leq M|u-P_{h}u|_{H^{1}}\leq\Lambda I^{2}\Vert f\Vert_{L_{2}}$ , (10)

where $M$ is quantity to be evaluated in Section 4. In the following, we will introduce
two methods to bound eigenvalues based on this a priori error estimation.

3.1 Birkhoff $s$ method: application of Min-Max principle
Birkhoff, de Boor, Swartz and Wendroff [2] considered eigenvalue problem in form of
Rayleigh quotient $R(u)$ $:=N(u)/D(u)$ , where $N(u)$ and $D(u)$ are quadratic forms of
$u\in V$ and $D(u)>0$ for $u\neq 0$ . Suppose $\{\lambda_{k}, u_{k}\}$ (resp. $\{\lambda_{h}^{k},$ $u_{k}^{h}\}$ ) the stationary
values and critical points of $R(u)$ on space $V$ (resp. $V_{h}$ ), with increasing order on $\lambda_{k}$

(resp. $\lambda_{h}^{k}$ ). Birkhoff et al deduced an estimate for $\lambda_{k}^{h}$ by applying Min-Max principle:

Theorem 1. Given any $v_{1}^{h},$ $v_{2}^{h},$

$\cdots,$ $v_{k}^{h}\in V_{h}(\subset V)$ satisfying $\sum_{i=1}^{k}D(v_{i}^{h}-u_{i})<1$ , we
have, for $k\geq 1$ ,

$\lambda_{k}\leq\lambda_{h}^{k}\leq\lambda_{k}+(\sum_{i=1}^{k}N(v_{i}^{h}-u_{i}))/(1-(\sum_{i=1}^{k}D(v_{i}^{h}-u_{i}))^{1/2})^{2}$ (11)

For model problem of Laplacian in (1), $N(u)=(\nabla u, \nabla u)$ and $D(u)=(u, u)$ . It
is natural to select $v_{i}^{h}=P_{h}u_{i}(i=1, \cdots, k)$ for each eigenfunction $u_{i}$ , and apply the
error estimate of (10):

$|u_{i}-P_{h}u_{i}|_{H^{1}}\leq M\Vert\triangle u_{i}\Vert_{L_{2}}=M\lambda_{i}\Vert u_{i}\Vert_{L_{2}}=M\lambda_{i}$ .

1 $u_{i}-P_{h}u_{i}\Vert_{L_{2}}\leq M|u_{i}-P_{h}u_{i}|_{H^{1}}\leq M^{2}\lambda_{i}$ .

Thus, we obtain an a priori estimate for $\lambda_{k}^{h}$ .

Theorem 2. Let $\lambda_{k}$ and $\lambda_{k}^{h}$ be the ones defined in Seetion 2. If $1-l \downarrow I^{2}(\sum_{i=1}^{k}\lambda_{i}^{2})^{1/2}>0$ ,
we have

$\lambda_{k}^{h}\leq\lambda_{k}+M^{2}\sum_{i=1}^{k}\lambda_{i}^{2}/(1-M^{2}(\sum_{i=1}^{k}\lambda_{i}^{2})^{1/2})^{2}$ (12)

Define function $\phi_{1}$ on variable $t_{k}$ with parameters $\{t_{1}, \cdots, t_{k-1}\}$ as below,

$\phi_{1}(t_{k};t_{1}, \cdots, t_{k-1}):=t_{k}+M^{2}\sum_{i=1}^{k}t_{i}^{2}/(1-\lrcorner\iota I^{2}(\sum_{i=1}^{k}t_{i}^{2})^{1/2})^{2}$ (13)

Noticing that $\phi_{1}$ is increasing as varible $t_{k}$ increases, $\phi_{1}(t_{k})$ has increasing inverse
function. Therefore, $\phi_{1}^{-1}(\lambda_{k}^{h};\lambda_{1}, \cdots , \lambda_{k-1})\leq\lambda_{k}$ . As $\lambda_{i}\leq\lambda_{i}^{h}$ for $i\geq 1$ , we can further
see

$\phi_{1}^{-1}(\lambda_{k}^{h};\lambda_{1}^{h}. \cdots . \lambda_{k-1}^{h})\leq\lambda_{k}$ .
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Remark 3.1. In practical computation, instead of verifying $1- \lrcorner lI^{2}(\sum_{i=1}^{k}\lambda_{i}^{2})^{1/2}>0$ , we
will check a stronger condition $1- \lrcorner\iota I^{2}(\sum_{i=1}^{k}\lambda_{i}^{h^{2}})^{1/2}>0$ since $\lambda_{i}^{h}(\geq\lambda_{i})s$ are computable
ones.

Remark 3.2. Birkhoff, de Boor, Swartz and Wendroff $[2J$ obtained the estimation of
form (11) with $V_{h}$ the space constructed by spline functions. By applying the error
estimate for spline interpolation, quantitative estimate for eigenvalue problem of lD
Sturm-Liouville system is successfully done. However, it $\iota s$ difficult to apply their
method to solve problem on general $2D$ domain. As a companson, our estimation in
Theorem 2 and 3 can deal with eigenvalue problem with domain of general shape, which
inhents advantages from the finite element method.

3.2 Bounding eigenvalues by adopting Max-Min principle

Theorem 3 (Liu). Let $v_{1}^{h},$ $\cdots,v_{k-1}^{h}$ be arbitrary functions of $V_{h}$ and $V_{k-1}$ $:=span\{v_{1}^{h}, \cdots, v_{k-1}^{h}\}$ .

Define $\tilde{\lambda}_{k}$ by Rayleigh quotient on $V_{h}\cap V_{k-1}^{\perp}$ ( $V_{k-1}^{\perp}$ : complement space of $V_{k-1}$ in $V$)

$\tilde{\lambda}_{k}=\min_{v_{h}\in V_{h}\cap V_{k-1}^{\perp}}\frac{(\nabla v_{h},\nabla v_{h})}{(v_{h},v_{h})}$ .

Then, an a posteriori estimate for $\tilde{\lambda}_{k}\iota s$ available,

$\tilde{\lambda}_{k}-\lambda_{k}\leq(l\mathfrak{l}I\tilde{\lambda}_{k})^{2}/(1+M^{2}\tilde{\lambda}_{k})$ (14)

where $M$ is the one in (10).

Proof. From Max-Min principle, we have

$\lambda_{k}=\max W\subset V,\dim(W)\leq k-1$

$\min_{v\in W^{\perp}}\frac{(\nabla v,\nabla v)}{(v,v)}$ .

Thus, for specified $V_{k-1}$ $:=$ span $\{v_{1}^{h}, \cdots, v_{k-1}^{h}\}$ , a lower bound for $\lambda_{k}$ is given as

$\lambda_{k}\geq\min_{v\in V_{k-1}^{\perp}}\frac{(\nabla v,\nabla v)}{(v,v)}$ . (15)

For any $v\in V_{k-1}^{\perp},$ $P_{h}v\in V_{h}$ . Let $w_{h}$ be arbitrary one in $V_{k-1}(\subset V_{h})$ . Then
$(\nabla v, \nabla w_{h})=0$ . Thus $(\nabla P_{h}v, \nabla w_{h})=(\nabla v, \nabla w_{h})=0$ , which implies that $P_{h}v\in$

$V_{h}\cap V_{k-1}^{\perp}$ . Considering (10) and the definition of $\tilde{\lambda}_{k}$ ,

$\Vert v\Vert_{L_{2}}\leq\Vert P_{h}v\Vert_{L_{2}}+\Vert v-P_{h}v\Vert_{L_{2}}\leq\tilde{\lambda}_{k}^{-1/2}\Vert\nabla P_{h}v\Vert_{L_{2}}+\Lambda I\Vert\nabla(v-P_{h}v)\Vert_{L_{2}}$ .

$\Vert v\Vert_{L_{2}}^{2}\leq(\overline{\lambda}_{k}^{-1}+1\downarrow I^{2})(\Vert\nabla P_{h}v\Vert_{L_{2}}^{2}+\Vert\nabla(v-P_{h}v)\Vert_{L_{2}}^{2})=(\tilde{\lambda}_{k}^{-1}+1\mathfrak{l}I^{2})\Vert\nabla v\Vert_{L_{2}}^{2}$ .

Hence,
$\Vert\nabla v\Vert_{L_{2}}^{2}/\Vert v\Vert_{L_{2}}^{2}\geq\tilde{\lambda}_{k}/(1+\lrcorner \mathfrak{h}I^{2}\tilde{\lambda}_{k})$ for any $v\in V_{k-1}^{\perp}$ .

The equation (15) tells us,
$\lambda_{k}\geq\tilde{\lambda}_{k}/(1+1|I^{2}\tilde{\lambda}_{k})$ (16)

Now, it is trivious to formulate the result in (14). $\square$
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Remark 3.3. The subspace $V_{k-1}$ in Theorem 3 can be taken as the one spanned by
first $k-1$ eigenfunction of (2). In this case, $\tilde{\lambda}_{k}=\lambda_{k}^{h}$ and lower bound of $\lambda_{k}$ is given
$as$ ;

$\lambda_{k}^{h}/(1+l|I^{2}\lambda_{k}^{h})\leq\lambda_{k}\leq\lambda_{k}^{h}$ . (17)

It is obvious that the above estimate based on Max-Min principle gives better estimate
than the one of (11).

4 A prioiri error estimate for Ritz-Galerkin solu-
tion of Poisson’s problem

The following section will be devoted to evaluating $M$ appearing in a priori error
estimate (10) for projection $P_{h}$ . The discussion will be divided into two parts, the
one with regular solution on convex domain and the one with singular solution on
non-convex domain.

4.1 Convex domain
First, we quote a well known result on a priori estimation for Laplacian.

Lemma 4. [4] Assume $\Omega$ is bounded convex polygonal domain in $R^{2}$ . For $u\in H^{2}(\Omega)\cap$

$H_{0}^{1}(\Omega)$ or $u\in H^{2}(\Omega)$ and $\partial u/\partial n=0$ on $\partial\Omega$ , let $f$ $:=-\triangle u$ . Then, we have

$|u|_{H^{2}}\leq\Vert\triangle u\Vert_{L_{2}}=\Vert f\Vert_{L_{2}}$ .

Theorem 5. Let $\Omega$ be convex polygonal domain and $u$ be the solution of (8). The error
estimate for $(u-P_{h}u)$ is given as

$|u-P_{h}u|_{H^{1}}\leq C_{1,h}h\Vert f\Vert_{L_{2}}$ , $\Vert u-P_{h}u\Vert_{L_{2}}\leq C_{1,h}h|u-P_{h}u|_{H^{1}}\leq C_{1,h}^{2}h^{2}\Vert f\Vert_{L_{2}}$ .

Thus, we can take $M:=C_{1,h}h$ under current assumptions.

Proof. Under the given assumptions, the solution $u$ belongs to $H^{2}(\Omega)$ . By using inter-
polation error estimate for $\pi_{1,h}$ and the Lemma 4, we have,

$|u-P_{h}u|_{H^{1}}\leq|u-\pi_{1,h}u|_{H^{1}}\leq C_{1,h}h|u|_{H^{2}}\leq C_{1,h}h\Vert f\Vert_{L_{2}}$ , (18)

where the constant $C_{1,h}$ is the one defined in (7). The $L_{2}$-norm error estimation can
be easily done by adopting Aubin-Nitsue’s technique.

$\square$

4.2 Non-convex domain
To deal with problem on non-convex domain, which has singular solution not belong-
ing to $H^{2}(\Omega)$ , we adopt the hypercircle equation to deduce a computable a priori error
estimate. Let $W^{h}$ be the lowest order Raviart-Thomas FEM space over domain trian-
gulation $\mathcal{T}^{h}$ and $\lrcorner lI^{h}$ the space of piecewise constant. Also, define subspace of $W_{h}$ for
$f_{h}$ in $M^{h},$ $W_{f_{h}}^{h}$ $:=\{p_{h}\in W^{h}|divp_{h}=f_{h}\}$ . Recall the definition of $\pi_{0,h}$ : $L_{2}(\Omega)arrow\Lambda I^{h}$

in Section 2,
$(u-\pi_{0,h}u, v_{h})=0$ . $\forall v_{h}\in l\downarrow I^{h}$
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From the definition, we have $\Vert u\Vert_{L^{2}}^{2}=\Vert\pi_{0,h}u\Vert_{L^{2}}^{2}+\Vert u-\pi_{0,h}u\Vert_{L^{2}}^{2}$ and

$\Vert u-\pi_{0,h}u\Vert_{L^{2}}\leq C_{0,h}h|u|_{H^{1}}$ if $u\in H^{1}$ .

where $C_{0,h}$ is the constant defined in (7).
Let’s introduce a computable quantity $\kappa$ over finite dimensional spaces:

$\kappa:=\max_{hf\in\Lambda I^{h}\backslash \{0\}}$ $\min_{v_{h}\in V_{h}}\min_{p_{h}\in W_{f_{h}}^{h}}\Vert p_{h}-\nabla v_{h}\Vert_{L_{2}}/\Vert f_{h}\Vert_{L_{2}}$
(19)

Lemma 6. Given $f_{h}\in M^{h}$ , let $\tilde{u}\in H^{1}$ and $\tilde{u}_{h}\in V_{h}(\subset V)$ be the solutions of $var\iota a-$

tional problems,

$(\nabla\tilde{u}, \nabla v)=(f_{h}, v)$ , $\forall v\in V$ . $(\nabla\tilde{u}_{h}, \nabla v_{h})=(f_{h}, v_{h})$ , $\forall v_{h}\in V_{h}$ , (20)

respectively. Then we have a computable error estimate as below:

$|\tilde{u}-\tilde{u}_{h}|_{H^{1}}\leq\kappa\Vert f_{h}\Vert_{L_{2}}$ . (21)

Proof. From Prager-Synge’s theorem, we have, for $\tilde{u}$ in (20) and any $v_{h}\in V_{h},$ $p_{h}\in W_{f_{h}}^{h}$ ,
such a hypercircle equation holds,

$\Vert\nabla\tilde{u}-\nabla v_{h}\Vert_{L_{2}}^{2}+\Vert\nabla\tilde{u}-p_{h}\Vert_{L_{2}}^{2}=\Vert p_{h}-\nabla v_{h}\Vert_{L_{2}}^{2}$ . (22)

Thus,
$\Vert\nabla\tilde{u}-\nabla v_{h}\Vert_{L_{2}}\leq\Vert\nabla v_{h}-p_{h}\Vert_{L_{2}}$ , $\forall v_{h}\in V_{h},$ $\forall p_{h}\in W_{f_{h}}^{h}$ . (23)

From minimization principle and the definition of $\kappa$ , we obtain

$\Vert\nabla\tilde{u}-\nabla\tilde{u}_{h}\Vert_{L_{2}}\leq\min_{v_{h}\in V_{h}}\min_{p_{h}\in W_{f_{h}}^{h}}\Vert p_{h}-\nabla v_{h}\Vert_{L_{2}}\leq\kappa\Vert f_{h}\Vert_{L_{2}}$

. (24)

$\square$

Theorem 7. For any $f\in L_{2}(\Omega)$ , let $u\in V$ and $u_{h}\in V_{h}$ be solution of $var\cdot lational$

problems

$(\nabla u, \nabla v)=(f, v)$ , $\forall v\in V$, $(\nabla u_{h}, \nabla v_{h})=(f, v_{h})$ , $\forall v_{h}\in V_{h}$ . (25)

respectively. Introduce quantity $M:=\sqrt{C_{0h}^{2}h^{2}+\kappa^{2}}$ , where $C_{0,h}$ is the constant defined
in (7). Then, we have,

$|u-u_{h}|_{H^{1}}\leq M\Vert f\Vert_{L_{2}}$ , $\Vert u-u_{h}\Vert_{L_{2}}\leq l\mathfrak{l}I^{2}\Vert f\Vert_{L_{2}}$ . (26)

Remark 4.1. The quantity $\Lambda I$ , independent of $f$ , will $dec\uparrow ease$ when mesh $is\uparrow efined$ .
By theoretical analysis, we can show that $\Lambda I$ tends to $0$ in the same order as the error
of linear conforming $FEM$ solution solution.

Proof. We follow analogous framework with $I\backslash$’ikuchi and Saito [6] to finish the proof.
Let $\tilde{u}$ and $\tilde{u}_{h}$ be the ones defined in Theorem 6 with $f_{h}=\pi_{0,h}f$ . The minimization
principle leads to $|u-u_{h}|_{H^{1}}\leq|u-\tilde{u}_{h}|_{H^{1}}$ . Decomposing $u-\tilde{u}_{h}$ by $(u-\tilde{u})+(\tilde{u}-\tilde{u}_{h})$ ,

we have
$|u-u_{h}|_{H^{1}}\leq|u-\tilde{u}_{h}|_{H^{1}}\leq|u-\tilde{u}|_{H^{1}}+|\tilde{u}-\tilde{u}_{h}|_{H^{1}}$ . (27)
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From the definitions of $u$ and $\tilde{u}$ , we have, for any $v\in V$

$(\nabla(u-\tilde{u}), \nabla v)=(f-\pi_{0,h}f, v)=((I-\pi_{0,h})f, (I-\pi_{0,h})v)$ .

Taking $v$ to be $u-\tilde{u}$ and applying the error estimate of interpolation $(I-\pi_{0,h})v$ ,

$|u-\tilde{u}|_{H^{1}}\leq C_{0,h}h\Vert(I-\pi_{0,h})f\Vert_{L_{2}}$ . (28)

Substitute (21) and (28) into (27),

$|u-u_{h}|_{H^{1}}\leq C_{0,h}h\Vert(I-\pi_{0,h})f\Vert_{L_{2}}+\kappa\Vert\pi_{0,h}$fli $L_{2}\leq\sqrt{C_{0h}^{2}h^{2}+\kappa^{2}}\Vert f\Vert_{L_{2}}$ .

The estimate for $\Vert u-u_{h}\Vert_{L_{2}}$ can be easily done by applying Aubin-Nitsche’s method.
$\square$

5 Computation
The computation of quantity $\kappa$ turns to solving eigenvalue problem of matrix, for
which we omit the details but point out that evaluation of $\kappa$ consumes most of the total
computation time. To obtain accurate numerical result, we adopt interval computation
arithmetic to do the floating-point computation. The total framework is as below

1 $)$ Tlriangulate the domain $\Omega$ and construct finite element space $V_{h}$ .

2 $)$ Solve eigenvalues problem $A^{h}x=\lambda^{h}B^{h}x$ under the bases of $V_{h}$ .

3 $)$ Evaluate quantity $M$ for the mesh and domain.

4 $)$ Calculate the lower and upper bounds of $\lambda_{k}$ by using (12) or (17).

In the following we display computation examples on several domains.

5.1 Triangle domain
In case of unit isosoceles right triangle domain, due to the symmetry of specified triangle
domain, we can apply reflecting techniques, $e.g.,[5]$ , to obtain the explicit eigenpairs as
below:

$\{\lambda=m^{2}+n^{2}, u=\sin m\pi x\sin 7?\pi y-\sin\uparrow?\pi x\sin m\pi y\}_{m>n\geq 1}$ .
To compare the efficiency of the methods basing on Max-min principle and the

Min-max principle, we display the estimates of (12) and (17) in Table 1.

5.2 Computation Results on L-shaped domain
The domain is taken as $\Omega=[0,2]\cross[0.2]\backslash [1,2]\cross[1,2]$ . As a model problem, it has been
well explored by many people, e.g., L. Fox, P. Henrici and C. Moler [3]. However, to
the author $s$ knowledge, most of the results are given only in the sense of approximate
computation. Although our method gives a relatively rough evaluation, it can easily
deal with more general domain and the result works as mathematically correct with
indices guaranteed.
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Table 1: Estimates by Min-max(12) and Max-min (17) principle. $(h=1/32)$

Table 2: Eigenvalue estimates for Laplacian on triangle domain (Dirichlet b.d. $c.$ )

In Table 4, we list the first 5 eigenvalues given by [3] and the verified bounds by
our proposed method. The values of $\kappa,$

$C_{0}^{h}$ and $M$ , which are only depending on the
mesh, are displayed in Table 3. We can see $M$ tends to zero in order less than 1. Once
lower bound for $\lambda_{5}$ is available, we can further apply the Lehmann-Goerisch method to
obtain more precise bound for $\lambda_{1},$

$\cdots,$
$\lambda_{4}$ . Such a computation, although not verified,

has been reported by Yuan and He [10] with very sharp bounds, while the lower bound
for $\lambda_{5}$ is obtained in a different way.

6 Conclusion
For the classical eigenvalue problems of Laplace operator over 2-dimensional do-

main, we have proposed a novel and robust method to give accurate lower and upper
bounds for eigenvalues. The method can deal with both convex and non-convex do-
mains with general shape. To apply the Lehmann-Goerisch method for purpose of high
precision, we still need pay efforts on constructing base functions over general domain.
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Table 3: Uniform mesh of L-shaped domain and $\kappa$ values

Table 4: Eigenvalue evaluation for L-shaped domain $(h=1/32)$
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