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A Simple Derivation of
Hadamard’s Variational Formula
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1 Introduction

Let R™ be n-dimensional Euclidean space (n > 2) and © C R" be a bounded domain. For a
given function f, we consider Poisson’s equation

—Au=fon§, wu=0ondoN

The Green function G(z,y) is a function which provides the solution u of the Poisson equation
by

u(z) = /Q G, v)f (v)dy.

If the domain € is modified, then the Green function G(z,y) would vary. Hadamard considered
how G(z,y) would vary and computed the first variation 0G(z,y) with respect to domain per-
turbation [3]. His result is now called Hadamard’s variational formula. Hadamard showed
his formula under the assumption that 9 and the perturbation are analytic. Later, Garabedian
and Schiffer gave a simpler and more rigorous proof of Hadamard’s variational formula under
the assumption that Q) and the perturbation are of C? class (see [1]). Further, they obtained
Hadamard’s second variational formula [2], [4]. The main aim of this paper is to reconsider
Hadamard’s variational formula. In particular, we develop a methodology which provides us a
much clearer understanding of Hadamard’s variational formula. As a result, we obtain a very
simple proof of Hadamard’s variational formula (see Section 3.1). We also obtain Hadamard’s
second variational formula which is an extension of Grabedian-Schiffer’s formula (Theorem 3.3).

Here, we briefly summarize the notation which we use in this paper. We denote the Euclidean
inner product by z -y or (z,y)g» for z,y € R™. When we do not specify, all vectors in R" are
regarded as column vectors. Transposing of vectors and matrices are denoted by (-)7. Let f(z)
be a smooth function defined in a domain of R®. The gradient of f is denoted by

0
Vi) = (o) gt
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When we need specify the variable of a gradient, we denote such as V,f(x), Vg« f(z*). We
regard gradients of functions as row vectors. Hence, for a vector field F( ) VF(ar) is the Jacobi
matrix DF(z). Let Q C R™ be a domain in R™. We denote by L%(Q2), H(2), H*(69) the usual
Lebesgue and Sobolev spaces. The inner product of L2(f2) is denoted by

(u,v)q :=/ uvdz, u,v € Lz(Q)
Q

On a point =z € 90, we denote the unit outer normal vector of 652 by v = v(z). For a
subset T' C 89, we denote the duality pair of H~/2(T") and HY/%(T) by (p,v)r, v € HY/3(I),
v e HY2(I).

2 Basic Definitions

Let 2 C R™ be a bounded Lipschitz domain and Qbea sufficiently larger domain which satisfies
Q C intQ. For a parameter t > 0, we define transformation 7; : @ — T;(Q) C R" of Q
with respect t in the following way. Let a Ccol. class vector field S(x) be given. We suppose
that suppS C €. Then, a transformation 7;(x ) on Q is defined as a solution of the ordinary
differential equation

d

(2.1) =

—Ti(z) =S5(Ti(z)), To(z) ==.

That is, for each x € ﬁ, Ti(x) is the integral curve generated by (2.1). This 7;(z) satisfies the
following properties:

e For any z € Q, To(z) = z.

e For a sufficiently small ¢, Q; := T;(2) C Q.

e 7, is a diffeomorphism for a sufficiently small t > 0.

e 7, is smooth with respect to t.

From the definition (2.1) we have S(z) = 9 T; (x) |t_0. Moreover, we define

82
T(@) i= 55Ti(2) |t=0

Then, the transformation has the Taylor expansion
Ti(x) =z + tS(x) + %izT(ac) + o(t?)

with respect to t. Here, o(t?) denote a quantity which would be expressed by t?w(z,t), where
w(z,t) is a function which converges uniformly (with respect to z) to 0 as t — +0. In the sequel,
notations such as o(t), o(t?) are understood in this way. Let DS(z) be the Jacobi matrix of S.
From (2.1), we have

dQT ~dST —-DST'dT‘—DST'ST'
@) = SS(Te)) = DS(T(@) T Ti(x) = DS(Ti(x))S(Ti(x)),

which implies

(2.2) T(z) = (DS(x))S(z).
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Let a function ¢ be defined on € and pE HQ(?Z). Suppose that a function u = u(x,t) €
H(Q4) is a solution of the boundary value problem

(2.3) Au(-,t) =0 in €,
u(-,t) = on 0€.
Here, A := 62/8@“%—#' : '+32/8ac,21 is the usual Laplacian with respect tox = (21, -- ,2,)7. In this

section, we investigate differentiations of quantities which depend on u(x,t). Such variations of
quantities with respect to domain perturbation are called Hadamard’s variation. To compute
Hadamard’s variation it is important to know Lagrangian derivative ¢ 4., iy and Eulerian
derivative ° wg, iig, defined by, for z € Q,

. d y d?

tg(z) = ET! (u(T¢(z), 1)) L:o’ tg(z) = TS (u(Te(z),1)) L=0=
. 0 . o2

i (2) = (e, 1) (t:O, e () = u(e,0)

For a function f(x,t), let

Mof = H, f(o.) = (82f(x,t))
i, j=1,-n

61‘lal’J

be the Hesse matrix. We use the same notation H, f for the second order tensor H, f : R® xR" —
R defined by H,f(X,Y) := (H.f)X,Y )g» for X, ¥ € R™. In particular, in the case of X =Y,
we denote as Hzf (X, X) = H,f - (X)2. A straightforward computation yields

(2.4) G (T(@).) =ZulTi).0 + Va0 - (57
2 2
28 G wEE),0) =gEue).0 + 29 ( Gun.n) - (57

V(T (@), 1) (g;-:q(m)  Hpu(T(2) 1) (%Tf('x))?-

2.1 Eulerian Derivatives g, iig

In this subsection, we check properties which Eulerian derivatives #g, g should satisfy. At an
inner point x € 2 we have Awu(-,t) = 0 for any t. Hence,

Aug =0, Atg =0 in .

On the boundary 9 we have u(7T;(x),1) = ¢(T¢(z)). Differentiating the both side and letting
t — +0, we see g + S - Vu =S - V. Therefore, we find that the Eulerian derivative ug is a
solution of the following boundary value problem:

(2.6) Adg =0 in Q, g =S - (Ve — Vu) on 0N
In the same manner, we conclude that g is a solution of the boundary value problem

Aiig =0 in Q,

2.7
@1 ilg = =25 - Vig + T+ (Vi — Vu) + (Hzp — Hau) - (S)* on Q.

1t is also called material derivative or covariant derivative.
5This is a usual partial derivative with respect to t which is also called shape derivative.
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2.2 Lagrangian Derivatives u., i

In this subsection, we check properties which Lagrangian derivatives i, i should satisfy. Here,
variable on ), is denoted as 2* = T;(z). A function f(z*) defined on §2; is pulled back by 7; to
a function f(z) on §2 as

f(z) = f(Ti(x)).
Note that we have

gﬂgg‘ g_u
. (of AN R o
VI*f_(bE""&;) 6; . a; = (VN)(DT,),
ot oan

n

where D’Tfl is the Jacobi matrix of Tt_l.
The weak form of the boundary value problem (2.3) is

28) { (Vu(-,1),Vd)g, =0, Vo€ H\(),

u(-,t) = ¢ on 0.

Using the transformation 7;, we pull back the problem (2.8) to a problem defined on 2. Note
that
o€ HY () <= v:=190T, € H)(Q).

Then, setting u(z) := u(7T(x),t), we see that

(Tu-,t), Vé)a, = /

Q
= (A(t)Vuw, Vv)q, Vv € H (),

(det DT;) (wt (DT, o T;) (DT, o crt)T) Vo dz

where T
A(t) == (det DT) (DT, Lo T) (DT, o T) " .

That is, the boundary value problem (2.8) on €, is pulled back to the boundary value problem

(2.9) {(A(tht,W)wo, Vo € H3(),

u=poly on 08}

on . If u(z,t) is a solution of (2.8), then w(z) = u(T;(x), 1) is a solution of (2.9) and vice versa.
We set

A(t) l A= A

d
', _
(2.10) A 0’ e

T At t=0

Suppose that ¢ o 7; has the following Taylor expansion:
_ . 1,2 - 2
poTy=p+tp+ 5t°¢+o(t7).
From the definition we find

¢=5-Vo. ¢=T Ve+He- (5>



Let u be a solution of (2.3). Then, we “differentiate” (2.9) and obtain the equation

(2.11)

(Vig,Vo)g = —(A'Vu, Vv)a, Yo € Hé(ﬂ),
Up = ¢ on 0.

One more “differentiation” yields the equation

(2.12) (Viig, Vo)g = —2(A'Vig, Vo) — (A"Vu, Vo), Yo € HA(Q),
' i = ¢ on 99.

For solutions of these equations, we have the following lemma.

Lemma 2.1 Suppose that u, w, g, iy € H(Q) are solutions of the equations (2.3), (2.9),
(2.11), (2.12), respectively. Then, u; has a Taylor expansion u; = u + tis + %fQilg + o(t?) in

HY (). That is, the following is valid:

i Ixell a1 o) _

o 2 0, xe 1= u — (u+ tag + 3t%ic) .

Proof Since S € WL°(;R") and T € L({}; R"™), we see A(t) € L®(0; R™) and

Nl
(2.13) Jm T =0, = A(Y) - (1 +tA"+ 3124").

Define z;, 2, # as solutions of the following boundary value problems:
(V2, Vo) =0, Yove Hy(Q), 2z = @ oT; on 91,
(Vz,Vv)a =0, Yve HQ), % = on 99,
(Vi,Vu)q =0, Yve H} (), % = ¢ on O

Letting
Moo=z — (u+tz+30%5), Y=ol — (¢ +t¢ + 429),

we notice n; — ¥y € H}(2). Since 0 = (Vn,, Vu)gq for any v € H} (), we set v := 1, — ¥y and

obtain

||V77t\|%2(9) = (Vn, Vi)a = (Vir, Vi )a < IVaeli 2o IV ¥l L2y

v \Y%
i Vel 2 < lim IVl L2

=0.
t—0+ t2 ~ 50+ t2

Similarly, set
By =y — 2z — (t{ig — 2) + 5% (iig — %)) € HH(Q).
Then, from (2.11), (2.12), we find that for any v € H} (),

(A(t)Vﬁt,VU)Q =((1 — A(t))Vzt,Vza)Q
— HA®)V (i — 2),Vv)o — AV (iig — £), Vo)

=((I = A®)V (e + Lt%iic), Vola + (I + tA — A(t) Vi, Voo

+ (I +tA + 324" — A1)V, Vo)a.
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By (2.13) there exists a positive constant A such that, for any sufficiently small t > 0,
AIVol32q) < AV, Vo), Vv e Hy(Q).
Inserting v = 3; into the above equation, we obtain

A Vel 2 N
A8 < = Aoy (T + (el

1 . 1
+ ;Hl +tA = Al Loy I VLl L2(0) + t—2||at||L°°(Q)HVU||L2(Q)~
Therefore, we conclude lim; o4 | V8t||12()/t? = 0 and complete the proof since x; = 8, +n;. O

2.3 The Relationship between Eulerian and Lagrangian derivatives

In this subsection we consider the relationship between Eulerian and Lagrangian derivatives.
From (2.4) we immediately notice

s =tug+S-Vu in Q.
Since (Viiz, Vo) = —(A'Vu, Vo) and (Vig, Vv) =0 for any v € H3(Q), we have
(V(S - Vu),Vv)q = —(A'Vu, Vo)q, Vv € H(R).
Similarly, from (2.5) we obtain
i =g + 25 Vag + T - Vu+ Hau- (S)? in Q.

Since
(Viig, Vo)g = —(2A' Vi + A"Vu, Vv)q, (Vieg, Vo) =0, Vove Hy(),

we have, for any v € H} (),
(2V(S - Vi) + V(T - Vu) + V(Hyu - (5)?), Vo)g = —(24' Vi, + A"Vu, Vo).

2.4 Liouville’s Theorem

In this section we prepare Liouville’s theorem which plays an important role in calculus of
Hadamard’s variation. Following Garabedian [1] and (2.2), we denote normal components of S
and T by 6p and 6%p, respectively:

(2.14) bp:=S-v, 8p:=T v=rv'DS(z)S(z).

Theorem 2.2 (Liouville’s Theorem) Let a sufficiently smooth function c(z,t) be defined on
the domain Q, := T;(Q) for each t > 0. Suppose also that c(x,t), ci(x,t) = %%(x,t) are
measurable on ;. Then, the following holds:

(2.15) % (/Q c(a:,t)dm) )

=/ (ct(2,0) + V- (c(2,0)S(z))) dx
t=0 Q2

_ /Q ce(x,0)dz + (c(-,0),0p) oq -
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Proof. We méty suppose without loss of generality that 09, c, ¢ are all sufficiently smooth.
The proof for general cases follows from the density property of C®(Q) in H(f). Let JTi(x)
be the Jacobi matrix of 7;(z). Differentiating the both sides of

(2.16) / c(a:,t)d.r=/c(’2}(a:),t)det(J’]§(a:))dm
Q Ja

with respect to t, we have

i ] o) = [ (a@mno + vemm.o i) )det(/Ti(a))de

+ [ eTie). 0 g det(s Tz

Then, letting ¢ — 0+, we obtain the first equality of (2.15). Here, we use

(2.17)

(2.18) Q—det(J’]}(m)) =V .5(z).
ot t=0

The second equality immediately follows from the divergence theorem. O

Corollary 2.3 Suppose that a function f(z,t) is in H' () for each t > 0 and harmonic on 4
with respect to x € R™. Then, we have

d . Jof
5 ([ e oras)|  =2(FLe) (910,

where f(z):= f(2,0), fe(z) == & f(z,)]i=0.
Proof: Set c(z,t) := |V, f(z,t)|* and apply Theorem 2.2. O

We now try to obtain a second order Liouville’s theorem. Assume that 89, ¢, S are suffi-
ciently smooth. We have obtained (2.17) by differentiating the both side of (2.16) with respect
to t. One more differentiation of the both side of (2.17) and letting t — 0 yield

/Q [ctt(a:,O) + 2V (2,0) - S 4+ Vze(2,0) - T + Hpe(z,0) - (5)2] dx
+ 2/ [ee(2,0) + Vze(z,0) - S](V - S)dz
Q

+ / e(z,0) {v T+2) (Siz, S, — Sia, sjz,.)} dz.
Q

i<J
Here, we used (2.18) and, for S = (Sy,---,S,)7T,

2

Q—det(DTt(x))

85,
a2 oy

t=0 i<j

Hence, we obtain

d2 ( /
— c(z, t)dx)
dt2 \ Jq, =0

+2/ ct(;r,,O)(Spds+/ ¢(x,0)02 pds
0N o0

=/ctt(x,O)dm—t—/HIc(m,O)~(S)2dx
Q Q

+ 2/ (Vee(z,0) - S)(V - S)dx + 2/ c(,0) Y (Siz, Sjz, — Siz, Sja, )da.
Q Q

1<j
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We try to simplify this formula. Recall that DS is the Jacobi matrix of the vector field S. Since
it follows from the divergence theorem that

—2 ]‘ C .'1: ” (l.’),—z Us S M ; clx () xr

g% (/Qf c(z, t)dm) _

=/ cu(g:,O)da:+2/ ct(x,0)0pds
t=0 JQ 692

+ [ @ 0P pds+2 [ (Vacl@,0)-)épds
o0 oN
- / Hae(z,0) - (S)%dz —2 / ((DS)S) - Ve(z,0)dz
Q Q
+2 / o(x,0) > (Siz, Sjz; — Sz, Sja;)d.
Q i<j
We gather the last three terms on the right-hand side of the above equality. Set
w ;=2/ (Vze(x,0) - S)dpds, X = —/ Hoe(z,0) - (S)%da,
onN Q
Y .= —2/((135)5) - Vye(z,0)dz, Z .= 2/ o(,0) Y (Siz,Sjz; — Siz, Sjz,)de.
Q Q i<j

We omit “dz”, “ds” from the notation of integrals for a while. A straightforward computation
using the divergence theorem yields

X+Y =—%:/;)Czixj315j-2%:ch,sixj5j
=——/ (VC’S)6P+Z/CIfSiSj$j—'Z/CJ:,-SinSj
_22/ ¢8; Sz, Vi — 22/%55]% 22/ ¢SSz, u]+22/cxjssﬂ

1< j 1<) 1<J 1<j
Thus, “X +Y + Z” becomes

X+Y+Z=- /(vc S)(5/)+22/ cS;Sjz,n — 22/ ¢S;iS;z,m;

i<J i<j

—Z/czﬁsn +Z/CI,SSNJ+Z/%SSN, Z/cxjssﬂ,

1<j >j 1<y i>]
With appropriate exchanges of ¢ and j, the last four terms of the right-hand side turn to

Z/%SS Z/cz, Z/ (SiS;)z,v5 — Z/ c(S:S;)

1<J 1<) 1<) 1<)
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Therefore, we have

X+Y+Z=—/ (Vze-S)dp + /cSiSlmui— /cSz‘S-Iu‘
a9 ) Z 80 5 Z 89 s

1<J 1<j
+Z/ CSzm,SJVJ —Z/ CSia:j Sjl/i
i<j o0 i<j o0

:—/ (VIC-S)5p+/ c(v-S)ap—/ c6%p.
19) a9 E19)
Here, we used (2.14). Hence, “W + X +Y + Z” becomes

W+X+Y+Z=[ (Vic(z,0)-S)dpds
on

+/ c(a:,())(v-S)apds—/ c(x,0)6%pds
o0 o0

Gathering all terms, we finally obtain

3—; (/Q c(:c,t)dx)

=/ctt(:1:,0)da:+2/ ct(x,0)dpds
Q a0

t=0

+ V- (e(,0)S)épds.
N

We have done these computation under the assumption that ¢, 9Q are sufficiently smooth.
With a usual density argument we obtain the following theorem for general cases.

Theorem 2.4 (Extended Liouville’s Theorem) Suppose that a C?-class function c(x,t) is
given on ) and, for each t > 0, c(x,t), c;(x,t) := %(m,t), cu(z,t) == %(df,f) are integrable on
Q4 :=T,(Q). Then, we have the following equality:

E ([ o)

Here, v is unit outer normal and dp :=S - v.

=/Qctt(m,0)dx +(2¢(,0) + V- (¢(,0)S),6p) 5 -
t=0

3 Hadamard’s Variational Formula

Let Q C R™ be a domain and G(z,y) be the Green function of the Laplacian A on Q. If Q is
perturbed, G(x,y) also varies. Hadamard presented the first variation §G(z,y) of G(z,y) with
respect to domain perturbation. His formula is called Hadamard’s variational formula.
Later, Garabedian and Schiffer gave an rigorous alternative proof of Hadamard’s variational
formula. They also computed the second variation of the Green function. In this section, using
the result obtained in the previous section, we give an alternative and much simpler proof of
Hadamard’s variation formula, the both first and second variations. In the sequel, the boundary
06} is assumed to be sufficiently smooth. The fundamental solution I'(z) of the Laplacian A is

defined by
C(z) = {—;—,rlogm, n=2,

1 wl2--m
e, T 23
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Here, wy is the measure of (n — 1)-dimensional sphere S"~!. Then, for sufficiently smooth
function f we have Green’s formula

0 0
(3.1) —/ [z —y)Af(z)dz —+-/ —]:(x)I’(x —y)dsy = f(x) [z —y)dsz + f(y).
Q aq OV P v,
For the fundamental solution I'(z — y), define u as a solution of the following boundary value
problem:
Au=0 in{, u(z) = -T'(z—-vy), xze€om.
Then,

G(z,y) :=T(z —y) + u(x)

is the Green function of A on . It follows from the definition that G(z,y) = 0 for z € 62 and
y € . Adding the following Green’s formula with respect to f and u

af = xr "aill' xr)as
- [ueas@ur+ [ wues= [ @5

to (3.1), we obtain Green’s second formula

3]
ov,

(3.2) W) =- /Q Gle,)af(@)da = [ (@) Glauds.

3.1 First Variation

Now, we consider domain perturbation €; = T;(Q2) defined in the previous section. The Green
function G(z,y,t) on €, is written as

G(CII,y, t) = F(IIZ - y) + u(:r,t),
where u(z,t) is the harmonic function which satisfies
(3.3) Azu(z,t) =0 in £y, u(z,t) = -I'(xz —y), z €.

Obviously, we have G(z,y,0) = G(z,y) and u(z,0) = u(z). For two inner points z,y € Q and
sufficiently small ¢ > 0, we have x,y € . The first variation dG(z,y) with respect to domain
perturbation is defined by

G(z,y,t) — G(z,y,0)

o . u(x,t) —u(z,0)
6G(z,9) = t1—1+1(111+ t B tl—l.r(r)l+ t

= ’l:Lg(iL'),

and is equal to the Eulerian derivative ¢ of u.
By (2.6), we confirm that g is a solution of the boundary value problem

Adg =0 in Q,

o
g =S (—=V.I'(z —y) — Vu) = =S - V,G(z,y) = —5p81/

G(xz,y) on ON.

Here, we use the fact that S- V,G(z,y) = (S- u)g‘?j—mG(:c,y) on 0. Applying the formula (3.2)
to g, we obtain Hadamard’s variational formula.

Theorem 3.1 (Hadamard’s variational formula) The first variation 6G(w,y) of the Green
function G(w,y) of A with respect to domain perturbation is given by

0G(w,y) =/

2,9} aVJJ

0 - -
0 G(a:,y)-a—y——G(;r,w)OpdsI, dp:=S-v.



3.2 Second Variation

In this subsection, we compute the second variation of the Green function with respect to domain
perturbation. We prepare a lemma. Let a harmonic function u(z, t) be a solution of the Dirichlet
problem (3.3). Since 0G(z,y) = dg(x), we recall that

(3.4) 5C(a,y) = —dp2

8VIG(;2:,y), x € Of.

Hence, for a harmonic function g(z), we find

_ 0 g
0= [ (36w +a 5o Cla) ) g a)ds,

=/Vz6G(z,y)~Vg(m)d:r+/ dp 0
Q o0

dg ’
B0 G(x,y)==(x)ds,,

ov

and obtain the following lemma.

Lemma 3.2 For a harmonic function g on §Q, the following equality holds:

99
ov

O Gla,y)

V:0G(z,y) - Vg(z)dx = —
JREECORYE n

(x)dpdsy.

The second variation §2G(z,y) of the Green function G(z,y) is defined by

? .
62G(:r,y) = WG(m,y, t) = g (),
t=0

and, therefore, we only need to compute ig. Recall that the harmonic function is a solution of
the Dirichlet problem
Au =0in §, u=—I[(-—y) on ON.

By (2.7), the boundary value of @g on 9Q is
lig = =25 - V28G(2,y) = T+ VoGl(a,) — HaG(z,v) - (5)*.

Here, we use G(z,y) = I'(x — y) + u(z) and dg(x) = 6G(z,y). From (3.2), we find

82G(z,y) = tg(x) =2/ S- VwéG(w,y)iG(x,‘w)dsw
a0 61/3;

(3.5) # [ Tv.Gw

Vg

G(z,w)ds,

g 0

+ HuG(w,y) - () +——G(z,w)ds,.
0 ov,

We denote the first, second and third terms of the right-hand side of (3.5) by X, Y, Z, respec-
tively. As before, the term Y can be written as

: 9
(3.6) Y = / O w26, w)8 pdsu.
19]

50 Wy ov,

To understand the terms X and Z, we consider the (n —1)-dimensional tangent space 1,092
of 0f) at x € ). Let {s;,---,s,_1} be the orthonormal basis of 1,092. Then, {s;, - ,s,-1,V}
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is an orthonormal basis of the tangent space 1;R™ at x € R". For a generic function f, directional
derivatives are defined by

Bf of ,
3 =Vf-v aSi—Vf-S,, i=1,---,n—1.
Thus, defining the orthogonal matrix P by P := (s1, - ,Sp—1,V), We may write
of of Oof\ _
(3£. 5—157) =P o
of  of i, 10
T — — —_—
(3.7) (V) Z I TV and V= zs v a
If we write S as
n—1 .
(3.8) S=Zuis,-+6pu, bp=S-v, pu=S-s;,i=1,--,n-1

i=1

on 911, we obtain

o
S - V,6G(w,y) Zu,——aa w, y) +5p—6—5G'(w Y).

i=1

Using Lemma 3.2 with g := 6G, the term X (the first term of the right-hand side of (3.5)) is
written as

n—1
o 5 5 5
p—e + e— 5 G
X =2 ; /30 1 Bs; 0G(w, y)—ayr G(z,w)dsy + 2/39 p——auw ) (w’y) e G(z, w)ds,

n—1
0 0
= ——(5 —‘——G w w ) . :c(sG ’ w:e
2 ;Zl /m'uzasi G(w,y)aux (z,w)ds 2/QV 0G(w,y) - Vz6G(z,w)ds

Next, we try to rewrite the third term Z of the right-hand side of (3.5). To this end, we
consider the curved coordinate defined by {sj, - ,s,_1,¥} in the neighborhood of x € 6 and

second order differentiation on the coordinate. For a C? class generic function f, the Hesse
matrix Hf is written by Hf = V(Vf)T and

n—1
Hf V(Zslaf+1/5§)
of of f
Zasz H———Du+§:sv((9 >+ V(O_)

n—1
39 = gfu,+§f1) +Z

i=1

- 82f
T T
L;. Sz + vs; ) + 5-1;51111

3SJ



Similarly, A f is computed as

n—1
Af=V~Vf=V-<Z of ., af)

= Js; ov
o 8 n—1
=V - v)— f f ( ~———+51 V?i>
8 =1 551'
82 n—1 {9f f
(3.10) =(V-v ~—+——+Z(Vsl a?)
i=1
Since the Green function G satisfies G(z,y) = 0 on 92, we have
0 0?
il — = ii=1. n—1.
Bs; (z,9) 0SiaSjG(x,y) 0, 4j=1-,n~1
and, thus,
0=A4,Gw,y)=(V )8 G( 82G € 00
= Kw YY) = v (9Vw ,way)_{-'(r;;jg (w,y)a w .

Applying these results to computation of H,,G(w,y) - S? with S = ?:—11 1i8; + dpv, we obtain

n—1
02 0
HyG(w,y) - (S)* = 2dp E NiWG(w,y) - (V- V)(ép)zng(W,y)
. i=1 (3 w w

n—1 n—1
v 0
+ (§ ST (Dv)s; + 25 widpsT (Dv)w + (6p>2uT(Du>v) - G(w,y)

i,j=1 i=1 Vw
n—1 82 n—1 o
=200 ) b= Glw,y) + | D (1 = (60)%) | 5,=Glw,).
i=1 00V i=1
Here, we use the fact Vv = ?:_11 Kisist, Vv = tr(Vv) = :’_1] K;, where K; is the curvature

of the cross-section of (n — 1)-dimensional surface 9 by a two-dimensional plane defined by s;
and v. Therefore, the third term Z of the right-hand side of (3.5) is written by

,/aQ Z ki (12 — (3p)%) -8——G(w y (‘(:z: w)d sy

A 0
2 0 —G ) =G (x, w)dsy,.

Noticing (3.4), we see the equality

3 52 _9(p) 0
b?,éG(w \Y) +5pasiauwG(w,y) = " os, Gv.

Computing X + Z using this equality, we find

G(uw,y).

X+7Z=- 2/ VoG (w,y)V ,0G(z, w)ds,,
Q

(3.11) B . r
(2 52y o, 900p)] O KA |
+ LQ lz:; l:/iz (Ni (5P) ) 21, Bs, Y G(w,y) R G(.’Lf,ll,)dsw,
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Gathering (3.5), (3.6), and (3.11) we obtain

2G(z,y) = — 2 / V3G (w, )V 6G (2, w)ds, + / xiG(w,y)ai-G(m,w)dsw,
Q 0!

a Oy Vg
2 = 2 2 9(6p)
x:=0p+ Y ki (uf = (0p)?) = 2pi— |-
i=1 ?

We further try to simplify x. At first, since g—; = K;S;, we notice

n—1 n-1 n—1

o(é oS
Sorad = m(s s =3 5w (B2 - (24)).
i=1 t *

i=1 =1

Thus, recalling from (3.7) that DS = Z";i %s? + %VT, we see

n—1 85 n—1
ZS -8, (55— : V) = Z S-s; (vT(DS)s;) = vT(DS) (Z?;II(S : sz)si)
(3.12) i=1 ‘ i=1

0S 1 8(ép)?
T _ — 82, _ 7. — 82, _
=p' (DS)(S —dpv) = d°p — dp (BV V) p 5 0

Here, we use the facts 62p = T (DS)S by (2.14) and %‘; = 0. Similarly, since S -V = ZZ;%(S :
si)% + (S V)g; by (3.7), we have

n—1
8(5p) 3(5p) 19(3p)?
. S-5i——==(S-V)bp—-dp——= (S -
(3.13) ; Sige = (V)00 —8p— = = (S V)ép— 5 =5
Letting & := Z?;ll Ki, X is rewritten as
i 0y
= —R(dp)2 = (S- V)5 :
x = —R(0p)" = (S-V)op+ —5~
If the domain perturbation 7;(z) satisfies S-s; = 0, ¢ = 1,--- ,n — 1, it follows from (3.12),
(3.13) that
2
(3.14) 2p= (S V)op= L20P°

2 ov
Therefore, in this case, we find
x = —&(6p)? + 82p.
So far, computation has been done under smoothness assumptions. A usual density argu-
ment yields the following theorem:

Theorem 3.3 (Hadamard’s second variational formula) Let 2 C R" be a Lipschitz do-
main and T;(x) be a W class domain perturbation on Q. Then, the second variation 82G(w,y)
of the Green function G(w,y) of Laplacian on 1 is written by

520(1'99) = <>('£§_'/'G(xs ‘)a g_VG("y)>BQ -2 (V&G(.ZI, )5V5G(ay))9 s

(6 2 ) n—1
(65) , 6p:=S-v, K:= Ki,

1

X == &(8p)* = (S V)dp +

1



where {si}?:_ll 1s an orthonormal basis of the tangent space of OS2 and k; is the curvature of O

along s;. In particular, if the perturbation satisfiesS-s; =0,i=1,--- ,n—1, we have
2 2 ~ 2, 0 9 N Y
(3.15)  °G(z,y) =( (6°p — &(p)") 75=G(2,), 5=G(y) ) —2(VIG(x,),VIG(,y))q-

Remark: Garabedian and Schiffer (2] dealt with domain perturbation such as
Ti(x) =z + th(z)v(z), t >0,

~ where h(2z) is a scalar function defined on 8. In this case, Hadamard’s second variational
formula is (3.15) with dp = h and 6%p(x) = 0 which is exactly same to Garabedian-Schiffer’s
formula [2]. Therefore, Theorem 3.3 is an extension of Garabedian-Schiffer’s formula.
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