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1 Introduction and summary

Before considering our problems, we review the Sum-the-Multiplicative-
Odds Theorem and the secretary problem briefly. Let $n$ be a given
positive integer, and suppose that $n$ independent Bernoulli trials are
performed one at a time, each of which results in a success or a failure.
That is, if we let $X_{j}$ equal 1 if the $jth$ trial is a success and $0$ if it is a
failure, then $X_{1},$ $X_{2},$

$\ldots,$
$X_{n}$ are independent Bernoulli random variables

that are observed sequentially. When we seek an optimal stopping rule
of this sequential observation problem with the objective of maximizing
the probability of stopping on any of the last $m$ successes for a prede-
termined $m$ (we assume $n>m$ , because, for $n\leq m$ , the optimal rule
evidently stops on the first success), the following theorem gives a solu-
tion if we let $a_{j}=P\{X_{j}=1\},$ $b_{j}=1-a_{j}$ and $r_{j}=a_{j}/b_{j}$ , and define,
for $j\geq 1$ and $k\geq 0$ ,

$R_{k,i,j}= \sum_{k<t_{1}<t_{2}<\cdot<t_{j}\leq i}..r_{t_{1}}r_{t_{2}}\cdots r_{t_{j}}$
(1)

for $k+j\leq i\leq n$ and $R_{k,i,j}=0$ for $k+j>i$ .

Sum-the-Multiplicative-Odds Theorem (abbreviated to STMOT).

For the problem of maximizing the probability of stopping on any of the
last $m$ successes in $n$ independent Bemoulli trials, the optimal rule stops
on the first success $X_{k}=1$ with $k\geq s_{m}(n)$ , if any, where

$s_{m}(n)= \min\{k\geq 1:R_{k,r\iota,m}\leq 1\}$ . (2)
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Moreover, the maximal probability of
$\cdot$

win ($i.e$ . achieving the objectivc)
$is$

$u_{m}(n)=( \prod_{j=s_{m}(n)}^{n}b_{j})(\sum_{j=1}^{m}R_{s_{m}(n)-1,n,j})$ . (3)

See Tamaki (2010) for the STMOT. When $m=1$ , the STMOT is
referred to as the Sum-the-Odds Theorem, which was obtained by Bruss
(2000) and extended into several directions by Ferguson (2008) later.
See also Hill and Krengel (1992), Hsiau and Yang (2002), Bruss and
Paindaveine (2000), and Bruss and Louchard (2009) for related works.

An interesting application of the STMOT appears in the secretary
problem described as follows: A known number $n$ of rankable applicants
(1 being the best and $n$ the worst) appear one at a time in random order
with all $n!$ permutations equally likely. That is, each of the successive
ranks of $n$ applicants constitutes a random permutation. Suppose that
all that can be observed are the relative ranks of the applicants as they
appear. If $Y_{j}$ denotes the relative rank of the $jth$ applicant among
the first $j$ applicants, the sequentially observed random variables are
$Y_{1},$ $Y_{2},$

$\ldots,$
$Y_{n}$ . It is well known that

(a) $Y_{1},$ $Y_{2},$
$\ldots,$

$Y_{n}$ are independent random variables;
(b) $P\{Y_{j}=i\}=1/j,$ $1\leq i\leq j,$ $1\leq j\leq n$ .

The $jth$ applicant is called a candidate if he$/she$ is relatively best, i.e.
$Y_{j}=1$ . If the objective is to stop on any of the last $m$ successes, that
is, any of the last $m$ candidates (stopping is identified with selection of
an applicant in the secretary problem), independent Bernoulli random
variables $X_{1},$ $X_{2},$

$\ldots,$
$X_{n}$ are specified by $X_{j}=I(Y_{j}=1)$ , where $I(E)$ is

the indicator function of an event $E$ , so the STMOT gives the solution
$s_{m}(n)$ and $u_{m}(n)$ corresponding to $a_{j}=1/j$ . In particular, as $n$ tends
to infinity, we have

$s_{m}^{*}$ $=$ $\lim_{narrow\infty}\frac{s_{m}(n)}{n}=\exp\{-(m!)^{1/m}\}$ (4)

and

$u_{m}^{*}$ $=$ $\lim_{narrow\infty}u_{m}(n)=\exp\{-(m!)^{1/m}\}\sum_{j=1}^{m}\frac{(m!)^{j/m}}{j!}$ . (5)
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See Lemma 3.2 and Table 1 of Tarnaki (2010) for (4), (5) and their
numerical values. The secretary problem with $m=1$ , referred to as the
best-choice problem (because the last candidate is best overall), gives
the well known result $s_{1}^{*}=u_{1}^{*}=e^{-1}$ . The reader is referred to Ferguson
(1989) and Samuels (1991) for reviews of the secretary problem.

In Section 2, the STMOT is extended to allow for a random horizon of
length $N$ . That is, $N$ represents the random number of Bernoulli trials
to be performed, and is assumed to be a bounded random variable that
is also independent of Bernoulli trials. A prior distribution will be given
for $N$ . A stopping rule is said to be threshold if it only stops on the
first success appearing after a given stage. In particular, the optimal
rule, as descrbed in the STMOT, is said to be a threshold rule with
value $s_{m}(n)$ . It is known that, for a random $N$ , the optimal rule is not
necessarily threshold (see, e.g. Section 3 of Petruccelli (1983)). Hence
our main concern in Section 2 is to give a simple sufficient condition for
the optimal rule to be threshold.

An application of this condition again appears in the secretary problem
$(i.e. a_{j}=1/j)$ with a random number $N$ of applicants. In particular,
for the problem with $N$ uniform on $\{$ 1, 2, $\ldots,$

$n\}$ , the optimal rule will
be shown to be threshold with value $t_{m}(n)$ having the limiting property

$t_{m}^{*}$ $=$ $\lim_{narrow\infty}\frac{t_{m}(n)}{n}=\exp\{-[(m+1)!]^{1/m}\}$ . (6)

The corresponding probability of win $v_{m}(n)$ also has the limit

$v_{m}^{*}$ $=$ $\lim_{narrow\infty}v_{m}(n)=\exp\{-[(m+1)!]^{1/m}\}\sum_{j=1}^{m}\frac{[(m+1)!]^{(j+1)/m}}{(j+1)!}.(7)$

See Lemma 3.1 and Table 1 in Section 3 for (6), (7) and their nurnerical
values. We see $t_{1}^{*}=e^{-2}$ and $v_{1}^{*}=2e^{-2}$ , which coincides with the
result derived by Presman and Sonin (1972) who is the first to study the
best-choice problem with a random number of applicants. See also Irle
(1980) and Petruccelli (1983). It may be interestng to compare $(t_{m}^{*}, v_{m}^{*})$

to $(s_{m}^{*}, u_{m}^{*})$ as two extremes. A generalized uniform prior that can be a
bridge between $(s_{m}^{*}, u_{m}^{*})$ and $(t_{m}^{*}, v_{m}^{*})$ will be also discussed. In addition
to the uniform prior, a curtailed geometric prior is also examined in
detail. See also Samuel-Cahn (1995) for a best-choice problem with
random freeze.
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2 Bernoulli trials with random horizon
For ease of description, let, for a given prior $\{p_{k}, 1\leq k\leq n\}$ ,

$\pi_{k}=P\{N\geq k\}=p_{k}+p_{k+1}+\cdots+p_{n}$ , $1\leq k\leq n$

with $\pi_{1}=1$ and $\pi_{n}>0$ ( $\pi_{0}$ is interpreted as 1 if it appears). Write
$b_{i}=1-a_{i}$ and $r_{i}=a_{i}/b_{i}$ as before, and let

$B_{k,i}=b_{k+1}b_{k+2}\cdots b_{i}$ , $0\leq k<i\leq n$

with $B_{k,k}=1$ for convenience. The proofs will be omitted due to space
restriction.

Lemma 2.2. Whatever the distrlbution of $N$ might be, the first time
the optimal rule will stop on a success occurs no later than the $s_{m}(n)th$

trial, where $s_{m}(n)$ is as defined by (2) in the STMOT. Moreover, the op-
timal rule stops on the first success among trials $s_{m}(n),$ $s_{m}(n)+1,$

$\ldots,$
$n$

if stopping has not occurred previously.

Theorem 2.3. Let

$Q_{j}(k)= \sum_{i=k+j}^{n}(B_{k,i}R_{k,i,j})\frac{p_{i}}{\pi_{k}}$ , $k+j\leq n$

with $Q_{j}(k)=0,$ $k+j>n$ , and

$t_{m}(n)$ $=$ $\min\{j:Q_{0}(k)-Q_{m}(k)\geq 0$ for all $j\leq k\leq n-m\}$

with $\min\{\phi\}=n-m+1$ . Then a necessary and sufficient condition
for the optimal rule to be threshold with value $t_{m}(n)$ is that, for all
$1\leq k<t_{m}(n)-1$ (if such $k$ exists),

$\pi_{k}\sum_{j=0}^{m-1}Q_{j}(k)<\pi_{t_{m}(n)-1}\sum_{j=1}^{m}Q_{j}(t_{m}(n)-1)$ .

Let

$G(k)=p_{k}-r_{k+1} \sum_{i=k+m}^{n}B_{k,i}R_{k+1,i,m-1}p_{i}$ .

Then
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Theorem 2.6. A sufficient condition $fo\tau$
. the optimal rule to be thrcsh-

old is that $G(k)$ changes its sign $from-to+at$ most once before $s_{m}(n)$ ,
$tf\iota at$ is,

once $G(k)\geq 0$ for some $k$ , then $G(j)\geq 0$ for all $k\leq j<s_{m}(n)$ .

For the purposes of rnost applications to the secretary problem, the
following corollary is useful.

Corollary 2.7. For the secretary problem with $p_{k}>0$ for all $1\leq k\leq$

$n$ , a sufficient condition for the optimal rule to be threshold is that

$p_{k+j}/p_{k}$ is non–increasing in $k(<s_{m}(n))$

for each possible value of $j$ .

The optimal rules for the following examples are threshold.

Example 1. Let $N$ take only on the value greater than $s_{m}(n)-1$ ,

i.e. $p_{1}=p_{2}=\cdots=p_{s_{m}(n)-1}=0$ .

Example 2 (secretary problem with fixed population size).

Example 3 (uniform prior). Let $N$ be a uniform random variable on
$\{$ 1, 2, $\ldots,$

$n\}$ , i.e. $p_{k}=1/n,$ $1\leq k\leq n$ . Then $p_{k+j}/p_{k}=1$ .

Example 4 (geometric prior). Let $N$ be a curtailed geometric random
variable, i.e. $p_{k}=(1-q)q^{k-1}/(1-q^{n}),$ $1\leq k\leq n$ for a given parameter

$0<q<1$ .

Example 5 (Poisson prior). Let $N$ be a curtailed Poisson random
variable, i.e. $p_{k}=e^{-\lambda} \frac{\lambda^{k}}{k!}/\sum_{j=1}^{n}e^{-\lambda}\frac{\lambda^{j}}{j!},$ $1\leq k\leq n$ for a given parameter
$0<\lambda$ .

Example 6 (binomial prior). Let $N$ be a curtailed binomial random
variable, i.e. $p_{k}=(\begin{array}{l}nk\end{array})p^{k}(1-p)^{n-k}/(1-(1-p)^{n}),$ $1\leq k\leq n$ for a given
parameter $0<p<1$ .

Example 7 (generalized uniform prior). Let $N$ be a uniform random
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variable on $\{T, T+1, \ldots, n\}$ for a given parameter $T=1,2,$ $\ldots,$
$n$ , i.e.

$p_{k}=\{$ $\frac{0,1}{n-T+1}$

, if $T\leq k\leq n$ .
if $1\leq k\leq T-1$

3 Asymptotic results for the secretary problem

Lemma 3.1.(Uniform distribution.) Let $n$ tend to $\infty$ for a uniform
prior given in Example 3. Then, we have (6) and (7) asymptotically.

Lemma 3.2.(Geometric distribution.) Let $q$ depend on $n$ through $q=$

$1-c/n$ for a fixed positive value $c(<n)$ and define $t_{m,c}= \lim_{narrow\infty}t_{m}(n)/n$ .

Then $t_{m,c}$ is a unique root $z$ of the equation

$\int_{1}^{1/z}\frac{e^{-czx}}{x}[1-\frac{(\log x)^{m}}{m!}]dx=0$ .

Moreover, as $narrow\infty$ , the optimal probability tends to

$v_{m,c}= \frac{ct}{1-e^{-c}}\int_{1}^{1/t}\frac{e^{-ctx}}{x}[\sum_{j=1}^{m}\frac{(\log x)^{j}}{j!}]dx$ ,

where $t=t_{m,c}$ . See Table 2 for some values of $t_{m,c}$ and $v_{m,c}$ .

Lemma 3.3.(Generalized uniform distribution.) Let $t_{m,\alpha}$ denote the
optimal threshold value and $v_{m,\alpha}$ the optimal probability $(t_{m,0}$ and $v_{m,0}$

are already given as $t_{m}^{*}$ in (6) and $v_{m}^{*}$ in (7) respectively). Two cases
are distinguished according to $\alpha\leq t_{m}^{*}$ or $\alpha>t_{m}^{*}$ .

Case (i); $0\leq\alpha\leq t_{m}^{*}$

$t_{m,\alpha}$ $=$ $t_{m}^{*}$ ,

$v_{m,\alpha}$ $=$ $\frac{v_{m}^{*}}{1-\alpha}$ .

Case (ii): $t_{m}^{*}<\alpha<1$

$t_{m,\alpha}$ is a unique root $z\in(0, \alpha)$ of the equation

$\{\log(1/z)\}^{m+1}-\{\log(\alpha/z)\}^{m+1}=(m+1)!\log(1/\alpha)$

or, equivalently,

$\sum_{j=0}^{m}\frac{(\log\alpha)^{j}(-\log z)^{m-j}}{(j+1)!(m-j)!}=1$ .
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Moreover,

$v_{m,\alpha}= \frac{t_{m,\alpha}}{1-\alpha}\sum_{j=1}^{m}\frac{\{\log(1/t_{m,\alpha})\}^{j}-\{\log(\alpha/t_{m,\alpha})\}^{j}}{j!}$ .

In particular,

$\lim_{\alphaarrow 1}t_{m,\alpha}$
$=$ $s_{m}^{*}$ ,

$\lim_{\alphaarrow 1}v_{m,\alpha}$
$=$ $u_{m}^{*}$ ,

where $s_{m}^{*}$ and $u_{m}^{*}$ are as given in (4) and (5) respectively.
For $m=1$ and $m=2$ , we can give explicit expressions for $t_{m,\alpha}$ and
$v_{m,\alpha}$ .

Table 1
Values of $t_{m}^{*}$ and $v_{m}^{*}$ for several $m$

$m$ 1 2 3 4 5 10
$t_{m}^{*}$ 0.1353 0.0863 0.0559 0.0365 0.0240 0.0032

$v_{m}^{*}$ 0.2707 0.4705 0.6172 0.7243 0.8020 0.9635

Table 2
Values of $t_{m,c}$ (upper) and $v_{m,c}$ (lower) for several pairs of $(m, c)$

$c$ 12
$0$ 0.1353 0.0863

0.2707 0.4705

$m$

3 4 5
0.0559 0.0365 0.0240
0.6172 0.7243 0.8020

0.1 0.1317 0.0840
0.2689 0.4681

0.0543 0.0355 0.0234
0.6149 0.7222 0.8004

1 0.1008 0.0643
0.2546 0.4494

0.0416 0.0272 0.0179
0.5964 0.7059 0.7867

5 0.0346 0.0225
0.2337 0.4209

0.0148 0.0098 0.0065
0.5671 0.6792 0.7641

10 0.0174 0.0113
0.2329 0.4196

0.0075 0.0049 0.0033
0.5656 0.6778 0.7628

50 0.0035 0.0023
0.2329 0.4196

0.0015 0.0010 0.0007
0.5656 0.6778 0.7628
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