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Abstract In this paper, we consider a cash management model in which two types of funds are available

for a manager to adjust cash level. We assume that the rate of utilizing the two funds for the amount

of adjustment is constant. The objective of the paper is to find an optimal policy so as to minimize the

expected discounted costs over an infinite horizon. We formulate this cash balance management problem

as an impulse control problem and then derive an optimal cash management policy. Moreover, we obtain

explicit policy parameters when there is no discount rate, and discuss the properties of the optimal policy.

1. Introduction

The financial manager can increase or decrease the amount of cash by selling or buying short-

term securities. A transfer cost is incurred when changing the cash level. When the manager

does not make any changes in the cash level, there are costs involved in holding stock or in being

understocked. One cash management problem is to find an optimal level of the cash balance in

order to minimize the expected total of these costs.

In this paper, we deal with a cash management model in which two types of funds with different

transaction costs are available whenever the manager adjusts the cash balance level. The first paper

which deals with this type of problem seems to be Daellenbach [4]. He formulated this model by

using a dynamic programming formulation in discrete time. Perhaps the paper which is closest to

ours in terms of the structure of cost function is Elton and Gruber [5]. However, the existence of

an optimal policy remains unproved in their paper. Sato and Sawaki [7] reformulated this problem

in continuous time as an extension of Constantinides and Richard [3] and show that there exists an

optimal policy for the cash management problem over an infinite-horizon by using impulse control.

The policy is described as band policy when the rate of utilizing the two funds for the amount of

adjustment is constatnt. However, the effect of the rate of utilizing the two funds to the policy

parameters has not been shown in their paper. Therefore, in this paper, we find explicit policy

parameters when there is no discount rate, and discuss the properties of the optimal policy.
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2. The Analysis of the Model

In this section, we introduce terminologies and notations and then present the problem formulation.

Let $(\Omega$ ,Pt, $P)$ be a complete probability space equipped with a filtration $\ovalbox{\tt\small REJECT}_{t}$ satisfying the usual

information structure, and $w_{t}$ a Brownian motion. Consider a manager who is in charge of the

cash management of the company. $He/$she wishes to control the stochastic cash level $X_{t}$ . The cash

level at time $t$ is given by

$\{\begin{array}{l}dX_{t}=\mu dt+\sigma dw_{t}X_{0}=x\end{array}$ (2.1)

where $x$ is the initial cash level. $X_{t}$ is a Brownian motion with drift $\mu$ and a diffusion parameter

$\sigma>0$ . The manager can change this cash level by using two sources of funds at any time. Suppose

that the sources of funds are short-term borrowing and marketable securities. Let $B_{t}$ be the

amount of short-term debt outstanding at time $t$ .

A policy $v\in\gamma/$ consists of the two sequences $\{(\tau_{i}, \xi_{i}), i=0,1,2, \cdots\}$ of timing for making

changes in cash levels $\{\tau 0, \tau_{1}, \cdots\}$ and the size of control $\{\xi_{0}, \xi_{1}, --\}$ such that

$\{\begin{array}{l}0\leq\tau_{i}<\tau_{i+1}, i=0,1,2, \cdots\tau_{i} is an ith stopping time with respect to the filtration \mathscr{P}_{\tau_{i}}=\sigma\{X_{\overline{s}}, s\leq\tau_{i}\},\xi_{i} is \ovalbox{\tt\small REJECT}_{\tau_{i}}- measurable.\end{array}$ (2.2)

When the cash level changes from $x$ to $x+\xi$ , we suppose that the rate of utilizing the two

funds for the amount of adjustment $\xi$ is $\theta(0\leq\theta\leq 1)$ , that is, the amount of borrowing is $\theta\xi$ , and

the amount of securities is $(1-\theta)\xi$ .

Given an impulse control $v=\{(\tau_{i}, \xi_{i}), i=0,1,2, \cdots\}$ , the state of the system is defined as

$\{\begin{array}{l}dX_{t}^{v}=\mu dt+\sigma dw_{t}, \tau_{i}<t<\tau_{i+1}, i\geq 0,X_{\tau_{i}}^{v}=X_{\tau_{i}^{-}}^{v}+\xi_{i}, i\geq 1,dB_{t}^{v}=0,B_{\tau_{i}}^{v}=B_{\tau_{i-1}}^{v}+\theta\xi_{i}, i\geq 1,X_{0}^{v}=x, B_{0}^{v}=b.\end{array}$ (2.3)

If $\theta|\xi_{i}|>B_{t}^{v}$ at the time of paying out the debts $(\xi_{i}<0)$ , then we assume that the amount of

difference $\theta|\xi|-B_{t}^{v}$ is used to buy securities. When the cash level changes from $x$ to $x+\xi$ , the
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transition costs occurs as follows;

$F(\xi_{i})=\{\begin{array}{ll}K_{B}^{u}+k_{B}^{u}\theta\xi_{i} if \xi_{i}\geq 0 (Debt finance)K_{B}^{d}+k_{B}^{d}\theta|\xi_{i}| if \xi_{i}<0 (Debt extinguishment)K_{S}^{u}+k_{S}^{u}(1-\theta)\xi_{i} if \xi_{i}\geq 0 (Selling the security)K_{S}^{d}+k_{S}^{d}(1-\theta)|\xi_{i}| if \xi_{i}<0 (Buying the security)\end{array}$ (2.4)

where $K$ and $k$ are fixed cost and variable cost, respectively, the subscripts $B$ and $S$ indicate

borrowings and securities, and the superscripts $u(d)$ represents an increase (decrease) in the cash

level. Furthermore, $F(\xi)$ can be rewritten as follows;

$F(\xi_{i})=\{\begin{array}{ll}K_{1}+k_{1}(\theta)\xi_{i}, if \xi_{i}\geq 0,K_{2}+k_{2}(\theta)|\xi_{i}|, if \xi_{i}<0,\end{array}$ (2.5)

where $K_{1}=K_{B}^{u}+K_{S}^{u},$ $K_{2}=K_{B}^{d}+K_{S}^{d},$ $k_{1}(\theta)=k_{S}^{u}+(k_{B}^{u}-k_{S}^{u})\theta$ and $k_{2}(\theta)=k_{S}^{d}+(k_{B}^{d}-k_{S}^{d})\theta$ .

We assume that the holding and penalty cost rates are

$C(B_{\tau_{i}}^{v}, X_{t}^{v})=\{\begin{array}{ll}-pX_{t}^{v}, if X_{t}^{v}\leq 0,h_{1}X_{t}^{v}, if 0<X_{t}^{v}\leq B_{\tau_{i}}^{v},h_{1}B_{\tau_{i}}^{v}+h_{2}(X_{t}^{v}-B_{\tau_{i}}), if B_{\tau_{i}}^{v}<X_{t}^{v},\end{array}$ (2.6)

where $p$ is the penalty cost, $h_{1}$ is the interest rate on short-term debt, and $h_{2}$ is the opportunity

cost without marketable securities instead of cash. We also assume that the opportunity cost $h_{2}$

is less than the interest rate $h_{1},$ $h_{1}>h_{2}$ , since there are some costs based upon risks of securities.

Here, if the following conditions hold, then an impulse control $v$ is called admissible;

$E_{x}[ \int_{0}^{\infty}e^{-\alpha s}C(B_{s}^{v}, X_{s}^{v}))ds]<\infty$, (2.7)

$P( \lim_{iarrow\infty}\tau_{i}\leq T)=0,$
$\forall T\geq 0$ , (2.8)

$\lim_{Tarrow\infty}E_{x}[e^{-\alpha T}X_{T}]=0$ . (2.9)

Assumption 2.1. We assume that the pammeters must satisfy the following inequalities;

$(a) \max\{k_{B}^{u}, k_{S}^{u}\}\leq R_{--\frac{h_{1}-h_{2}}{\alpha}}\alpha$

$(b) \max\{k_{B}^{d}, k_{S}^{d}\}\leq-h_{2}\alpha$

where $\alpha$ is a discount rate, $0<\alpha<1$ .
$\mathscr{Q}\alpha$ is the present value of the penalty cost of keeping one unit of cash from now to infinity.

$\frac{h_{1}-h_{2}}{\alpha}$ is the present cost by borrowing from a bank instead of selling securities. Similarly, $\frac{h_{2}}{\alpha}$ is

the present value of the holding cost of one unit of cash in debt and security from now to infinity.
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We define the total discounted expected cost function for a given policy $v$ as follows;

$J_{b,x}(v) \equiv E_{x}^{v}[\int_{0}^{\infty}e^{-\alpha s}C(B_{s}^{v}, X_{s}^{v})ds+\sum_{i=1}^{\infty}e^{-\alpha s}F(\xi_{i})|X_{0}^{v}=x,$ $B_{0}^{v}=b]$ . (2.10)

Then, the value function is defined as follows;

$\Phi(b, x)=\inf_{v\in\gamma},$
$J_{b,x}(v)$ . (211)

We consider the QVI (Quasi-Variational Inequality) problem to show the existence of an optimal

policy that achieves the infimum in equation (2.11) and to obtain a closed-form solution of the value

function. In order to derive a QVI, we follow the same approach as Baccarin [1] and Constantinides

and Richard [3].

If the manager needs a volume of transaction $\xi$ at time $t$ , then the cash level jumps from $x$ to

$x+\xi$ , and the amount of short-term debt outstanding jumps from $b$ to $b+\xi$ . The total cost caused

by this transaction is given as

$\inf_{\xi}\{F(\xi)+\Phi(b+\theta\xi, x+\xi)\}$ . (2.12)

On the other hand, if the manager does not transact cash in the small interval, then the amount

of short-term debt outstanding $B_{t}$ does not change. Hence, the cost structure is similar to Con-

stantinides and Richard [3]. Here, we define two operators, $L$ and $M$ , as follows;

$L\phi(b, x)$ $=$ $\alpha\phi(b, x)-\mu\phi’(b, x)-\frac{1}{2}\sigma^{2}\phi’’(b, x)$ (2.13)

$M\phi(b, x)$ $=$ $\inf_{\xi}\{F(\xi)+\phi(b+\theta\xi, x+\xi)\}$ (2.14)

where $\phi’(b, x)=\frac{\partial\phi(b,x)}{\partial x}$ and $\phi’’(b, x)=\frac{\partial^{2}\phi(b,x)}{\partial x^{2}}$ . Then, the following relations are called QVI for

the problem (2.11);

$L\phi-C\leq 0$ (2.15)

$\phi\leq M\phi$ (2.16)

$(L\phi-C)(\phi-M\phi)=0$ (2.17)

The following theorem is given by Korn [6]. It guarantees that the solution of QVI is equal to the

value function given by equation (2.11).

Theorem 2.1. If there exists a solution $\phi\in C^{2}$ that satisfies the growth conditions

$E_{x}^{v}[ \int_{0}^{\infty}(e^{-\alpha s}\sigma(X_{s})\phi’(B_{s}, X_{s}))^{2}ds]<\infty$, (2.18)

$\lim_{Tarrow\infty}E[e^{-rT}\phi(B_{T}, X_{T})]=0$ , (2.19)
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for every process $X_{t}$ corresponding to an admissible impulse control $v$ , then we have

$\Phi(b, x)\geq\phi(b, x)$ (2.20)

for every $x\in \mathbb{R}$ . Moreover, if the QVI-control corresponding to $\phi$ , that is, the impulse contml $v$

satisfying

(i) $(\tau_{0}, \xi_{0})=(0,0)$

(ii) $\tau_{i}:=\inf\{t\geq\tau_{i-1}:\phi(B_{\tau_{i-1}}, X_{t^{-}})=M\phi(B_{\tau_{i-1}}, X_{t^{-}})\}$

(iii) $\xi_{i}$

$:= \arg\min_{\xi}E[F(\xi)+\phi(B_{\tau_{i-1}}+\xi, X_{\tau_{i}^{-}}+\xi)]$

is admissible, then $v$ attaining $\Phi(b, x)$ is an optimal impulse control, and for every $x\in \mathbb{R}$

$\Phi(b, x)=\phi(b, x)$ . (2.21)

3. Existence of Optimal Cash Management Policy

In this section, we derive a solution for the QVI problem under the assumption that the value

function is continuous and twice differentiable. After we guess an optimal policy of the band type,

we show that the optimal policy satisfies the hypothesis of Theorem 2.1.
Let $p$ $:=(d_{b}, D_{b}, U_{b}, u_{b})$ be the parameters of a control band policy satisfying $d_{b}<D_{b}<U_{b}<$

$u_{b}$ . Then, we suppose that the continuation region has the form of

$\mathcal{D}\equiv\{(b, x):d_{b}<x<u_{b}\}$ . (3.1)

All of the parameters are expressed as a function of the amount of short-term debt outstanding
$B_{t}$ because the holding and penalty cost $C$ depends on $B_{t}$ . Recalling the fact that the changing of
$B_{t}$ is exclusive to the transaction time, these parameters are constant in the continuation region.

In this model, the policy procedure is as follows. First, we determine the values $p$ based on
initial value $b$ of the cycle. If the cash level reaches either $d_{b}$ or $u_{b}$ , then we increase the cash level

up to $D_{b}$ or decrease down to $U_{b}$ . And then, $B_{t}$ changes from $b$ to $b+\theta(D_{b}-x)$ or $b-\theta(x-U_{b})$ .

In $\mathcal{D}$ , inequality (2.15) holds as an equality, that is,

$C(b, x)- \alpha\phi(b, x)+\mu\phi’(b, x)+\frac{1}{2}\sigma^{2}\phi’’(b, x)=0$ , (3.2)

which has a general solution

$\phi(b, x)=\{\begin{array}{l}c_{1}e^{\lambda_{1}x}+c_{2}e^{\lambda_{2}x}+-h_{2_{X}}\alpha+\frac{(h_{1}-h_{2})b}{\alpha}+-\alpha*h_{2}, for b\leq \text{記} <u\text{わ，}c_{3}e^{\lambda_{1}x}+c_{4}e^{\lambda_{2}x}+-h\perp x\alpha+\overline{\alpha}\mu_{T1}h, for 0\leq x\leq\min\{b, u \text{わ} \},c_{5}e^{\lambda_{1}x}+c_{6}e^{\lambda_{2}x}-\frac{p}{\alpha}x_{\overline{\alpha}}^{\mu}-\tau P, for d_{b}<x\leq 0,\end{array}$ (3.3)
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where $c_{1},$ $c_{2},$ $c_{3},$ $c_{4},$ $c_{5}$ and $c_{6}$ are arbitrary constants, and parameter $\lambda_{1}$ and $\lambda_{2}$ are defined as

$\lambda_{1}=-\frac{\mu}{\sigma^{2}}+\frac{1}{\sigma^{2}}\sqrt{\mu^{2}+2\alpha\sigma^{2}}$, $\lambda_{2}=-\frac{\mu}{\sigma^{2}}-\frac{1}{\sigma^{2}}\sqrt{\mu^{2}+2\alpha\sigma^{2}}$. (3.4)

Here, the matching conditions at the points $0$ and $b$ imply that $\phi(b, 0^{+})=\phi(b, 0^{-}),$ $\phi’(b, 0^{+})=$

$\phi’(b, 0^{-}),$ $\phi(b, b^{+})=\phi(b, b^{-})$ and $\phi’(b, b^{+})=\phi’(b, b^{-})$ give

$c_{3}$ $=$ $c_{1}+ \frac{\lambda_{2}(h_{1}-h_{2})}{\alpha\lambda_{1}(\lambda_{1}-\lambda_{2})}e^{-\lambda_{1}b}$ , (3.5)

$c_{4}$ $=$ $c_{2}+ \frac{\lambda_{1}(h_{2}-h_{1})}{\alpha\lambda_{2}(\lambda_{1}-\lambda_{2})}e^{-\lambda_{2}b}$ , (3.6)

$c_{5}$ $=$ $c_{1}+ \frac{\lambda_{2}(h_{1}-h_{2})}{\alpha\lambda_{1}(\lambda_{1}-\lambda_{2})}e^{-\lambda_{1}b}-\frac{\lambda_{2}(h_{1}+p)}{\alpha\lambda_{1}(\lambda_{1}-\lambda_{2})}$ , (3.7)

$c_{6}$ $=$ $c_{2}+ \frac{\lambda_{1}(h_{2}-h_{1})}{\alpha\lambda_{2}(\lambda_{1}-\lambda_{2})}e^{-\lambda_{2}b}+\frac{\lambda_{1}(h_{1}+p)}{\alpha\lambda_{2}(\lambda_{1}-\lambda_{2})}$ . (3.8)

Thus, the arbitrary constants are reduced to $c_{1}$ and $c_{2}$ .

For $x\leq d_{b}$ and $x\geq u_{b}$ , the cash level is changed, and the inequality (2.16) holds as an equality.

Then, the form of cost function $\phi$ is given by

$\phi(b, x)=\{\begin{array}{ll}\phi(b+\theta(D_{b}-x), D_{b})+K_{1}+k_{1}(\theta)(D_{b}-x), if x\leq d_{b},\phi(b-\theta(x-U_{b}), U_{b})+K_{2}+k_{2}(\theta)(x-U_{b}), if x\geq u_{b}.\end{array}$ (3.9)

The following results are the existence of parameters $p$ and an optimal policy of the problem

(2.10) (Sato and Sawaki [7]).

Theorem 3.1. Assume that Assumption 2.1 holds. If $c_{1}<0,$ $c_{2}>0$ and $b< \frac{1}{\lambda_{2}}\log(\frac{h-h}{h_{1}+p})$ , then

there exist pammeters $d_{b},$ $D_{b},$ $U_{b},$ $u_{b},$ $d_{b}\leq D_{b}\leq U_{b}\leq u_{b}$ , which satisfy conditions $(Vl)-(S4)$ .

Theorem 3.2. Suppose that Assumption 2.1 holds and there exist pammeters $p,$ $c_{1}<0,$ $c_{2}>0$ ,

$b< \frac{1}{\lambda_{2}}\log(_{h_{1}\vec{+p}}^{h-h}\lrcorner)$ and a continuous function $\phi$ which satisfy equations (3.3) and (3.9). If the

cash level is always greater than or equal to $\underline{x}<0$ and

$1 \leq\theta(1-\theta)\frac{(\lambda_{1}-\theta\lambda_{2})e^{-\lambda_{2}(b-D_{b}+\theta(D_{b}-d_{b}))}-(\lambda_{2}-\theta\lambda_{1})e^{-\lambda_{1}(b-D_{b}+\theta(D_{b}-d_{b}))}}{\lambda_{1}-\lambda_{2}}$ (3.10)

for $D_{b}-\theta(D_{b}-d_{b})\leq b$ , then there exists an optimal policy for the cash management problem

(2.11).

4. Limit Case of a Zero Discount Rate

In this section, we deal with the undiscounted case, $\alpha=0$ , to find the policy parameters explicitly.

We consider the value function as the long-term average costs in order to ensure that the value

function is always finite. The value function is represented by

$\Phi(b, x)=\inf_{v\in Y}\lim_{Tarrow\infty}T^{-1}E_{x}^{v}[\int_{0}^{T}C(B_{s}^{v}, X_{s}^{v})ds+\sum_{i=1}^{T}F(\xi_{i})|X_{0}^{v}=x,$ $B_{0}^{v}=b]$ . (4.1)
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As discussed in Constantinides [2], the function $\Phi$ satisfies the following differential equation in

$x\in(d, u)$ :

$C(b, x)- \gamma_{v}+\mu\phi’(b, x)+\frac{1}{2}\sigma^{2}\phi’’(b, x)=0$ (4.2)

where $\gamma_{v}$ is the average cost rate and is given by

$\gamma_{v}=\lim_{Tarrow\infty}T^{-1}E_{x}^{v}[\int_{0}^{T}C(B_{s}^{v}, X_{s}^{v})ds+\sum_{i=1}^{N}F(\xi_{i})|X_{0}^{v}=x,$$B_{0}^{v}=b]$ . (4.3)

In above equation, $N$ is the index of the last stopping time in interval $[0,T]$ . We assume that there

are no drift in the demand for cash, $\mu=0$ , and fixed costs, $K_{B}^{u}=K_{B}^{d}=K_{S}^{u}=K_{S}^{d}=0$. We also

assume that $D_{b}<0$ and $U_{b}>0$ . Then, the solution to equation (4.2) is given by

$\phi(b, x)=\{\begin{array}{ll}\overline{\sigma}^{7}1(\gamma_{v}x^{2}+\frac{p}{3}x^{3})+c_{1}x+c_{2} if d_{b}\leq x\leq 0,\frac{1}{\sigma}F(h+c_{1}x+c_{2} if 0\leq x\leq\min\{b, u_{b}\},\overline{\sigma}1?\{(\gamma_{v}-(h_{1}-h_{2})b)x^{2}-\frac{1}{3}h_{2}x^{3}\}+c_{1}x+c_{2} if 0\leq b\leq x\leq u_{b}.\end{array}$ (4.4)

Let $G(\xi)=F(\xi)+\phi(b+\theta\xi, \xi+d_{b})$ in equation (2.12), then $G(\xi)$ is minimized for $\xi=D_{b}-d_{b}$ .
Differentiating $G(\xi)$ with respect to $\xi$ , we obtain

$\phi’(b, D_{b})=\{\begin{array}{ll}-k_{1}(\theta)+\overline{\sigma}^{7}1\theta D_{b}(h_{1}-h_{2})(3D_{b}-2d_{b}), if b\leq D_{b}-\theta(D_{b}-d_{b}),-k_{1}(\theta)-\frac{1}{\sigma}z^{D}b(h_{1}-h_{2})(2b-D_{b}), if D_{b}-\theta(D_{b}-d_{b})\leq b\leq D_{b},-k_{1}(\theta), if D_{b}\leq b\end{array}$ (4.5)

If $x=d_{b}$ in equation (3.9), then we have

$\phi’(b, d_{b})=\{\begin{array}{ll}-k_{1}(\theta)+\overline{\sigma}^{7}1D_{b}^{2}\theta(h_{1}-h_{2}), if b\leq D_{b}-\theta(D_{b}-d_{b}),-k_{1}(\theta), if D_{b}-\theta(D_{b}-d_{b})\leq b.\end{array}$ (4.6)

By similar arguments we obtain

$\phi’(b, U_{b})=\{\begin{array}{l}k_{2}(\theta)+\frac{1}{\sigma}z^{\theta}U_{b}(h_{1}-h_{2})(3U_{b}-2u_{b}), if b\leq U_{b},k_{2}(\theta)+\frac{1}{\sigma}z^{U_{b}(h_{1}-h_{2})\{2(b-\theta(u_{b}-U_{\text{\’{o}}}))-}(1-\theta)U_{b}\},if U_{b}\leq b\leq U_{b}+\theta(u_{b}-U_{b}),k_{2}(\theta), if U_{b}+\theta(u_{b}-U_{b})\leq b.\end{array}$ (4.7)

and

$\phi’(b, u_{b})=\{\begin{array}{ll}k_{2}(\theta)+\overline{\sigma}^{T}1U_{b}^{2}\theta(h_{1}-h_{2}), if b\leq U_{b}+\theta(u_{b}-U_{b}),k_{2}(\theta), if U_{b}\cdot+\theta(u_{b}-U_{b})\leq b.\end{array}$ (4.8)
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When the cash level is changed from $x=d_{b}$ to $x=D_{b}$ , the cost function is given by equation (3.9)

as $x=d_{b}$ . Substituting equation (4.4) into equation (3.9), we have

$\phi(b, d_{b})-\phi(b, D_{b})-K_{1}-k_{1}(\theta)(D_{b}-d_{b})$

$=\{\begin{array}{ll}-\overline{\sigma}\tau^{\theta D_{b}^{2}(h_{1}-h_{2})(D_{b}-d_{b})}1, if b\leqD_{b}-\theta(D_{b}-d_{b}),\overline{\sigma}^{7}1D_{b}^{2}(h_{1}-h_{2})(b-\frac{1}{3}D_{b}), if D_{b}-\theta(D_{b}-d_{b})\leq b\leq D_{b}, (49)0, if D_{b}\leq b,\end{array}$

and by similar arguments, we obtain

$\phi(b, u_{b})-\phi(b, U_{b})-K_{2}-k_{2}(\theta)(u_{b}-U_{b})$

$=\{\begin{array}{ll}\frac{1}{\sigma}\tau^{\theta U_{b}^{2}(h_{1}-h_{2})(u_{b}-U_{b})}, if b\leq U_{b},\overline{\sigma}^{7}1U_{b}^{2}(h_{1}-h_{2})\{\frac{1}{3}U_{b}-(b-\theta(u_{b}-U_{b}))\}, if U_{b}\leq b\leq U_{b}+\theta(u_{b}-U_{b}), (4.10)0, if U_{b}+\theta(u_{b}-U_{b})\leq b.\end{array}$

Then, the parameters of optimal policy $(d_{b}, D_{b}, U_{b}, u_{b})$ and arbitrary constants $c_{1}$ and $c_{2}$ are

derived ffom equations $(4.5)-(4.10)$ . The optimal policy is classified into three classes according

to the amount of short-term debt outstanding.

Case (i): $0\leq b\leq U_{b}+\theta(u_{b}-U_{b})$

In this case, for $b< \frac{\sigma\sqrt{p(k_{1}+k_{2})}}{h_{1}-h_{2}}$ , there exists a unique policy and the parameters is given by

$u_{b}$ $=$ $- \frac{I_{2}}{I_{1}}+\frac{1}{2I_{1}}\sqrt{I_{2}^{2}-4I_{1}I_{3}}>0$, (411)

$U_{b}$ $=$ $\frac{h_{2}}{h_{2}+6\theta(h_{1}-h_{2})}u_{b}>0$ , (4.12)

$d_{b}$ $=$ $D_{b}=- \frac{h_{2}+8\theta(h_{1}-h_{2})}{2p}U_{b}-\frac{1}{p}b(h_{1}-h_{2})<0$, (4.13)

where

$I_{1}$ $=$ $2h_{2}\theta(h_{1}-h_{2})(4h_{2}+3p)(3\theta(h_{1}-h_{2})+h_{2})+h_{2}^{3}(h_{2}+p)>0$ ,

$I_{2}$ $=$ $2bh_{2}(h_{1}-h_{2}) \frac{h_{2}+4\theta(h_{1}-h_{2})}{h_{2}+6\theta(h_{1}-h_{2})}>0$ ,

$I_{3}$ $=$ $(h_{1}-h_{2})^{2}b^{2}-p\sigma^{2}(k_{1}+k_{2})$ .

Increasing the variation of demand $\sigma$ , both $u_{b}$ and $U_{b}$ increase but $d_{b}=D_{b}$ decrease. From equation

(4.12), as the rate of utilizing the two funds $\theta$ increases, the amount of the transaction $u_{b}-U_{b}$

increases. Since the increase of $\theta$ leads to the increase of the amount of paying out the debts and

the interest rate is larger than the opportunity cost, $h_{1}>h_{2}$ , the cash level is dropped to a lower

level by decreasing the amount of debt outstanding. Moreover, by putting equation (4.12) into
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equation (4.13), we see that $u_{b}-D_{b}$ increases in $\theta$ . And, it follows from equation (4.13) that the

value of $D_{b}=d_{b}$ increass as penalty cost $p$ increases.

Case (ii): $U_{b}+\theta(u_{b}-U_{b})\leq b\leq u_{b}$

Although we can not obtain the explicit values of the parameters in this case, we have the rela-

tionship between the parameters as follows;

$d_{b}=D_{b}=U_{b}-p^{-\frac{1}{2}}\sqrt{(p+h_{1})U_{b}+(k_{1}+k_{2})\sigma^{2}}$ . (414)

The values $U_{b}$ and $u_{b}$ are obtained by solving the following equations;

$\{\begin{array}{l}(h_{1}U_{b}-h_{2}u_{b})(u_{b}-U_{b})^{2}=u_{b}U_{b}(h_{1}-h_{2})(u_{b}+U_{b}-6b),4p(u_{b}-U_{b})^{2}\{(p+h_{1})U_{b}^{2}+(k_{1}+k_{2})\sigma^{2}\}=[(h_{1}+2p)U_{b}^{2}-h_{2}u_{b}^{2}-2\{(h_{1}-h_{2})b+pU_{b}\}u_{b}]^{2}.\end{array}$ (4.15)

Transaction cost $k_{1}$ and $k_{2}$ defined in equation (2.5) are functions of $\theta$ , and the relations between

the value of $k_{1}+k_{2}$ and $\theta$ are

$\{\begin{array}{ll}k_{1}+k_{2} is increasing in \theta, if k_{B}^{u}+k_{B}^{d}>k_{S}^{u}+k_{S}^{d},k_{1}+k_{2}=k_{S}^{u}+k_{S}^{d}, if k_{B}^{u}+k_{B}^{d}=k_{S}^{u}+k_{S}^{d},k_{1}+k_{2} is decreasing in \theta, if k_{B}^{u}+k_{B}^{d}<k_{S}^{u}+k_{S}^{d}.\end{array}$ (4.16)

Thus, from equations (4.14) and (4.16), $D_{b}=d_{b}$ decreases in $\theta$ for $k_{B}^{u}+k_{B}^{d}>k_{S}^{u}+k_{S}^{d}$ and increases
in $\theta$ for $k_{B}^{u}+k_{B}^{d}<k_{S}^{u}+k_{S}^{d}$ . For $k_{B}^{u}+k_{B}^{d}=k_{S}^{u}+k_{S}^{d}$ , the parameters $d_{b},$ $D_{b},$ $U_{b}$ and $u_{b}$ are not

associated with $\theta$ .

Case (iii): $u_{b}\leq b$

In this case, the policy have the form of reflecting boundaries which are given by

$\{\begin{array}{l}U_{b}=u_{b}=\frac{1}{h_{1}}\sqrt{\frac{h_{1}p\sigma^{2}(k_{1}(\theta)+k_{2}(\theta))}{h_{1}+p}},D_{b}=d_{b}=-\frac{1}{p}\sqrt{\frac{h_{1}p\sigma^{2}(k_{1}(\theta)+k_{2}(\theta))}{h_{1}+p}}.\end{array}$ (4.17)

When the amount of short-term debt outstanding is large enough, the policy is the same form as
the one for the model of single source of short-term fund (Constantinides and Richard [2]).

5. Conclusion

In this paper, we have formulated a cash management model in which two types of funds

are available for the manager to adjust cash level. We showed an explicit solution of the cash

management policy under the special case that there are no discount rate, drift of the demand
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and fixed costs. Then, we have provided some analytical properties of optimal policy. In future

research, we would like to find an optimal fund rate $\theta$ at the beginning of each cycle. Moreover,

we also would like to modify the cash process to include the jump diffusion.
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