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ASYMMETRIC VARIATION OF CHOI INEQUALITY FOR POSITIVE
LINEAR MAP

TAKAYUKI FURUTA

Introduction
Let ® be a unital positive linear map between two matrix algebras A and M.
Kadison inequality [10] states that for A € A% (the self adjoint elements in A)
P(A)? < B(A?).
It is known in [e,g.,[1]] that ®(A)" < ®(A") holds for A > 0 and r € [-1,0] and r € [1,2],

and more genarally

f(@(A4)) < o(f(4))

for operator convex function f, and A € A** with spectra of A in the domain of f. We
cite nice references [2] and [12] to this subject. Choi [4] shows that for A € A™ (the positive

cone of A);

(C1) $(AP) < B(A) for 0 < p < 1. (C2) B(A)P < B(AP) for 1 < p < 2.

The study of positive linear maps is of central importance in several parts of matrix

analysis and functional analysis.

J-C.Bourin and E.Ricard show very interesting asymmetric extension of Kadison inequal-

ity as follows by using quite ingenious method.

Theorem A (Bourin-Ricard [3]). Let A € A" and 0 < p < q. Then

|(AP)D(A7)| < ©(AP*9).




36

§1. A result interpolating Theorem A and Choi inequality (C2)

Lowner-Heinz inequality asserts that If A > B > 0, then A* > B® for any « € [0,1].
As an extension of Lowner-Heinz inequality, we state the following result to give proofs of

our results.

Theorem B.
If A> B >0, then for each r > 0,

()  (BEA’BY)7 > (BiBrBi):
and

()  (ATAPAR)T > (AFBPA%)s

hold forp >0 andq>1 with(1+r)g>p+r. (0, =7)

FIGURE 1

The original proof of Theorem B is shown in [6], an elementary one-page proof is in 7]
and alternative ones are in [5],[9] and [8]. It is shown in [11] that the conditions p, ¢ and r
in FIGURE 1 are best possible.

2
Theorem 1.1. Let A€ AT, (i) 0 < p < ¢ and (ii) 1 <r< 4 Then
qtp q+p

(10) |B(AP) B(A)'] < B(AW+OT),

Proof.
Put X = ®(A%)% and Y = ®(4P). Then X > Y > 0 by Choi (C1). Put @ = 2r > 0

2
and § = % > 0. Then (1+ )2 > a + 3 holds by (i) and (ii), so that (ii) of Theorem B
ensures

(1.1) B(A7)5C) > (@(Aq)ﬁ%(Av)%(Aq)?%)%
and (1.1) yields '

(1.2) oA 5 > (@(Aqycp(Ap)?f@(Aq)r)%
and

(1.3) B(APHIT) > $(A7) T by Choi (C2) and (ii)
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so that we have the desired result (1.0) by (1.2) and (1.3)

1
2

(1.0) (A7) > (B(ATY APV B(AT) ) = |B(AP) B(A)|. O

Remark 1. Theorem 1.1 implies Theorem A by putting 7 = 1 and also Theorem 1.1 implies Choi
inequality (C2) by putting p = 0.
Theorem 1.1

r=1/ Np=0
Theorem A Choi inequality (C2)

Theorem 1.1 can be extended to the class of positive , sub-unital linear maps. The result

also holds in the general setting of positive linear maps between unital C*-albebra.

Corollary 1.2. Let A€ A" and 0 < p < q. Then

(1.4) |B(AP) 77 (A7) 75| < B(A9)
and
(1.5) |D(AP)#¥5 B(A) 75| < B(A).

Proof. Put r = —1 and r = in Theorem 1.1 respectively.

q+p q+p

§2. Asymmetric variations of ®(A)~! < $(A~!) paralleled to Theorem 1.1

Let A € A** be defined by A € A" and A is invertible and let ® be strictly positive and

unital. By the almost similar way to Theorem 1.1, we show the following result.

2
Theorem 2.1. Let A€ At (i) 0 < p < ¢ and (ii) . 1 _<r< __q_]; Then

+p q-+
(2.0) |B(A7P) 7 B(A%)7] < B(AF+IT).

Proof. Since f(t) = t’° is operator convex for s € [~1,0], ®(A)* < $(A°) holds for A > 0

and s € [~1,0] as stated in Introduction. Put X = ®(A%)% and Y = ®(A~?)~'. Then
2 ..

X>Y >0 Puta=2r20andﬁ=-]q)—’" > 0. Then (1+ )2 > a+ 8 by (i) and (ii). so

that (ii) of Theorem B ensures
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(2.1) B(A9)5F) > (Q,(Aq)ggq)(A_p)a@(Aqﬁg)%
and (2.1) yields

(2.2) B(A9) 5 > (@(Aqu;(Awr?rq)(Aq)r)%

and

(2.3) B(AP+r) > (A9 by Choi (C2) and (i)

so that we have the desired (2.0) by (2.2) and (2.3)

1

(2.0) D(ACO") > (@(Ary B(AP) T D(A1) )" = |B(AP) TR(AY)| T

Corollary 2.2. Let A€ At and 0 < p <q. Then

(24) | B(AP) 75 B(A9)75 | < B(A9).
(2.5) | (AT (AT | < B(A%).

in Theorem 2.1 respectively.[]

Proof. Put r = 4 and r =
q+p q+p

Remark 2. Theorem 2.1 interpolating Choi inequality (C2) by potting p = 0 and
|D(A~P)1®(A9)| < ®(APTI) for 0 < p < g by putting r = 1.

Theorem 2.1

r=1/ Np=0
|D(AP)1®(AT)| < D(APHI). Choi inequality (C2)

The complete form of this talk has been published in the following paper:

T.Furuta, Around Choi inequalities for positive linear maps, Linear Algebra Appl.,
434(2011), 14-17.
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