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Introduction

Let $\Phi$ be a unital positive linear map between two matrix algebras $\mathcal{A}$ and M.

Kadison inequality [10] states that for $A\in \mathcal{A}^{sa}$ (the self adjoint elements in $\mathcal{A}$ )

$\Phi(A)^{2}\leq\Phi(A^{2})$ .

It is known in [e,g.,[l]] that $\Phi(A)^{r}\leq\Phi(A^{r})$ holds for $A>0$ and $r\in[-1,0]$ and $r\in[1,2]$ ,
and more genarally

$f(\Phi(A))\leq\Phi(f(A))$

for operator convex function $f$ , and $A\in \mathcal{A}^{sa}$ with spectra of $A$ in the domain of $f$ . We
cite nice references [2] and [12] to this subject. Choi [4] shows that for $A\in A^{+}$ (the positive
cone of $\mathcal{A}$);

(Cl) $\Phi(A^{p})\leq\Phi(A)^{p}$ for $0\leq p\leq 1$ . (C2) $\Phi(A)^{p}\leq\Phi(A^{p})$ for $1\leq p\leq 2$ .

The study of positive linear maps is of central importance in several parts of matrix
analysis and functional analysis.

J-C.Bourin and E.Ricard show very interesting asymmetric extension of Kadison inequal-
ity as follows by using quite ingenious method.

Theorem A (Bourin-Ricard [3]). Let $A\in \mathcal{A}^{+}$ and $0\leq p\leq q$ . Then

$|\Phi(A^{p})\Phi(A^{q})|\leq\Phi(A^{p+q})$ .
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\S 1. A result interpolating Theorem A and Choi inequality (C2)

$Lwner$-Heinz inequality asserts that If $A\geq B\geq 0$ , then $A^{\alpha}\geq B^{\alpha}$ for any $\alpha\in[0,1]$ .
As an extension of L\"owner-Heinz inequality, we state the following result to give proofs of
our results.

Theorem B.

If $A\geq B\geq 0$ , then for each $r\geq 0$ ,

(i) $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}}\geq(B^{\frac{r}{2}}B^{p}B^{\frac{r}{2}})^{\frac{1}{q}}$

and

(ii) $(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}}\geq(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$

hold for $p\geq 0$ and $q\geq 1$ with $(1+r)q\geq p+r$ .

The original proof of Theorem $B$ is shown in [6], an elementary one-page proof is in [7]

and alternative ones are in [5],[9] and [8]. It is shown in [11] that the conditions $p,$ $q$ and $r$

in FIGURE 1 are best possible.

Theorem 1.1. Let $A\in A^{+},$ $(i)0\leq p\leq q$ and (ii) $\frac{q}{q+p}\leq r\leq\frac{2q}{q+p}$ . Then

(10) $|\Phi(A^{p})^{r}\Phi(A^{q})^{r}|\leq\Phi(A^{(p+q)r})$ .

Proof.
Put $X=\Phi(A^{q})^{1i}q$ and $Y=\Phi(A^{p})$ . Then $X\geq Y\geq 0$ by Choi (Cl). Put $\alpha=2r\geq 0$

and $\beta=\frac{2qr}{p}\geq 0$ . Then $(1+\beta)2\geq\alpha+\beta$ holds by (i) and (ii), so that (ii) of Theorem $B$

ensures

(1.1) $\Phi(A^{q})^{1i}q(\frac{\alpha+\beta}{2})\geq(\Phi(A^{q})^{ee}q2\Phi(A^{p})^{\alpha}\Phi(A^{q})^{siR}q2)^{\frac{1}{2}}$

and (1.1) yields

(1.2) $\Phi(A^{q})^{\frac{(p+q)r}{q}}\geq(\Phi(A^{q})^{r}\Phi(A^{p})^{2r}\Phi(A^{q})^{r})^{\frac{1}{2}}$

and

(1.3) $\Phi(A^{(p+q)r})\geq\Phi(A^{q})^{\frac{(p+q)r}{q}}$ by Choi (C2) and (ii)
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so that we have the desired result (1.0) by (1.2) and (1.3)

(1.0) $\Phi(A^{(p+q)r})\geq(\Phi(A^{q})^{r}\Phi(A^{p})^{2r}\Phi(A^{q})^{r})^{\frac{1}{2}}=|\Phi(A^{p})^{r}\Phi(A^{q})^{r}|$ . $\square$

Remark 1. Theorem 1.1 implies Theorem A by putting $r=1$ and also Theorem 1.1 implies Choi
inequality (C2) by putting $p=0$ .

Theorem 1.1

$r=1\swarrow$ $\searrow p=0$

Theorem A Choi inequality (C2)

Theorem 1.1 can be extended to the class of positive, sub-unital linear maps. The result
also holds in the general setting of positive linear maps between unital $C^{*}$-albebra.

Corollary 1.2. Let $A\in A^{+}$ and $0\leq p\leq q$ . Then

(1.4) $|\Phi(A^{p})^{L}\overline{q}+p\Phi(A^{q})^{L}\overline{q}+p|\leq\Phi(A^{q})$

and
(1.5) $|\Phi(A^{p})\overline{q}+\overline{\rho}\Phi(A^{q})\overline{q}+\overline{p}|22\leq\Phi(A^{2q})$ .

Proof. Put $r= \frac{q}{q+p}$ ana $r= \frac{2q}{q+p}$ in Theorem 1.1 respectively.

\S 2. Asymmetric variations of $\Phi(A)^{-1}\leq\Phi(A^{-1})$ paralleled to Theorem 1.1

Let $A\in \mathcal{A}^{++}$ be defined by $A\in A^{+}$ and $A$ is invertible and let $\Phi$ be strictly positive and
unital. By the almost similar way to Theorem 1.1, we show the following result.

Theorem 2.1. Let $A\in A^{++},$ $(i)0\leq p\leq q$ and (ii) $\frac{q}{q+p}\leq r\leq\frac{2q}{q+p}$ . Then

(2.0) $|\Phi(A^{-p})^{-r}\Phi(A^{q})^{r}|\leq\Phi(A^{(p+q)r})$ .

Proof. Since $f(t)=t^{8}$ is operator convex for $s\in[-1,0],$ $\Phi(A)^{s}\leq\Phi(A^{s})$ holds for $A>0$

and $s\in[-1,0]$ as stated in Introduction. Put $X=\Phi(A^{q})^{R}q$ and $Y=\Phi(A^{-p})^{-1}$ . Then
$X\geq Y>0$ . Put $\alpha=2r\geq 0$ and $\beta=\frac{2qr}{p}\geq 0$ . Then $(1+\beta)2\geq$ or $+\beta$ by (i) and (ii). so
that (ii) of Theorem $B$ ensures
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(2.1) $\Phi(A^{q})^{E}q(\frac{\alpha+\beta}{2})\geq(\Phi(A^{q})^{g_{\frac{\beta}{2}}}q\Phi(A^{-p})^{-\alpha}\Phi(A^{q})^{E_{\frac{\beta}{2}}}q)^{\frac{1}{2}}$

and (2.1) yields

(2.2) $\Phi(A^{q})^{\frac{(p+q)r}{q}}\geq(\Phi(A^{q})^{r}\Phi(A^{-p})^{-2r}\Phi(A^{q})^{r})^{\frac{1}{2}}$

and
(2.3) $\Phi(A^{(p+q)r})\geq\Phi(A^{q})^{\frac{(p+q)r}{q}}$ by Choi (C2) and (ii)

so that we have the desired (2.0) by (2.2) and (2.3)

(2.0) $\Phi(A^{(p+q)r})\geq(\Phi(A^{q})^{r}\Phi(A^{-p})^{-2r}\Phi(A^{q})^{r})^{\frac{1}{2}}=|\Phi(A^{-p})^{-r}\Phi(A^{q})^{r}|\square$

Corollary 2.2. Let $A\in \mathcal{A}^{++}$ and $0\leq p\leq q$ . Then

(2.4) $|\Phi(A^{-p})\overline{q}+\overline{p}\Phi(A^{q})\overline{q}+p|-sr\leq\Phi(A^{q})$ .

(2.5) $|\Phi(A^{-p})^{\frac{-2q}{q+\rho}\Phi(A^{q})^{\Delta}|}q\overline{+p}\leq\Phi(A^{2q})$.

Proof. Put $r= \frac{q}{q+p}$ and $r= \frac{2q}{q+p}$ in Theorem 2.1 respectively. $\square$

Remark 2. Theorem 2.1 interpolating Choi inequality (C2) by potting $p=0$ and
$|\Phi(A^{-p})^{-1}\Phi(A^{q})|\leq\Phi(A^{p+q})$ for $0\leq p\leq q$ by putting $r=1$ .

Theorem 2.1

$r=1\swarrow$ $\searrow p=0$

$|\Phi(A^{-p})^{-1}\Phi(A^{q})|\leq\Phi(A^{p+q})$ . Choi inequality (C2)

The complete form of this talk has been published in the following paper:

T.Furuta, Around Choi inequalities for positive linear maps, Linear Algebra Appl.,
434(2011), 14-17.
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