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An “invariant subspace” T for a linear operator T on a vector space is, precisely, a linear subspace Y
for which

0.1 TY)CYCX.
The point of an invariant subspace is the restriction operator
0.2 Ty :Y - Y,

where of course Ty (y) = Ty for each y € Y. The relationship between T" and its restriction Ty involves also
the induced quotient

0.3 T, : X/Y - X/Y ,

where T}, (z + Y) = (Tz) + Y for each z € X. Now the “three space property” of invertibility says that if
any two of the three operators T', Ty and Ty is invertible then so is the third. Recalling that invertibility is
the same as one one and onto, this follows from the six implications ([1] Theorems 3.11.1, 3.11.2)

0.4 Ty, Ty, one one => T one one == Ty one one ;
0.5 Ty, Ty, onto = T onto = Ty onto ;

0.6 T one one, Ty onto = Ty, one one ;

0.7 T onto, Ty, one one = Ty onto .

All this remains valid for bounded operators on Banach spaces, when of course we only consider closed
invariant subspaces. In terms of the spectrum

o(T) = {A € C: T — Al not invertible} ,
the spectrum of each of the operators T, Ty and T3, is contained in the union of the other two. Equivalently
0.8 a(T) C o(Ty)uo(Ty) C o(T)u(o(Ty)no(Ty) -

This leads to a new kind of invariant subspace ([3] (2.3)):
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1. Definition An invariant subspace Y C X is called spectrally invariant for T if
1.1 o(Ty)no(Ty) =0,
in which case also

1.2 o(T) = o(Ty)uo(Ty) -

Of course (0.2) is a consequence of (1.1) and (0.8). For bounded operators on Banach spaces, spectrally
invariant subspaces are both reducing and hyperinvariant: there is a projection P = P? € B(X) for which

1.3 ST =TS = SP=PS
with
1.4 Y = P(X) .

Naturally the projection comes from the splitting of the spectrum via functional calculus ([1] Definition
9.7.1):

1
1.5 P= f(T) = 5—75 - (ZI - T)fldz

with the function f given by the characteristic function of the restriction spectrum,
1.6 f = xx where K = o(Ty) .

Since both the range P(X) and its complement P~!(0) are invariant under T it is clear that P(X) is a
reducing subspace for T'; since by (1.5) the range of P is invariant under everything which commutes with
T it is also hyperinvariant. It is also clear that the restriction and the quotient of T with respect to P(X)
are the same as with respect to Y: with a little more work it turns out that Y and P(X) are the same.

Intermediate between the invariant and the hyperinvariant are two further kinds of invariant subspace
({3] Definition 1):



42

2. Definition The invariant subspace Y C X is called holomorphically invariant for T if
2.1 f € Holo(o(T)) = fF(T)Y C Y,

and comm square invariant for T if

2.2 S € comm?(T) = SY CY .

Evidently
spectrally invariant = hyperinvariant = comm square invariant

= holomorphically invariant = invariant ;

we claim that none of these implications is reversible. Our counterexamples will all be built from the forward
and the backward shifts u and v, and the standard weight w, where for each z = (z1,z2,23,...) € E = {,
withp=2and eachne N

2.3 (uz)y =0, (Ux)ny1 = Tn ; (VT)n = Tn41 ;5 (Wz)y = (1/n)zy .
The spectrum o, the onto spectrum 77%9"* and the eigenvalues m'*f? are given by
24 779 (y) = 8D € D = o(v) = o(u) = 77 (u) ,

2.5 o(w) =0UNT!; o(wu) = O = {0}

and

2.6 wleft(u) =0 ; n'*t(v) =int D,

where D = {|z] < 1} C C is the closed unit disc. The eigenvalues of the backward shift v all have one
dimensional eigenspaces:

Al <1 =1 - Au invertible and v — A = v(1 — Au) ,

giving
2.7 v }0) = (1 — w)(E) = C& = {(1,0,0,...): A € C}
and

2.8 (0= A)"1(0) = (1= M)~ o~ 1(0) = (1 = M) (1 — wo)(E) .

In fact our examples are on the direct sum X = E @ E of two copies of E = £, = {3, and appear is operator
matrices.
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Not every invariant subspace is holomorphically invariant (|[3] Example 1):
3. Example With

u 1—uv _ v 0 _ {1 0
31 Uﬂ(() v )’V_<1—uv u) ’P——(O 0)

and

3.2 Y=P(X)CX,
3.3 U(y)ycy

but not

34 Uly=v(Y)CY.

Not every comm square invariant subspace is hyperinvariant ([3] Example 2):
4. Example With

u 0 v 0
41 “‘(0 u) ""(o v)’

10 0 1
4.2 P‘(o o>'Q‘(o 0)’

we have

4.3 uP~Pu=vP-Pv=0
and

4.4 u@Q-Qu=vQ-Qv=0,
but

4.5 PQ#QP,

so that

4.6 P € comm(v) \ comm?(v)
and

4.7 P € comm(u) \ comm?(u)
and

4.8 Y = P(X) invariant under v , u , P but not Q .
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Not every holomorphically invariant subspace is comm square invariant ([3] Example 3). This is the
most delicate of our examples: we need in particular to see that not everything in the double commutant
need be a holomorphic function [2):

5. Example With

u 0 v 0 (1 0
51 T’(o l—u)’s_(O l—v) ’P‘<0 0)

we have

5.2 P € comm?(S) \ Holo(S)
and

5.3 P € comm?(T) \ Holo(T) .
Also

W= (5-A)"}0) = ((1(3;:\))?)1“(?20) )

(=) 0 (1-w)FE
_( 0 (1-—-(1—/\)u)_1)<(1—uv)E)
is (hyper)invariant under S, and

— (1—/\71,)_1 0 , , 1 — o
! Y_( 0 (1-(1=A)u)? Y where Y'=( _ " )E

is (holomorphically) invariant under S but not invariant under P.
Indeed since the diagonal elements of S do not have disjoint spectrum, P cannot ([2] Theorem 1) be a

holomorphic function of S:
o(v)no(v—1) # 0 = P & Holo(S) .

On the other hand

(Z TZ) € comm(S) = m(l —v) —vm=(1-v)n—nv =0

= m=n=0<+= (Z TZ) € comm(P)
and there is ([2] Theorem 2) implication
z=vz+zv=> (1 —v)z(l —u«"v") =0 (n € N)

=z=gw=zu®l == . =z1=0.
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Not every hyperinvariant reducing subspace is spectrally invariant ([3] Example 4):
6. Example With

v 0
(3 2).
the null space R=(0) is hyperinvariant and reducing for R, but not spectrally invariant.
Alternatively
6.2 W = (S - \)"Y0)

is hyperinvariant and reducing for S but not spectrally invariant.
Neither hyperinvariance nor reducing implies the other ([3] Example 5):

7. Example The subspace
PX)=E®O

is comm square invariant and reducing but not hyperinvariant for u and for v, and is hyperinvariant but not
reducing for Q.

Alternatively, on /. the closure of the range of w is hyperinvariant but ([1] Theorem 5.10.2) uncomple-
mented.

We remark that each of the operators u and v satisfies the condition (1.2) but not the disjointness (1.1).
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