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ABSTRACT. In this note we discuss the completely hyperexpansive completion
problem about finite sequences of positive numbers in terms of positivity of
attached matrices. In particular, we obtain formulas to solve the completely
hyperexpansive completion problem about low numbers such as two, three,
four, five and six numbers. As an application, we also discuss an explicit
solution of the subnormal completion problem for five numbers.

1. Introduction and definitions

This was presented at the 2010 RIMS workshop: research and its application of
noncommutative structure in operator theory, which was held at Kyoto University
in Japan on October 27-29, 2010. And this is the joint work with Z. Jablo\’{n}ski, J.
A. Kwak, and J. Stochel, which will be appeared in some other journal as a full
context.

The completion problem for completely hyperexpansive weighted shift opera-
tors with applications to subnormal completion problems will be discussed in this
note. In particular, we give a general solution of the completely hyperexpansive
completion problem using a different approach than that in [4]. Our method is
based on a characterization of truncations of completely alternating sequences. The
aforesaid characterization relies on the solution of the truncated Hausdorff moment
problem due to Krein and Nudel’man (cf. [8, Theorems III.2.3 and III.2.4]).

The following notation is made for convenience and ease of presentation. We
write $\delta_{t}$ for the Borel probability measure on $[0,1]$ concentrated at $t\in[0,1]$ . Given
$m,$ $n\in\{0,1,2, \ldots\}\cup\{\infty\}$ , we define $\lfloor m,$ $n\rfloor=$ { $i:i$ is an integer, $m\leq i\leq n$ }. Let
$\gamma=\{\gamma_{i}\}_{i=0}^{m}$ and $\hat{\gamma}=\{\hat{\gamma}_{i}\}_{i=0}^{n}$ be sequences of real numbers with $m,$ $n$ as above. If
$m\leq n$ and $\gamma_{i}=\hat{\gamma}_{i}$ for $i\in\lfloor 0,$ $m\rfloor$ , then we write $\gamma\subseteq\hat{\gamma}$ . Given a finite number of
real numbers $\zeta_{0},$

$\ldots,$
$\zeta_{k}$ , we denote by $[\zeta_{j}]_{j=0}^{k}$ the column matrix and regard it as a

vector in the vector space $\mathbb{R}^{k+1}$ , where $\mathbb{R}$ stands for the field of real numbers.
Throughout this note we assume that $X$ is a real vector space and $k$ is a

nonnegative integer. Let $x=\{x_{i}\}_{i=1}^{k}$ be a sequence of vectors in $X$ with $k\geq 1$

and $x_{1}\neq 0$ . The largest integer $j\in\lfloor 1,$ $k\rfloor$ for which the vectors $x_{1},$ $\ldots,$ $x_{j}$ are
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linearly independent is called the $mnk$ of $\{x_{i}\}_{i=1}^{k}$ . For $x_{k+1}\in X$ , we assume
that $x_{k+1}$ belongs to the linear span of $x$ whenever the rank $r$ of $x$ is equal
to $k$ . Then there exists a unique r-tuple $(\varphi_{1}, \ldots, \varphi_{r})\in \mathbb{R}^{r}$ such that $x_{r+1}=$

$\varphi_{1}\cdot x_{1}+\ldots+\varphi_{r}\cdot x_{r}$ . The generating hnction $g_{\overline{x}}$ of $\tilde{x}=\{x_{i}\}_{i=1}^{k+1}$ is given by

$\mathfrak{g}_{\tilde{x}}(t)=-(\varphi_{1}t^{0}+\ldots+\varphi_{r}t^{r-1})+t^{r}$ , $t\in \mathbb{R}$ .

Recall that a sequence $\{y_{i}\}_{i=0}^{k}\subseteq X(k\geq 1)$ is said to be affinely independent if for
every sequence $\{\lambda_{i}\}_{i=0}^{k}\subseteq \mathbb{R}$ , if $\sum_{i=0}^{k}\lambda_{i}y_{i}=0$ and $\sum_{i=0}^{k}\lambda_{i}=0$ , then $\lambda_{i}=0$ for
$i\in\lfloor 0,$ $k\rfloor$ . A vector $y_{k+1}\in X$ is an affine combination of a sequence $\{y_{i}\}_{i=0}^{k}\subseteq X$

$(k\geq 0)$ with coefficients $(\psi_{0}, \ldots, \psi_{k})\in \mathbb{R}^{k+1}$ if $y_{k+1}= \sum_{i=0}^{k}\psi_{i}y_{i}$ and $\sum_{i=0}^{k}\psi_{i}=1$ .
Let $y=\{y_{i}\}_{i=0}^{k}$ be a sequence of vectors in $X$ with $k\geq 1$ and $y_{0}\neq y_{1}$ . The largest
integer $j\in\lfloor 1,$ $k\rfloor$ for which the sequence $\{y_{i}\}_{i=0}^{j}$ is affinely independent is called
the affine rank of $\{y_{i}\}_{i=0}^{k}$ . For $y_{k+1}\in X$ . We assume that $y_{k+1}$ belongs to the
affine span of $y$ whenever the affine rank $r$ of $y$ is equal to $k$ . Then there exists a
unique $(r+1)$ -tuple $(\psi_{0}, \ldots, \psi_{r})\in \mathbb{R}^{r+1}$ such that $y_{r+1}=\psi_{0}y_{0}+\ldots+\psi_{r}y_{r}$ and
$\sum_{i=0}^{r}\psi_{i}=1$ . The affine generating function $\Phi_{\overline{y}}$ of $\tilde{y}=\{y_{i}\}_{i=0}^{k+1}$ is given by

$\Phi_{\tilde{y}}(t)=\psi_{0}t^{0}+(\psi_{0}+\psi_{1})t^{1}+\ldots+(\psi_{0}+\ldots+\psi_{r-1})t^{r-1}+t^{r}$, $t\in \mathbb{R}$ .

2. Truncations of monotone and alternating sequences

A sequence $\{\gamma_{n}\}_{n=0}^{\infty}$ of real numbers is said to be a Hausdorff moment sequence
if there exists a positive Borel measure $\mu$ on $[0,1]$ such that for all $n\geq 0$

(2.1) $\gamma_{n}=\int_{[0,1]}s^{n}d\mu(s)$ ,

where $0^{0}=$ I. The measure $\mu$ is unique and finite. Call it an $\mathfrak{H}$ -representing
measure for $\{\gamma_{n}\}_{n=0}^{\infty}$ . By the Hausdorff theorem (cf. [5] and [2, Proposition 4.6.11]),
a sequence $\gamma=\{\gamma_{n}\}_{n=0}^{\infty}$ of real numbers is a Hausdorff moment sequence if and
only if it is completely monotone, i.e., $(\nabla^{m}\gamma)_{k}\geq 0$ for all integers $k,$ $m\geq 0$ , where
$\nabla^{m}$ is the mth power of the difference operator $\nabla$ which acts on $\gamma$ via

(2.2) $(\nabla\gamma)_{n}=\gamma_{n}-\gamma_{n+1}$ , $n=0,1,2,$ $\ldots$
$(\nabla^{0}\gamma=\gamma)$ .

To consider truncated Hausdorff moment problem, we give an integer $m\geq 0$ . Then
we say that a positive Borel measure $\mu$ on $[0,1]$ is an $\mathfrak{H}$ -representing measure for
a sequence $\{\gamma_{n}\}_{n=0}^{m}$ of real numbers if (2.1) holds for $n\in\lfloor 0,$ $m\rfloor$ . If $m=2k$ for
some integer $k\geq 0$ , and $\gamma 0>0$ , then the rank of the sequence $\{[\gamma_{i+j-1}]_{i=0}^{k}\}_{j=1}^{k+1}$ of
columns of the Hankel matrix $[\gamma_{i+j}]_{i,j=0}^{k}$ is called the Hankel rank of $\gamma=\{\gamma_{n}\}_{n=0}^{2k}$

and denoted by $r(\gamma)$ (cf. [3]),

THEOREM 2.1 (Even Case). If $\gamma=\{\gamma_{n}\}_{n=0}^{2k}$ is a finite sequence of real numbers
with $k\geq 1$ and $\gamma_{0}>0$ , then the following conditions are equivalent:

(i) there exists a Hausdorff moment sequence $\hat{\gamma}=\{\hat{\gamma}_{n}\}_{n=0}^{\infty}$ such that $\gamma\subseteq\hat{\gamma}$

)

(ii) $\gamma$ has an fi-representing measure whose support consists of $r(\gamma)$ points;
(iii) there exists $\gamma_{2k+1}\in \mathbb{R}$ such that $[\gamma_{i+k+1}]_{i=0}^{k}$ is a linear combination of

$\{[\gamma_{i+j}]_{i=0}^{k}\}_{j=0}^{k}$ , and $[\gamma_{i+j}]_{i,j=0}^{k}\geq[\gamma_{i+j+1}]_{i,j=0}^{k}\geq 0_{1}$
.

(iv) $[\gamma_{i+j}]_{i,j=0}^{k}\geq 0$ and $[\gamma_{i+j+1}]_{i,j=0}^{k-1}\geq[\gamma_{i+j+2}]_{i,j=0}^{k-1}$ .

47



ON SUBNORMAL AND HYPEREXPANSIVE COMPLETION PROBLEMS

We now turn to the odd case. Let $\tilde{\gamma}=\{\gamma_{n}\}_{n=0}^{2k+1}$ be a finite sequence of
real numbers with $k\geq 0$ and $\gamma_{0}>0$ . The generating function of the sequence
$\{[\gamma i+j-1]_{i=0}^{k}\}_{j=1}^{k+2}$ will be called the generating function of $\tilde{\gamma}$ and denoted by $g_{\tilde{\gamma}}$ (cf.
[3] $)$ .

THEOREM 2.2 (Odd Case). If $\tilde{\gamma}=\{\gamma_{n}\}_{n=0}^{2k+1}$ is a finite sequence of real numbers
with $k\geq 0$ and $\gamma_{0}>0$ , then the following conditions are equivalent:

(i) there exists a Hausdorff moment sequence $\hat{\gamma}=\{\dot{\gamma}_{n}\}_{n=0}^{\infty}$ such that $\tilde{\gamma}\subseteq\hat{\gamma}_{1}$
.

(ii) $\tilde{\gamma}$ has an $\mathfrak{H}$ -representing measure whose support consists of $r(\gamma)$ points
which are roots of $g_{\tilde{\gamma}}$ with $\gamma=\{\gamma_{n}\}_{n=0)}^{2k}$.

(iii) $[\gamma_{i+k+1}]_{i=0}^{k}$ is a linear combination of $\{[\gamma_{i+j}]_{i=0}^{k}\}_{j=0}^{k}$ , and $[\gamma_{i+j}|_{i,j=0}^{k}\geq$

$[\gamma_{i+j+1}]_{i,j=0}^{k}\geq 0$ ;
(iv) $[\gamma_{i+j}]_{i,j=0}^{k}\geq[\gamma_{i+j+1}]_{i,j=0}^{k}\geq 0$.

We next consider truncations of completely alternating sequences. Following
[2], we say that a sequence $\zeta=\{\zeta_{n}\}_{n=0}^{\infty}$ of real numbers is completely altemating
if $(\nabla^{m}\zeta)_{k}\leq 0$ for all integers $k\geq 0$ and $m\geq 1$ (see (2.2) for the definition of $\nabla$ ).
Recall that a sequence $\{\zeta_{n}\}_{n=0}^{\infty}$ of real numbers is completely alternating if and
only if there exists a positive Borel measure $\tau$ on the closed interval $[0,1]$ such that
for all $n\geq 1$

(2.3) $\zeta_{n}=\zeta_{0}+\int_{[0,1]}(1+\ldots+s^{n-1})d\tau(s)$ .

The measure $\tau$ is unique (cf. [6, Lemma 4.1]) and finite. We call it a $c\mathfrak{a}$-representing
measure for $\{\zeta_{n}\}_{n=0}^{\infty}$ . If $\zeta=\{\zeta_{n}\}_{n=0}^{2k+1}$ is a finite sequence of real numbers with
$k\geq 0$ and $\zeta_{1}>\zeta_{0}$ , then the affine rank of the sequence $\{[\zeta_{i+j}]_{i=0}^{k}\}_{j=0}^{k+1}$ will be
called the Hankel affine $mnk$ of $\zeta$ and denoted by ar$(\zeta)$ . In turn, if $\tilde{\zeta}=\{\zeta_{n}\}_{n=0}^{2k+2}$

is a sequence of real numbers with $k\geq 0$ and $\zeta_{1}>\zeta_{0}$ , then the affine generating
function of the sequence $\{[\zeta_{i+j}|_{i=0}^{k}\}_{j=0}^{k+2}$ will be called the affine genemting function
of $\tilde{\zeta}$ and denoted by $G_{\tilde{\zeta}}$ .

THEOREM 2.3 (Even Case). If $\tilde{\zeta}=\{\zeta_{n}\}_{n=0}^{2k+2}$ is a finite sequence of real numbers
with $k\geq 0$ and $\zeta_{1}>\zeta_{0}$ , then the following conditions are equivalent:

(i) there exists a completely altemating sequence $\hat{\zeta}=\{\hat{\zeta}_{n}\}_{n=0}^{\infty}$ such that
$\tilde{\zeta}\subseteq\hat{\zeta}$ ;

(ii) $\tilde{\zeta}$ has a ca-representing measure whose support consists of ar $(\zeta)$ points
which are roots of $G_{\tilde{\zeta}}$ with $\zeta=\{\zeta_{n}\}_{n=0}^{2k+1}$ ,

(iii) $[(_{i+k+2}]_{i=0}^{k}$ is an affine combination of $\{[\zeta_{i+j}]_{i=0}^{k}\}_{j=0}^{k+1}$ ,

(2.4) $[\zeta_{i+j+2}-\zeta_{i+j+1}]_{i,j=0}^{k}\geq 0$ and $[-\zeta_{i+j+2}+2\zeta_{i+j+1}-\zeta_{i+j}]_{i,j=0}^{k}\geq 0$ ,

(iv) the condition (2.4) hol&.

A similar reasoning enables as to deduce Theorem 2.4 from Theorem 2.1.

THEOREM 2.4 (Odd Case). If $\zeta=\{\zeta_{n}\}_{n=0}^{2k+1}$ is a finite sequenoe of real numbers
with $k\geq 1$ and $\zeta_{1}>\zeta_{0}$ , then the following conditions are equivalent:

(i) there exists a completely altemating sequence $\hat{\zeta}=\{\hat{\zeta}_{n}\}_{n=0}^{\infty}$ such that
$\zeta\subseteq\hat{\zeta}$ ;

(ii) $\zeta$ has a ca-representing measure whose support consists of ar $(\zeta)$ points;
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(iii) there exists $\zeta_{2k+2}\in \mathbb{R}$ such that $[\zeta_{i+k+2}]_{i=0}^{k}$ is an affine combination of
$\{[\zeta_{i+j}]_{i=0}^{k}\}_{j=0}^{k+1}$ ,

$[\zeta_{i+j+2}-\zeta_{i+j+1}]_{i,j=0}^{k}\geq 0$ and $[-\zeta_{i+j+2}+2\zeta_{i+j+1}-\zeta_{i+j}]_{i,j=0}^{k}\geq 0,\cdot$

(iv) $[\zeta_{i+j+1}-\zeta_{i+j}]_{i,j=0}^{k}\geq 0$ and $[-\zeta_{i+j+3}+2\zeta_{i+j+2}-\zeta_{i+j+1}]_{i,j=0}^{k-1}\geq 0$ .

3. Completely hyperexpansive completion problem

Given a bounded sequence $\alpha=\{\alpha_{n}\}_{n=0}^{\infty}$ of positive real numbers, we denote
by $W_{\alpha}$ the weighted shift with the weight sequence $\alpha$ , i.e., $W_{\alpha}$ is a unique bounded
linear operator on $\ell^{2}$ such that $W_{\alpha}e_{n}=\alpha_{n}e_{n+1}$ for all $n\geq 0$ , where $\{e_{n}\}_{n=0}^{\infty}$ is the
standard orthonormal basis of $\ell^{2}$ .

We now recall a well-known characterization of the complete hyperexpansivity
of weighted shifts (see [1, Proposition 3] and [6, Lemma 4.1]).

PROPOSITION 3.1. Let $\alpha=\{\alpha_{n}\}_{n=0}^{\infty}$ be a bounded sequence of positive real
numbers. A weighted shift $W_{\alpha}$ is completely hyperexpansive if and only if there
exists a (unique) finite positive Borel measure $\tau$ on $[0,1]$ such that

(3.1) $\alpha_{0}^{2}\cdots\alpha_{n-1}^{2}=1+\int_{[0,1]}(1+\ldots+s^{n-1})d\tau(s)$, $n\geq 1$ .

The correspondence $W_{\alpha}rightarrow\tau$ is one-to-one.

If (3.1) holds, then we say that the measure $\tau$ is associated with the weighted
shift $W_{\alpha}$ or that $W_{\alpha}$ is associated with $\tau$ . Let $\alpha=\{\alpha_{n}\}_{n=0}^{m}$ be a finite sequence
of positive real numbers with $m\geq 0$ . A weighted shift $W_{\hat{\alpha}}$ with positive weights $\hat{\alpha}$

is called a completely hyperexpansive completion of $\alpha$ if $W_{\hat{\alpha}}$ is completely hyperex-
pansive and $\alpha\subseteq\hat{\alpha}$ .

Before investigating solutions of the completely hyperexpansive completion
problem, we introduce two transformations acting on sequences (finite or not)
of real numbers. Fix $m\in\{0,1,2, \ldots\}\cup\{\infty\}$ . Denote by $\Pi_{m}$ the bijection be-
tween the set of all sequences $\alpha=\{\alpha_{n}\}_{n=0}^{m}\subseteq(0, \infty)$ and the set of all sequences
$\zeta=\{\zeta_{n}\}_{n=0}^{m+1}\subseteq(0, \infty)$ with $\zeta_{0}=1$ that maps $\alpha$ to $\zeta$ via

(3.2) $\zeta=\Pi_{m}(\alpha)$ : $\zeta_{n}=\{\begin{array}{ll}1 if n=0,\alpha_{0}^{2}\cdots\alpha_{n-1}^{2} otherwise,\end{array}$

for $n\in\lfloor 0,$ $m+1\rfloor$ . Its inverse $\Pi_{m}^{-1}$ which maps $\zeta$ to $\alpha$ is given by

(3.3) $\alpha=\Pi_{m}^{-1}(\zeta)$ : $\alpha_{n}=\sqrt{\frac{\zeta_{n+1}}{\zeta_{n}}}$,

for $n\in\lfloor 0,$ $m\rfloor$ . Denote by $\Delta_{m}$ the bijection between the set of all sequences
$\zeta=\{\zeta_{n}\}_{n=0}^{m+1}\subseteq \mathbb{R}$ with $\zeta_{0}=1$ and the set of all sequences $\gamma=\{\gamma_{n}\}_{n=0}^{m}\subseteq \mathbb{R}$ that
maps $\zeta$ to $\gamma$ via
(3.4) $\gamma=\Delta_{m}(\zeta)$ : $\gamma_{n}=\zeta_{n+1}-\zeta_{n}$ ,
for $n\in\lfloor 0,$ $m\rfloor$ . Its inverse $\Delta_{m}^{-1}$ which maps $\gamma$ to $\zeta$ is given by

(3.5) $\zeta=\Delta_{m}^{-1}(\gamma)$ : $\zeta_{n}=1+\sum_{i=0}^{n-1}\gamma_{i}$ ,

for $n\in\lfloor 1,$ $m+1\rfloor$ .
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PROPOSITION 3.2. Suppose that $\alpha=\{\alpha_{n}\}_{n=0}^{m}$ is a finite sequence of positive
real numbers, with $m\geq 1$ , such that either two of its successive terrns coincide or
one of them is equal to 1. Then the following conditions are equivalent:

(i) $\alpha$ has a completely hyperexpansive completion;
(ii) $\alpha_{0}\geq 1$ and $\alpha_{n}=1$ for $n\in\lfloor 1,$ $m\rfloor$ .

Moreover, if (i) holds, then there exists a unique completely hyperexpansive weighted

shift $W_{\hat{\alpha}}$ such that $\alpha\subseteq\hat{\alpha}$ ; its weights are given by: $\acute{\alpha}_{0}=\alpha_{0}$ and $\hat{\alpha}_{n}=1$ for $n\geq 1$ .

For definitions of transformations $\Pi_{m}$ and $\Delta_{m}$ that are used below, we refer
the reader to (3.2) and (3.4).

THEOREM 3.3 (Even Case). Suppose that $\alpha=\{\alpha_{n}\}_{n=0}^{2k}$ is a finite sequence of
positive real numbers with $k\geq 1and.\alpha_{0}>1$ . Let $\zeta=\Pi_{2k}(\alpha)$ . Then the following
conditions are equivalent:

(i) $\alpha$ has a completely hyperexpansive completion;
(ii) $[\zeta_{i+j+1}-\zeta_{i+j}]_{i,j=0}^{k}\geq 0$ and $[-\zeta_{i+j+3}+2\zeta_{i+j+2}-\dot{\zeta}_{i+j+1}]_{i,j=0}^{k-1}\geq 0$ ;

(iii)
$thereexists\zeta_{2k+2}\{[\zeta_{i+j}]_{i=0}^{k}\}_{j=0}^{k+1},\in \mathbb{R}$

such that $[\dot{\zeta}_{i+k+2}]_{i=0}^{k}$ is an affine combination of

$[\zeta_{i+j+2}-\zeta_{i+j+1}]_{i,j=0}^{k}\geq 0$ and $[-\zeta_{i+j+2}+2\zeta_{i+j+1}-\zeta_{i+j}]_{i,j=0}^{k}\geq 0$ .

Moreover, if (i) hol&, then there exists a bounded sequence $\hat{\alpha}=\{\grave{\alpha}_{n}\}_{n=0}^{\infty}$ ofpositive
real numbers such that $\alpha\subseteq\hat{\alpha}$ and $W_{\hat{\alpha}}$ is a completely hyperexpansive weighted shift
with associated measure whose support consists of ar $(\zeta)$ points.

For clarity of presentation, we formulate Theorem 3.4 without using the tilde
notation that has appeared in Theorem 2.3.

THEOREM 3.4 (Odd Case). Suppose that $\alpha=\{\alpha_{n}\}_{n=0}^{2k+1}$ is a finite sequence
of positive real numbers with $k\geq 0$ and $\alpha_{0}>1$ . Let $\zeta=\Pi_{2k+1}(\alpha)$ . Then the
following conditions are equivalent:

(i) $\alpha$ has a completely hyperexpansive completion;
(ii) $[\zeta_{i+j+2}-\zeta_{i+j+1}]_{i,j=0}^{k}\geq 0$ and $[-\zeta_{i+j+2}+2\zeta_{i+j+1}-\zeta_{i+j}]_{i,j=0}^{k}\geq 0$.

Moreover, if (i) holds, then $[\zeta_{i+k+2}]_{i=0}^{k}$ is an affine combination of $\{[\zeta_{i+j}]_{i=0}^{k}\}_{j=0}^{k+1}$ ,
and there exists a bounded sequence $\hat{\alpha}=\{\hat{\alpha}_{n}\}_{n=0}^{\infty}$ of positive real numbers such
that $\alpha\subseteq\hat{\alpha}$ and $W_{\hat{\alpha}}$ is a completely hyperexpansive weighted shift with associated
measure whose support consists of $ar(\{\zeta_{n}\}_{n=0}^{2k+1})$ points which are roots of $G_{\zeta}$ .

We write down Theorems 3.3 and 3.4 in a particularly useful determinant form
below.

THEOREM 3.5 (Even Case-determinant test). Suppose that $\alpha=\{\alpha_{n}\}_{n=0}^{2k}$

is a finite sequence of positive real numbers with $k\geq 1$ and $\alpha_{0}>1$ . Let $\zeta=$

$\Pi_{2k}(\alpha)$ . Then $\alpha$ has a completely hyperexpansive completion if and only if one of
the following two disjunctive conditions holds:

(i) $\alpha$ has a completely hyperexpansive completion and at least one of the de-
teminants $\det\Omega_{0}(k-1)$ and $\det\Theta_{1}(k-1)$ vanishes;
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(ii) $\det\Omega_{0}(n)>0$ and $\det\Theta_{1}(n)>0$ for all $n\in\lfloor 1,$ $k-1\rfloor,$ $\det\Omega_{0}(k)\geq 0$ and
$\det\Theta_{1}(k)\geq 0$, where

$\Omega_{0}(n):=\lfloor$

$r_{\zeta_{n+1^{:}}-\zeta_{n}}^{\zeta_{1}-\zeta_{0}}$

$.\cdot.\cdot.\cdot$

$\zeta_{2n+1}-\zeta_{2n}\zeta_{n+1_{:^{-\zeta_{n}}]}}.$ , $n\in\lfloor 0,$ $k\rfloor$ ,

$\Theta_{1}(n):=\{\begin{array}{llll}-\zeta_{3}+2\zeta_{2}-\zeta_{1}\ddots \cdots -\zeta_{n+2} +2\zeta_{n+1}-\zeta_{n}\vdots \ddots \vdots\vdots \ddots \vdots-\zeta_{n+2}+2\zeta_{n+1}-\zeta_{n} \cdots \cdots -\zeta_{2n+1}+2\zeta_{2n}-\zeta_{2n-1}\end{array}\}$ , $n\in\lfloor 1,$ $k\rfloor$ .

THEOREM 3.6 (Odd $Ca\epsilon e$ -determinant test). Suppose that $\alpha=\{\alpha_{n}\}_{n=0}^{2k+1}$

is a finite sequence of positive real numbers with $k\geq 0$ and $\alpha_{0}>1$ . Let $\zeta=$

$\Pi_{2k+1}(\alpha)$ . Then $\alpha$ has a completely hyperexpansive completion if and only if one
of the following two disjunctive conditions holds:

(i) $\alpha$ has a completely hyperexpansive completion and at least one of the de-
terminants $\det\Omega_{1}(k)$ and $\det\Theta_{0}(k-1)$ vanishes;

(ii) $\det\Omega_{1}(n)>0$ for all $n\in\lfloor 1,$ $k\rfloor,$ $\det\Theta_{0}(n)>0$ for all $n\in\lfloor 0,$ $k-1\rfloor$ ,
$\det\Omega_{1}(k+1)\geq 0$ and $\det\Theta_{0}(k)\geq 0$ , where

$\Omega_{1}(n):=\{\begin{array}{lll}\zeta_{2}-\zeta_{1} \cdots \zeta_{n+1}-\zeta_{n}| \ddots |\zeta_{n+1}-\zeta_{n} \cdots \zeta_{2n}-\zeta_{2n-1}\end{array}\}$ , $n\in\lfloor 1,$ $k+1\rfloor$ ,

$\Theta_{0}(n):=\{\begin{array}{lllll}-\zeta_{2}\ddots +2\zeta_{1}-\zeta_{0} \cdots -\zeta_{n+2} +2\zeta_{n+1}-\zeta_{n} \vdots\ddots \vdots \vdots \ddots \vdots-\zeta_{n+2} +2\zeta_{n+1}-\zeta_{n} \cdots -\zeta_{2n+2} +2\zeta_{2n+1}-\zeta_{2n}\end{array}\}$ , $n\in\lfloor 0,$ $k\rfloor$ .

4. Solutions for low numbers of weights

4.1. Two-, three- and four weights: 2-isometries. Let us start with one
weight $\alpha_{0}$ . It follows from Proposition 3.2 applied to $\alpha_{0}$ and $\alpha_{1}$ $:=1$ that a one-term
sequence $\{\alpha_{0}\}$ has a completely hyperexpansive completion if and only if $\alpha_{0}\geq 1$ .

PROPOSITION 4.1 (Two weights). A sequence $\alpha=\{\alpha_{i}\}_{i=0}^{1}$ of positive real
numbers such that $\alpha_{0}>1$ and $\alpha_{1}\geq 1$ has a completely hyperexpansive completion
if and only if $\alpha_{0}^{2}\alpha_{1}^{2}-2\alpha_{0}^{2}+1\leq 0$ .

Note that the assumption $\alpha_{0}>\alpha_{1}>1$ does not guarantee that $\alpha$ has a
completely hyperexpansive completion, e.g. this is the case for $\alpha_{0}=2$ and $4>$
$\alpha_{1}^{2}>7/4$ .

PROPOSITION 4.2 (Three weights). A sequence $\alpha=\{\alpha_{i}\}_{i=0}^{2}$ of positive real
numbers with $\alpha_{0}>1$ has a completely hyperexpansive completion if and only if the
following two conditions hold:

(i) $\alpha_{1}^{2}\alpha_{2}^{2}-2\alpha_{1}^{2}+1\leq 0$ ;
(ii) $\alpha_{0}^{2}(\alpha_{1}^{2}-1)^{2}\leq(\alpha_{0}^{2}-1)\alpha_{1}^{2}(\alpha_{2}^{2}-1)$ .
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Before proving the next result, we recall that a weighted shift $W_{\alpha}$ with positive
weights $\alpha=\{\alpha_{n}\}_{n=0}^{\infty}$ is 2-isometric if and only if there exists $q\in[0, \infty)$ such that

$\alpha_{n}=\sqrt{\frac{1+(n+1)q}{1+nq}}$ , $n\geq 0$ .

(see [7, Lemma 6.1 (ii)]). The measure associated with such $W_{\alpha}$ is equal to $q\cdot\delta_{1}$ .

If $q=1$ , then $W_{\alpha}$ is called the Dirichlet weighted shift.
PROPOSITION 4.3 (Four weights). A sequence $\alpha=\{\alpha_{i}\}_{i=0}^{3}$ of positive real

numbers such that $\alpha_{0}>1$ and $\alpha_{1}>1$ has a completely $hyperexpan6ive$ completion

if and only if one of the following two disjunctive conditions holds:
(i) $\alpha$ has a 2-isometric completion;
(ii) the following three inequalities hold:

(ii-a) $\alpha_{0}^{2}\alpha_{1}^{2}-2\alpha_{0}^{2}+1<0$,
(ii-b) $\alpha_{1}^{2}(\alpha_{2}^{2}-1)^{2}\leq(\alpha_{1}^{2}-1)\alpha_{2}^{2}(\alpha_{3}^{2}-1)$ ,
(ii-c) $\alpha_{0}^{2}(\alpha_{1}^{2}\alpha_{2}^{2}-2\alpha_{1}^{2}+1)^{2}\leq(\alpha_{0}^{2}\alpha_{1}^{2}-2\alpha_{0}^{2}+1)\alpha_{1}^{2}(\alpha_{2}^{2}\alpha_{3}^{2}-2\alpha_{2}^{2}+1)$ .

Moreover, if (i) holds, then $\alpha$ has a unique completely hyperexpansive completion.

4.2. Five weights: quasi- and nearly 2-isometries. A completely hyper-
expansive weighted shift $W_{\alpha}$ is said to be $quas\cdot i-2-isomet\dot{m}c$ if it is associated with
a measure of the form $c\cdot\delta_{\lambda}$ , where $\lambda\in[0,1]$ and $c\in[0, \infty)$ . Owing to Proposition
3.1, the weights $\alpha=\{\alpha_{n}\}_{n=0}^{\infty}$ of a quasi-2-isometric weighted shift $W_{\alpha}$ associated
with the measure $c\cdot\delta_{\lambda}$ are given by

(4.1) $\alpha_{n}=\{\begin{array}{ll}\sqrt{\frac{(1-\lambda)+c(1-\lambda^{n+1})}{(1-\lambda)+c(1-\lambda^{n})}} if \lambda\in[0,1),\sqrt{\frac{1+c(n+1)}{1+cn}} if \lambda=1,\end{array}$ $n\geq 0$ .

A completely hyperexpansive weighted shift $W_{\alpha}$ is said to be nearly 2-isometric if
it is associated with a measure of the form $c\cdot\delta_{0}+d\cdot\delta_{1}$ , where $c,d\in[0, \infty)$ .

We now consider the case of five weights.

THEOREM 4.4 (Five weights). A sequence $\alpha=\{\alpha_{i}\}_{i=0}^{4}$ ofpositive real numbers
with $\alpha_{0}>1$ has a completely hyperexpansive completion if and only if one of the
following two disjunctive conditions holds:

(i) $\alpha$ has either a quasi-2-isometric completion or a nearly-2-isometric com-
pletion;

(ii) the following four inequalities hold:
(ii-a) $\alpha_{0}^{2}(\alpha_{1}^{2}-1)^{2}<(\alpha_{0}^{2}-1)\alpha_{1}^{2}(\alpha_{2}^{2}-1)$ ;
(ii-b) $\alpha_{1}^{2}\alpha_{2}^{2}-2\alpha_{1}^{2}+1<0$ ,
(ii-c) $\alpha_{1}^{2}(\alpha_{2}^{2}\alpha_{3}^{2}-2\alpha_{2}^{2}+1)^{2}\leq(\alpha_{1}^{2}\alpha_{2}^{2}-2\alpha_{1}^{2}+1)\alpha_{2}^{2}(\alpha_{3}^{2}\alpha_{4}^{2}-2\alpha_{3}^{2}+1)$ ;
(ii-d) $(\alpha_{0}^{2}-1)(\alpha_{3}^{2}-1)^{2}\alpha_{1}^{2}\alpha_{2}^{4}+(\alpha_{1}^{2}-1)^{2}(\alpha_{4}^{2}-1)\alpha_{0}^{2}\alpha_{2}^{2}\alpha_{3}^{2}+(\alpha_{2}^{2}-1)^{3}\alpha_{0}^{2}\alpha_{1}^{4}\leq$

$(\alpha_{0}^{2}-1)(\alpha_{2}^{2}-1)(\alpha_{4}^{2}-1)\alpha_{1}^{2}\alpha_{2}^{2}\alpha_{3}^{2}+2(\alpha_{1}^{2}-1)(\alpha_{2}^{2}-1)(\alpha_{3}^{2}-1)\alpha_{0}^{2}\alpha_{1}^{2}\alpha_{2}^{2}$ .
Moreover, if (i) holds, then $\alpha$ has a unique completely hyperexpansive completion.

4.3. Six weights: almost and $pseudo-2-isometries$. A completely hyper-
expansive weighted shift $W_{\alpha}$ is said to be almost 2-isometric if it is associated with
a measure of the form $c\cdot\delta_{\lambda}+d\cdot\delta_{1}$ , where $c,d\in[0, \infty)$ and $\lambda\in[0,1)$ . A completely
hyperexpansive weighted shift $W_{\alpha}$ is said to be $pseudo-2-isometr’ic$ if it is associated
with a measure of the form $c\cdot\delta_{0}+d\cdot\delta_{\lambda}$ , where $c,$ $d\in[0, \infty)$ and $\lambda\in(0,1]$ .
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THEOREM 4.5 (Six weights). A sequence $\alpha=\{\alpha_{i}\}_{i=0}^{5}$ of positive real numbers
such that $\alpha_{0}>1$ and $\alpha_{1}>1$ has a completely hyperexpansive completion if and
only if one of the following two disjunctive conditions holds:

(i) $\alpha$ has either an almost 2-isometric or a $pseudo-2-isometr^{v}ic$ completion;
(ii) the following four inequalities hold:

( $ii$- $a$ ) $\alpha_{1}^{2}(\alpha_{2}^{2}-1)^{2}<\alpha_{2}^{2}(\alpha_{1}^{2}-1)(\alpha_{3}^{2}-1)$ ;
(ii-b) $\alpha_{0}^{2}\alpha_{1}^{2}-2\alpha_{0}^{2}+1<0_{1}$.
( $ii$- $c$ ) $\alpha_{0}^{2}(\alpha_{1}^{2}\alpha_{2}^{2}-2\alpha_{1}^{2}+1)^{2}<\alpha_{1}^{2}(\alpha_{2}^{2}\alpha_{3}^{2}-2\alpha_{2}^{2}+1)(\alpha_{0}^{2}\alpha_{1}^{2}-2\alpha_{0}^{2}+1)$;
(ii-d) $\det\Omega_{1}(3)\geq 0$ and $\det\Theta_{0}(2)\geq 0$ (see Theorem 3.6 for definitions).

Moreover, if (i) hol&, then $\alpha$ has a unique completely hyperexpansive completion.

5. Applications to the subnormal completion problem

We begin by relating the contractive subnormal completion problem to the
completely hyperexpansive completion problem. Fix $m\in\{0,1,2, \ldots\}\cup\{\infty\}$ . Let
$\alpha=\{\alpha_{n}\}_{n=0}^{m+1}$ be a sequence of real numbers such that $\alpha_{0}=\sqrt{2}$ and $\alpha_{n}>1$ for
all $n\in\lfloor 1,$ $m+1\rfloor$ . Set $\zeta=\Pi_{m+1}(\alpha)$ and $\gamma=\Delta_{m+1}(\zeta)$ (cf. (3.2) and (3.4) for
definitions). Note that $\gamma_{0}=1$ and $\gamma_{n}>0$ for all $n\in\lfloor 1,$ $m+1\rfloor$ . Set $\beta=\Pi_{m}^{-1}(\gamma)$ ,
$i.e$ . (cf. (3.3)),

(5.1) $\beta_{n}=\sqrt{\frac{\gamma_{n+1}}{\gamma_{n}}}=\alpha_{n}\sqrt{\frac{\alpha_{n+1}^{2}-1}{\alpha_{n}^{2}-1}}$ , $n\in\lfloor 0,$ $m\rfloor$ .

Then $\beta_{n}>0$ for all $n\in\lfloor 0,$ $m\rfloor$ . Conversely, if $\beta=\{\beta_{n}\}_{n=0}^{m}$ is a sequence of positive
real numbers, then $\alpha$ $:=(\Pi_{m+1}^{-1}0\Delta_{m+1}^{-1}0\Pi_{m})(\beta)$ is a sequence of real numbers
such that $\alpha_{0}=\sqrt{2}$ and $\alpha_{n}>1$ for all $n\in\lfloor 1,$ $m+1\rfloor$ (cf. (3.5)). The transformation

(5.2) $\alpha\mapsto\beta=(\Pi_{m}^{-1}0\Delta_{m+1}0\Pi_{m+1})(\alpha)$

is a bijection between the set of all sequences $\alpha=\{\alpha_{n}\}_{n=0}^{m+1}$ of real numbers such
that $\alpha_{0}=\sqrt{2}$ and $\alpha_{n}>1$ for all $n\in\lfloor 1,$ $m+1\rfloor$ , and the set of all sequences
$\beta=\{\beta_{n}\}_{n=0}^{m}$ of positive real numbers.

LEMMA 5.1. If $\alpha=\{\alpha_{n}\}_{n=0}^{\infty}$ is a bounded sequence of positive real numbers
such that $\alpha_{0}=\sqrt{2},$ $\alpha_{1}>1$ and the weighted shift $W_{\alpha}$ is completely hyperexpansive,
then $\alpha_{n}>1$ for all $n\geq 1$ , the sequence $\beta$ $:=(\Pi_{\infty}^{-1}0\Delta_{\infty}0\Pi_{\infty})(\alpha)$ is bounded and
the weighted shift $W_{\beta}$ is contractive and subnormal. Conversely, if $\beta=\{\beta_{n}\}_{n=0}^{\infty}$ is
a bounded sequence ofpositive real numbers and the weighted shift $W_{\beta}$ is contmctive
and subnomal, then the sequence $\alpha$ $:=(\Pi_{\infty}^{-1}0\Delta_{\infty}^{-1}0\Pi_{\infty})(\beta)$ is bounded, $\alpha_{0}=\sqrt{2}$ ,
$\alpha_{n}>1$ for all $n\geq 1$ , and the weighted shift $W_{\alpha}$ is completely hyperexpansive.

We are now ready to relate the contractive subnormal completion problem to
the completely hyperexpansive completion problem.

PROPOSITION 5.2. Fix a nonnegative integer $m$ . Let $\beta=\{\beta_{n}\}_{n=0}^{m}$ be a sequence
of positive real numbers and let $\alpha$ $:=(\Pi_{m+1}^{-1}0\Delta_{m+1}^{-1}0\Pi_{m})(\beta)$ (equivalently: $\alpha=$

$\{\alpha_{n}\}_{n=0}^{m+1}$ is a sequence of real numbers such that $\alpha_{0}=\sqrt{2}$ and $\alpha_{n}>1$ for all
$n\in\lfloor 1,$ $m+1\rfloor$ , and $\beta=(\Pi_{m}^{-1}0\Delta_{m+1}0\Pi_{m+1})(\alpha))$ . Then $\beta$ has a contractive
subnormal completion if and only if $\alpha$ has a completely hyperexpansive completion.
Moreover, if $m\geq 2$ and $\beta$ has a contmctive subnormal completion, then the numbers
$\beta_{0},$ $\ldots,\beta_{m}$ are distinct if and only if $\alpha$ has no $pseudo-2-isomet\dot{n}c$ completion.
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Next, we consider the ontractive subnormal completions for five weights.

THEOREM 5.3. A sequence $\{\beta_{n}\}_{n=0}^{4}$ of distinct positive real numbers has a con-
tractive subnormal completion if and only if the following two disjunctive conditions
hold:

(i) $the7e$ exist $c\in(0, \infty)$ and $\lambda\in(0,1)$ such that

(5.3) $\beta_{n}=\sqrt{\frac{c\lambda^{n+1}+1}{c\lambda^{n}+1}}$, $n\in\lfloor 0,4\rfloor$ ;

(ii) the following inequalities hold:
(ii-a) $\beta_{1}<\beta_{2}$ ;
(ii-b) $\beta_{0}<1$ ,
(ii-c) $(\beta_{1}^{2}-\beta_{0}^{2})+\beta_{1}^{2}(\beta_{0}^{2}-\beta_{2}^{2})+\beta_{0}^{2}\beta_{1}^{2}(\beta_{2}^{2}-\beta_{1}^{2})>0,\cdot$

(ii-d) $\eta_{4}\geq 0$ and $\eta_{1}+\beta_{2}^{2}\eta_{2}+\beta_{1}^{2}\beta_{2}^{2}\eta_{3}-\beta_{0}^{2}\beta_{1}^{2}\beta_{2}^{2}\eta_{4}\geq 0$ , where

(5.4) $\{\begin{array}{l}\eta_{1}=2\beta_{0}^{2}\beta_{1}^{2}\beta_{2}^{2}-\beta_{0}^{2}\beta_{1}^{4}-\beta_{0}^{2}\beta_{2}^{2}\beta_{3}^{2}+\beta_{1}^{2}\beta_{2}^{2}\beta_{3}^{2}-\beta_{1}^{2}\beta_{2}^{4},\eta_{2}=-\beta_{0}^{2}\beta_{1}^{2}\beta_{2}^{2}-\beta_{0}^{2}\beta_{1}^{2}\beta_{3}^{2}+\beta_{0}^{2}\beta_{1}^{4}+\beta_{0}^{2}\beta_{3}^{2}\beta_{4}^{2}+\beta_{1}^{2}\beta_{2}^{2}\beta_{3}^{2}-\beta_{1}^{2}\beta_{3}^{2}\beta_{4}^{2},\eta_{3}=-\beta_{0}^{2}\beta_{1}^{2}\beta_{2}^{2}+\beta_{0}^{2}\beta_{1}^{2}\beta_{3}^{2}+\beta_{0}^{2}\beta_{2}^{2}\beta_{3}^{2}-\beta_{0}^{2}\beta_{3}^{2}\beta_{4}^{2}+\beta_{2}^{2}\beta_{3}^{2}\beta_{4}^{2}-\beta_{2}^{2}\beta_{3}^{4},\eta_{4}=2\beta_{1}^{2}\beta_{2}^{2}\beta_{3}^{2}-\beta_{1}^{2}\beta_{2}^{4}-\beta_{1}^{2}\beta_{3}^{2}\beta_{4}^{2}+\beta_{2}^{2}\beta_{3}^{2}\beta_{4}^{2}-\beta_{2}^{2}\beta_{3}^{4}.\end{array}$

Finally, we discuss the subnormal completions for five weights,

THEOREM 5.4. A sequence $\beta=\{\beta_{n}\}_{n=0}^{4}$ of distinct positive real numbers has
a subnomal completion if and only if the following requirements are satisfied:

(i) $\beta_{0}<\beta_{1}<\beta_{2}$ ;
(ii) one of the following two disjunctive conditions hol&:

(ii-a) $\eta_{1}>0$ and $\eta_{4}\geq 0$ ,
(ii-b) $\eta_{1}=\eta_{4}=0$ .

Moreover, if (ii-b) hol&, then $\eta_{2}=\eta_{3}=0$ .
PROPOSITION 5.5. A sequence $\beta=\{\beta_{n}\}_{n=0}^{4}$ of distinct positive real numbers

has a subnormal completion if and only if the following requirements are satisfied:
(i) $\beta_{0}<\beta_{1}<\beta_{2}$ ;
(ii) one of the following four disjunctive conditions holds:

(ii-a) $\eta_{1}>0$ and $\eta_{4}\geq 0$ ,
(ii-b) $\eta_{1}=0,$ $\eta_{2}>0$ and $\eta_{4}\geq 0$ ,
(ii-c) $\eta_{1}=\eta_{2}=0,$ $\eta_{3}>0$ and $\eta_{4}\geq 0$ ,
(ii-d) $\eta_{1}=\eta_{2}=\eta_{3}=\eta_{4}=0$ .

We conclude this work by showing that the solution of the subnormal comple-
tion problem for five weights given in [9, page 45] is wrong. Indeed, this solution
implies that a sequence $\beta_{0}<\beta_{1}<\beta_{2}<\beta_{3}<\beta_{4}$ of positive real numbers has
a subnormal completion if and only if the sequences $\{\beta_{n}\}_{n=0}^{3}$ and $\{\beta_{n}\}_{n=1}^{4}$ have
subnormal completions. However, as is justified below, this is not true.

Example 5.6. Set $\beta_{0}=\sqrt{\frac{3}{4}},$ $\beta_{1}=\sqrt{\frac{5}{6}},$ $\beta_{2}=\sqrt{\frac{9}{10}},$ $\beta_{3}=\sqrt{\frac{17}{18}}$ and $\beta_{4}=1$ .

Then $\beta_{0}<\beta_{1}<\beta_{2}<\beta_{3}<\beta_{4},$ $\eta_{1}=0,$ $\eta_{2}=-\frac{1}{432},$ $\eta_{3}=\frac{1}{240}$ and $\eta_{4}=\frac{1}{540}$ . By
Theorem 5.4, the sequence $\{\beta_{n}\}_{n=0}^{4}$ does not have subnormal completion. Since the
inequalities $\eta_{1}\geq 0$ and $\eta_{4}\geq 0$ are equivalent respectively to the first and the second
inequality in the assertion 3 of [9, Corollary 2.12], we infer from[10, Remark, $p$ .
377] that the sequences $\{\beta_{n}\}_{n=0}^{3}$ and $\{\beta_{n}\}_{n=1}^{4}$ have subnormal completions.
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