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ABSTRACT. We survey some recently introduced concepts and techniques that have
been applied to settle affirmatively an open problem of several years standing of

whether the least-squares mean for positive definite matrices is monotone for the
usual (Loewner) order. The approach involves treating the set of positive definite
matrices equipped with the trace metric as a nonpositively curved (NPC) metric
space and applying the probability and random variable theoly of such spaces to the
problem at hand. These techniques extend to establish other basic properties of the
least squares mean such as continuity and joint concavity. Moreover, we introduce
a weighted least squares means and extend our results to this setting. Least squares
mean, positive definite matix, monotonicity, metric nonpositive curvature, symmet-
ric cone, Loewner-Heinz space, metric random variables, barycenter $[2000]15A48$ ,

$53C70,60B05,60G50,52A55$

1. INTRODUCTION

Positive definite matrices have become fundamental computational objects in many
applied areas. They appear as covariance matrices in statistics, as elements of the
search space in convex and semidefinite programming, as kemels in machine learning,
as density matrices in quantum information, and as diffusion tensors in medical imag-
ing, to cite a few. A variety of metric-based computational algorithms for positive
definite matrices have arisen for approximations, interpolation, filtering, estimation,
and averaging, the last being the principal concern of this paper.

In recent years, it has been increasingly recognized that the Euclidean distance
is often not the most suitable for the space $\mathbb{P}$ of positive definite matrices and that
working with the appropriate geometry does matter in computational problems. It
is thus not surprising that there has been increasing interest in the trace metric $\delta$ ,
the distance metric arising from the natural Riemannian structure on $\mathbb{P}$ making it a

Date: December, 2010.

数理解析研究所講究録
第 1737巻 2011年 56-64 56



JIMMIE LAWSON

Riemannian manifold, indeed a symmetric space, of negative curvature:

$\delta(A, B)=(\sum_{i=1}^{k}\log^{2}\lambda_{i}(A^{-1}B))^{\frac{1}{2}}$ ,

where $\lambda_{i}(X)$ denotes the ith eigenvalue of $X$ in non-decreasing orde
Once one realizes that the matrix geometrtc mean

$\mathfrak{G}_{2}(A, B)=A\neq B:=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$

is the metric midpoint of $A$ and $B$ for the trace metric $\delta$ , it is natural to use an
averaging technique over this metric to extend this mean to n-variables. First M.
Moakher [12] and then Bhatia and Holbrook [5] suggested the least squares mean,
taking the mean to be the unique minimizer of the sum of the squares of the distances:

$6_{n}(A_{1}, \ldots, A_{n})=\arg\min_{X\in \mathbb{P}}\sum_{i=1}^{n}\delta^{2}(X, A_{i})$ .

This idea had been anticipated by \’Elie Cartan (see, for example, Section 6.1.5 of [3],
who showed among other things such a unique minimizer exists if the points all lie
in a convex ball in a Riemannian manifold, which is enough to deduce the existence
of the least squares mean globally for P. The mean is sometimes called the Karcher
mean in light of its appearance in his work on Riemannian manifolds [9]. Indeed, he
considered a weighted least squares mean:

$\mathfrak{G}_{n}(w_{1}, \ldots, w_{n};A_{1}, \ldots, A_{n})=\arg\min_{\in X\mathbb{P}}\sum_{i=1}^{n}w_{i}\delta^{2}(X, A_{i})$ ,

where the non-negative $w_{i} satis\mathfrak{h}\sum_{i=1}^{n}w_{i}=1$ .
In [2] T. Ando, C.K. Li and R. Mathias gave a construction (frequently called “sym-

metrization”) that extended the two-variable matrix geometric mean to n-variables
for each $n\geq 3$ and identified a list of properties that this extended mean satisfied.
Both contributions were important and have been influential in subsequent develop-
ments. In light of this paper it is natural to the the following
Question. Are the Ando-Li-Mathias properties valid for the least squares mean?
In particular, Bhatia and Holbrook asked whether the least squares n-mean was mono-
tonic in each of its arguments. Computer calculations indicated “Yes.” The answer is
indeed “yes,” as has recently been shown in [11], but showing it required new tools:
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the theory of nonpositively curved metric spaces, techniques from probability and
random variable theory, and the recent combination of the two, particularly by K.-T.

Sturm [14].

2. NPC SPACES

The setting appropriate for our considerations is that of globally nonpositively

curved metric spaces, or $NPC$ spaces for short: These are complete metric spaces
$M$ satisfying for each $x,$ $y\in M$ , there exists $m\in M$ such that for all $z\in M$

$d^{2}(m, z) \leq\frac{1}{2}d^{2}(x, z)+\frac{1}{2}d^{2}(y, z)-\frac{1}{4}d^{2}(x,y)$ . (NPC)

Such spaces are also called (global) CAT(0)-spaces or Hadamard spaces. Equation

(NPC) is sometimes referred to as the semiparallelogram law, since it is a reformu-
lation of the parallelogram law in Hilbert spaces with the equality replaced by an
inequality (see, e.g., [10]). It is satisfied by the length metric in any simply connected
nonpositively curved Riemannian manifold. Hence the metric definition yields a met-

ric generalization of nonpositive culvature. We record the important

Fact. The tmce metric on the Riemannian symmetric space of positive definite ma-
trices is a particular and important example of an $NPC$ space.

The theory of such NPC spaces is quite extensive (see, e.g., [7]). In particular the
$m$ appearing in

$d^{2}(m, z) \leq\frac{1}{2}d^{2}(x, z)+\frac{1}{2}d^{2}(y, z)-\frac{1}{4}d^{2}(x, y)$ (NPC)

is the unique metric midpoint between $x$ and $y$ . By inductively choosing midpoints

for dyadic rationals and extending by continuity, one obtains for each $x\neq y$ a
unique metric minimal geodesic $\gamma$ : $[0,1]arrow M$ satisfying the defining property
$d(\gamma(t), \gamma(s))=|t-s|d(x, y)$ . We denote $\gamma(t)$ by $x\#_{t}y$ and call it the t-weighted mean
of $x$ and $y$ . The midpoint $X\#_{1/2y}$ we denote siinply as $x\# y$ . We remark that by

uniqueness $x\neq_{t}y=y\#_{1-t}x$ ; in particular, $x\# y=y\# x$ . Equation (NPR) admits a
more general equivalent formulation in terms of the weighted mean. For all $0\leq t\leq 1$

we have

$d^{2}(x\#_{t}y, z)\leq(1-t)d^{2}(x, z)+td^{2}(y, z)-t(1-t)d^{2}(x, y)$ .
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The weighted least squares mean $\emptyset(\cdot;\cdot)$ can be easily formulated in any metric space
$(M, d)$ . Given $(a_{1}, \ldots, a_{n})\in M^{n}$ , and positive real numbers $w_{1},$ $\ldots,$ $w_{n}$ summing to
1, we define

(2.1) $\mathfrak{G}_{n}(w_{1}, \ldots, w_{n};a_{1}, \ldots, a_{n})$ $:= \arg\min_{z\in M}\sum_{i=1}^{n}w_{i}d^{2}(z, a_{i})$ ,

provided the minimizer exists and is unique. In general the minimizer may fail to
exist or fail to be unique, but existence and uniqueness always holds for NPC spaces,
as can be readily deduced from the uniform convexity of the metric.

One other mean will play an important role in what follows, one that we shall call
the inductive mean following the terminology of Sturm. It appeared earlier in the
work of [13, 1]. It is defined inductively for NPC spaces (or more generally for metric
spaces with weighed means $x\#_{t}y$ ) for each $k\geq 2$ by $S_{2}(x, y)=x\# y$ and for $k\geq 3$ ,
$S_{k}(x_{1}, \ldots, x_{k})=S_{k-1}(x_{1}, \ldots, x_{k-I})\#_{\frac{1}{k}X_{k}}$ .

The new proof strategy for showing monotonicity and other properties for the least
squares mean consists of two major steps.
Step 1: Using induction one shows that a cer tain property (e.g. monotonicity) of
the mean $x\#_{t}y$ carries over to the inductive mean $S_{n}$ . This is often possible since the
inductive mean is dened directly from the weighted 2-mean.
Step 2: One shows that the property in question transfers $hom$ the inductive mean
to the least squares mean by using Sturms theorem that the least squares mean $\emptyset$ is
the pointwise limit $\lim_{narrow\infty}S_{n}$ a.e.

3. METRIC-VALUED RANDOM VARIABLES

In recent years signicant portions of the classical theory of real-valued random
variables on a probability space have been successfully generalized to the setting in
which the random variables take values in a metric space $M$ . We quickly recall some
of this theory as worked out, for example, by Es-Sahib and Heinich [8] and Sturm
[14].

Let $(\Omega, \mathcal{A}, P)$ be a probability space: a set $\omega$ equipped with a $\sigma$-algebra $A$ of subsets,
and a $\sigma$-additive probability measure $P$ on $\mathcal{A}$ . We write the measure or probability of
$A\in \mathcal{A}$ by $P(A)$ . For a separable metric space $(M, d)$ , an M-valued random variable
is a function $X$ : $\Omegaarrow M$ that is measurable in the sense that $X^{-1}(B)?\mathcal{A}$ for every
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Borel subset $B$ of $M$ . The push-forward of the measure $P$ by a random variable
$X$ : $\Omegaarrow M$ is denoted and dened by $q_{X}(B)=P(X^{-1}(B))$ for each Borel subset $B$ of
$M$ . It is a probability measure on the Borel sets of $M$ and is called the distribution
of $X$ . A sequence of random variables $\{X_{n}\}$ is identically distributed (i.d.) if all have
the same distribution. For any $q_{X}$ -integrable function $\phi$ : $Marrow \mathbb{R}$ , one has the basic
formula

$\int_{M}\phi dq_{X}=\int_{\Omega}\phi XdP$ .

A collection of random variables $\{X_{i} : i\in I\}$ is independent if for every nite $F\subseteq I$ ,
$P( \bigcap_{i\in F}X_{i}^{-1}(B_{i}))=\prod_{i\in F}P(X^{-1}(B_{i}))$ , where $\{B_{i} : i\in I\}$ is any collection of Borel
subsets of $M$ A sequence $\{X_{n}\}$ is i.i. $d$ . if it is both independent and identically

distributed.
We assume henceforth that $(M, d)$ is a separable NPC-space. Let $\mathcal{P}(M)$ denote the

set of probability measures on $(M, \mathcal{B}(M))$ , where $\mathcal{B}(M)$ is the collection of Borel sets.
We define the collection $\mathcal{P}^{1}(M)$ resp. $\mathcal{P}^{2}(M)$ of probability measures $q\in \mathcal{P}(M)$ to

be those satisfying $\int_{M}d(z, x)q(dx)<\infty$ resp. $\int_{M}\mathscr{K}(z, x)q(dx)<\infty$ for some (hence

all) $z\in M$ . Members of $\mathcal{P}^{1}(M)$ are called integrable and those in $\mathcal{P}^{2}(M)$ are called
square integrable. We define a random variable $X$ : $\Omegaarrow M$ to be in $L^{1}$ resp. $L^{2}$ if its

distribution is integrable resp. square integrable. In particular, it is integrable $(=L^{1})$

if

$\int_{\Omega}d(z, X(\omega))P(d\omega)=\int_{M}d(z, x)q_{X}(dx)<\infty$ for $z\in M$ .

Following Sturm [14], we dene the barycenter $b(q)$ by

$b(q)= \arg\min_{z\in M}\int_{M}d^{2}(z, x)q(dx)$ .

for $q\in \mathcal{P}^{2}(M)$ . Sturm uses the uniform convexity of $z\mapsto d^{2}(z, x)$ to show that
independently of $y$ there is a unique $z=b(q)$ , the barycenter (by definition), at which
this minimum is obtained.

Remark 3.1. For the case that $q= \sum_{i=1}^{n}w_{i}\delta_{x_{i}}$ , where $(w_{1}, \ldots, w_{n})$ is a weight and
$\delta_{x_{i}}$ is the point mass at $x_{i}$ , we have

$b(q)=\arg$ $inf\int_{M}d^{2}(z, x)q(dx)=\arg\inf_{z}\sum_{i=1}^{n}w_{i}d^{2}(z, x_{i})=\emptyset_{n}(w_{1}, \ldots, w_{n};x_{1}, \ldots, x_{n})$ .
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In this case $q$ is square integrable and its barycenter $b(q)$ agrees with the weighted
least squares mean of $(x_{1}, \ldots, x_{n})$ .

For $X:\Omegaarrow M$ integrable, we define its expected value $EX$ by

$EX= \arg_{z\in M}\dot{m}f\int_{\Omega}d^{2}(z, X(\omega))\sigma(d\omega)=\arg\min_{z\in M}\int_{M}d^{2}(z, x)q_{X}(dx)=b(q_{X})$ .

From this definition it is clear that i.d. random variables have the same expectation.
It is also possible to define and prove notions of a Law of Large Numbers for a

sequence of i.i. $d$ . random variables into a metric space $M$ . Let $\{X_{n} : n\in \mathbb{N}\}$ be a
sequence of independent, identically distributed random variables on some probability
space $(\Omega, A, \sigma)$ into $M$ . Let $\mu_{n}$ be an n-mean on $M$ for each $n$ , for example one
obtained by the symmetrization procedure or least squares. We use these means to
form the “average” $Y_{n}$ of the given random variables according to the rule $Y_{n}(\omega)$ $:=$

$\mu_{n}(X_{1}(\omega), \ldots, X_{n}(\omega))$ . Now under suitable hypotheses Es-Sahib and Heinich [8] and
Sturm [14] show that a strong law of large numbers is satisfied, that is, the $Y_{n}$ converge
pointwise a.e. to a common point $b$ . The principal result of Sturm [14, Theorem 4.7]
is crucial for our purposes.

Theorem 3.2. Let $\{X_{n}\}_{n\in N}$ be a sequence of bounded $i.i.d$. random variables from a
probability space $(\Omega, A, \sigma)$ into an $NPC$ space M. Let $S_{n}$ denote the inductive mean
for each $n\geq 2$ , and set $Y_{n}(\omega)=S_{n}(X_{I}(\omega), \ldots, X_{n}(\omega))$ . Then $Y_{n}(\omega)arrow EX_{1}$ as
$narrow\infty$ for almost all $\omega\in\Omega$ .

4. LOEWNER-HEINZ SPACES

The fundamental $Loewner-Hein\dot{z}$ inequality for positive definite matrices asserts
that $A^{I/2}\leq B^{1/2}$ whenever $A\leq B$ . This can be written altematively as $A\# I\leq$

$B\# I$ whenever $A\leq B$ and extends to the equivalent monotonicity property that
$A_{I}\# A_{2}\leq B_{1}\neq B_{2}$ whenever $A_{1}\leq B_{1}$ and $A_{2}\leq B_{2}$ . These considerations motivate
us to define a Loewner-Heinz $NPC$ space as an NPC space equipped with a closed
partial order $\leq$ satis$\Phi ingx_{1}\neq x_{2}\leq y_{1}\neq y_{2}$ whenever $x_{i}\leq y_{i}$ for $i=1,2$ . (Recall that
a partial order on a topological space $X$ is closed if $\{(x, y) : x\leq y\}$ is closed in $X\cross X$

equipped with the product topology.) A mean $\mu$ : $M^{n}arrow M$ on a partially ordered
metric space is called order-preserving or monotonic if $x_{i}\leq y_{i}$ for $i=1,$ $\ldots,$

$n$ implies
$\mu(x_{1}, \ldots, x_{n})\leq\mu(y_{1}, \ldots, y_{n})$ .
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From the Loewner-Heinz property and by induction one obtains that the inductive
mean $S_{n}$ is order-preserving. This, together with Sturm’s theorem yields the
Theorem. Let $(M, d, \leq)$ be a Loewner-Heinz $NPC$ space. Then for a fixed weight
$w=(w_{1}, \ldots, w_{n})$ the weighted least squares mean $6_{n}$ is monotonic for $n\geq 2$ .

Method of proof: Assume $x_{i}\leq y_{i}$ for $1\leq i\leq n$ . Let $\Omega_{k}$ be a copy of the n-
element set $\{\xi_{1}, \ldots, \xi_{n}\}$ equipped with the measure $\sum_{i=1}^{n}w_{i}\delta_{\xi_{i}}$ and $\Omega=\prod_{k=1}^{\infty}\Omega_{k}$ be
the countable product of the $\Omega_{k}$ with the product measure. Let $X_{k}$ : $\Omegaarrow M$ be
defined by $X_{k}(\omega)=x_{i}$ if $\pi_{k}(\omega)=\xi_{i}$ , where $\pi_{k}$ : $\Omegaarrow\Omega_{k}$ is projection into the
kth-coordinate. Similarly we define $\tilde{X}_{k}$ : $\Omegaarrow M$ by $\tilde{X}_{k}(\omega)=y_{i}$ if $\pi_{k}(\omega)=\xi_{i}$ .
Then $\{X_{k}\}$ is i.i. $d$ . with distribution $\sum_{i=1}^{n}w_{i}\delta_{x_{i}}$ , while $\{\tilde{X}_{k}\}$ is i.i. $d$ . with distribution
$\sum_{i=1}^{n}w_{i}\delta_{y_{i}}$ . We note that $(X_{I}(\omega), \ldots, X_{k}(\omega))$ is coordinatewise less than or equal to
$(\tilde{X}_{1}(\omega), \ldots,\tilde{X}_{k}(\omega))$ since $x_{i}\leq y_{i}$ for each $i=1,$ $\ldots,$

$n$ .

We define $Y_{k},\tilde{Y}_{k}$ : $\Omegaarrow M$ by $Y_{k}(\omega)=S_{k}(X_{1}(\omega), \ldots, X_{k}(\omega))$ and $\tilde{Y}_{k}(\omega)=$

$S_{k}(\tilde{X}_{1}(\omega), \ldots,\tilde{X}_{k}(\omega))$ . By monotonicity of the inductive mean $Y_{k}(\omega)\leq\tilde{Y}_{k}(\omega)$ for
each $\omega\in\Omega$ . By Sturm’s Theorem we have that $\lim_{karrow\infty}Y_{k}(\omega)=\otimes_{n}(w;x_{1}, \ldots, x_{n})$

a.e. and $\lim_{karrow\infty}\tilde{Y}_{k}(\omega)=\otimes_{n}(w;y_{1}, \ldots , y_{n})$ a.e. By the closedness of the partial order
$6_{n}(w;x_{1}, \ldots.’ x_{n})\leq\otimes_{n}(w;y_{1}, \ldots, y_{n})$ .

Since the trace metric on the space $\mathbb{P}$ of $m\cross m$ positive definite (real or complex)

matrices makes it a Loewner-Heinz NPC space with respect to the Loewner order
(see e.g. [10]), we have the following
Corollary. The weighted least squares mean on the set $\mathbb{P}$ of positive definite matrices
is monotonic.

5. OTHER PROPERTIES AND OPEN PROBLEMS

Using the techniques of the previous section, we can establish other basic properties
of the least squares mean.
(1) The least squares mean is jointly concave.
(2) The weighted least squares mean is bounded above the the corresponding weighted
arithmetic mean and below by the correponding harmonic mean.
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(3) The least squares mean satisfies the Busemann-type inequality

$d( \otimes_{n}(w;x_{I}, \ldots, x_{n}), \mathfrak{G}_{n}(w;y_{1}, \ldots, y_{n}))\leq W(q_{1}, q_{2})\leq\sum_{i=1}^{n}w_{i}d(x_{i}, y_{i})$ .

One loses the NPC property of the metric when one passes to positive definite opera-
tors on an infinite dimensional Hilbert space. The question then arises whether some
weakened version of Sturm $s$ theorem remains valid. If the inductive means converge
a.e., then the limit would be a natural candidate for a generalization of the least
squares mean to this more general setting and the techniques under consideration
should apply to deduce some of its basic properties.

In the finite-dimensional setting, it is only in the case of averaging with the inductive
mean that the limit via the Law of Large Numbers is known. Can one say anything if
one averages instead with the Ando-Li-Mathias mean or the Bini-Meini-Poloni mean
[6]?
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