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Abstract. Riemannian mean is a kind of geometric
mean of n-matrices which is an extension of geometric
mean of 2-matrices. In this paper, we shall show some
matrix inequalities via Riemannian mean which are
extensions of well-known matrix inequalities via geo-
metric mean of 2-matrices. Exactly, we shall show ex-
tensions of so-called Ando-Hiai inequality and a char-
acterization of chaotic order. Lastly, we shall discuss
about the problem whether the same results are satis-
fied or not for other geometric means of n-matrices.

1. INTRODUCTION

For positive invertible matrices $A$ and $B$ , their weighted geometric
mean $A\#_{\alpha}B$ is well known as
(1.1) $A\#_{\alpha}B=A^{\frac{1}{2}}(A^{\frac{-1}{2}BA^{\frac{-1}{2})^{\alpha}A^{\frac{1}{2}}}}$ for $\alpha\in[0,1]$ .

Especially, in the case $\alpha=\frac{1}{2}$ , we say $A\#_{\frac{1}{2}}B$ just a geometric mean,
and denote it by $A\# B$ , simply. If $A$ and $B$ be non-invertible positive
matrices, their geometric mean can be defined by

$A \#_{\alpha}B=\lim_{\epsilonarrow+0}(A+\epsilon I)\#_{\alpha}(B+\epsilon I)$ for $\alpha\in[0,1]$ .

To extend the definition of $A\# B$ into geometric mean of n-matrices
was a long standing problem. Recently, a nice definition of geometric
mean of n-matrices was given in [3]. Since then, many authors study
geometric mean of n-matrices, and we know three kind of definitions
of geometric means. The one is defined by Ando-Li-Mathias in [3],
the second one is defined in [9, 6] which is a modification of geometric
mean by Ando-Li-Mathias. The third one is called Riemannian mean or
the least squares mean defined in [5, 10, 12]. These geometric means
have the same 10 properties including monotonicity and arithmetic-
geometric means inequality (which will be introduced in the later).

On the other hands, there are many results on geometric mean of
2-matrices. Especially, the following result is well known as Ando-Hiai
inequality [2]: Let $\alpha\in[0,1]$ . Then for positive matrices $A$ and $B$ ,

$A\#_{\alpha}B\leq I$ implies $A^{p}\#_{\alpha}B^{p}\leq I$ for all $p\geq 1$ ,

where the order is defined by positive definiteness in the whole paper.
For positive invertible matrices $A$ and $B$ , the order $\log A\geq\log B$ is

called chaotic order. It is a weaker order than the usual order $A\geq B$
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since $\log t$ is an operator monotone function. As a characterization
of chaotic order, it is well known that the following statements are
mutually equivalent [1, 7, 8, 15]:

(1) $\log A\geq\log B$ ,
(2) $A^{p}\geq(A^{\frac{p}{2}}B^{p}A^{\frac{p}{2}})^{\frac{1}{2}}$ for all $p\geq 0$ ,
(3) $A^{r}\geq(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{r}{p+r}}$ for all $p,$ $r\geq 0$ .

Ando-Hiai inequality and the above characterization of chaotic order
are well known and important in the theory of matrix (operator) in-
equalities.

In this paper, we shall show some matrix inequalities via Riemann-
ian mean. Some of them are extensions of Ando-Hiai inequality and
characterization of chaotic order introducing in the above. In Section
2, we shall introduce the definition of Riemannian mean and its basic
properties. In Section 3, we will show some matrix inequalities of Rie-
mannian mean which include extensions of Ando-Hiai inequality and
characterization of chaotic order. In Section 4, we will discuss whether
our results hold for other two geometric means or not.

2. RIEMANNIAN MEAN AND ITS BASIC PROPERTIES

In this section, we shall introduce the definition of Riemannian mean
and its basic properties. In what follows let $M_{m}(\mathbb{C})$ be the set of all
$m\cross m$ matrices on $\mathbb{C}$ , and let $P_{m}(\mathbb{C})$ be the set of all $m\cross m$ positive
invertible matrices. For $A,$ $B\in M_{m}(\mathbb{C})$ , define an inner product $\langle A,$ $B\rangle$

by $\langle A,$ $B\rangle=trA^{*}B$ . Then $M_{m}(\mathbb{C})$ is an inner product space equipped
with the norm $\Vert A\Vert_{2}=(trA^{*}A)^{\frac{1}{2}}$ , moreover $P_{m}(\mathbb{C})$ is a differential
manifold, and we can consider the geodesic $[A, B]\subset P_{m}(\mathbb{C})$ which
includes $A,$ $B\in P_{m}(\mathbb{C})$ . It can be parameterized as follows:

Theorem A ([4, 5]). Let $A,$ $B\in P_{m}(\mathbb{C})$ . Then there exists a unique
geodesic $[A, B]$ joining $A$ and B. It has a parametrization

$\gamma(t)=A\#_{t}B=A^{\frac{1}{2}}(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})^{t}A^{\frac{1}{2}}$ , $t\in[0,1]$ .

Furthermore, we have a distance $\delta_{2}(A, B)$ between $A$ and $B$ along the
geodesic $[A, B]$ as

$\delta_{2}(A, B)=\Vert\log A^{\frac{-1}{2}BA^{\frac{-1}{2}}}\Vert_{2}$ .

We call the metric $\delta_{2}(A, B)$ between $A$ and $B$ by Riemannian metric.
A vector $\omega=(w_{1}, w_{2}, \cdots, w_{n})$ is called a probability vector if and

only if its components satisfy $\sum_{i}w_{i}=1$ and $w_{i}>0$ for $i=1,2,$ $\cdots,$ $n$ .
Then weighted Riemannian mean is defined as follows:

Definition 1 ([4, 5, 10, 12]). Let $A_{1},$ $\cdots,$ $A_{n}\in P_{m}(\mathbb{C})$ , and $\omega=$

$(w_{1}, \cdots, w_{n})$ be a probability vector. Then weighted Riemannian mean
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$\otimes_{\delta}(\omega;A_{1}, \cdots, A_{n})\in P_{m}(\mathbb{C})$ is defined by

$\otimes_{\delta}(\omega;A_{1}, \cdots, A_{n})=aXrgnin\sum_{i=1}^{n}w_{i}\delta_{2}^{2}(A_{i}, X)\in P_{m}(\mathbb{C})$
’

where argmin$f(X)$ means the point $X_{0}$ which attains minimum value
of the function $f(X)$ .

It is easy to see that weighted Riemannian mean of 2-matrices just
coincides with geometric mean in (1.1) by the following property of
Riemannian metric.

$\delta_{2}(A, A\#_{\alpha}B)=\alpha\delta_{2}(A, B)$ for $\alpha\in[0,1]$ .

This definition is firstly introduced in [5, 12] for the case of $\omega=$

$( \frac{1}{n}, \cdots, \frac{1}{n})$ . In this case, we denote weighted Riemannian mean by
$\otimes_{\delta}(A_{1}, \cdots, A_{n})$ , simply, and we call it just a Riemannian mean. Exis-
tence and uniqueness of Riemannian mean have been already shown in
[5, 12]. Recently, Lawson and Lim defined weighted Riemannian mean
in [10], generally.

It is known that Riemannian mean satisfies the following 10 prop-
erties: Let $A_{i}\in P_{m}(\mathbb{C}),$ $i=1,2,$ $\cdots,$ $n$ , and $\omega=(w_{1}, \cdots, w_{n})$ be a
probability vector. Then

(Pl) If $A_{1},$
$\ldots,$

$A_{n}$ commute with each other, then
$\otimes_{\delta}(\omega;A_{1}, \ldots, A_{n})=A_{1}^{w_{1}}\cdots A_{n}^{w_{n}}$ .

(P2) Joint homogeneity.
$\otimes_{\delta}(\omega;a_{1}A_{1}, \ldots, a_{n}A_{n})=a_{1^{1}}^{w}\cdots a_{n}^{w_{n}}\mathfrak{G}_{\delta}(\omega;A_{1}, \ldots, A_{n})$

for positive numbers $a_{i}>0(i=1, \ldots, n)$ .
(P3) Permutation invariance. For any permutation $\pi$ on $\{$ 1, 2, $\cdots,$ $n\}$ ,

$6_{\delta}(\omega;A_{1}, \ldots, A_{n})=\mathfrak{G}_{\delta}(\pi(\omega);A_{\pi(1)}, \ldots, A_{\pi(n)})$ ,

where $\pi(\omega)=(w_{\pi(1)}, \cdots, w_{\pi(n)})$ .
(P4) Monotonicity. For each $i=1,2,$ $\ldots,$

$n$ , if $B_{i}\leq A_{i}$ , then
$\otimes_{\delta}(\omega;B_{1}, \ldots, B_{n})\leq \mathfrak{G}_{\delta}(\omega;A_{1}, \ldots, A_{n})$ .

(P5) Continuity. For each $i=1,2,$ $\ldots,$
$n$ , let $\{A_{i}^{(k)}\}_{k=1}^{\infty}$ be positive

invertible matrix sequences such that $A_{i}^{(k)}arrow A_{i}$ as $karrow\infty$ .
Then

$\mathfrak{G}_{\delta}(\omega;A_{1}^{(k)}, \ldots, A_{n}^{(k)})arrow 6_{\delta}(\omega;A_{1}, \ldots, A_{n})$ as $karrow\infty$ .
(P6) Congruence invariance. For any invertible matrix $S$ ,

$\emptyset_{\delta}(\omega;S^{*}A_{1}S, \ldots, S^{*}A_{n}S)=S^{*}\mathfrak{G}_{\delta}(\omega;A_{1}, \ldots, A_{n})S$.

(P7) Joint concavity.
$\emptyset_{\delta}(\omega;\lambda A_{1}+(1-\lambda)A_{1}’, \ldots, \lambda A_{n}+(1-\lambda)A_{n}’)$

$\geq\lambda\emptyset_{\delta}(\omega;A_{1}, \ldots, A_{n})+(1-\lambda)\otimes_{\delta}(\omega;A_{1}’, \ldots, A_{n}’)$ for $0\leq\lambda\leq 1$ .
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(P8) Self-duality.

$6_{\delta}(\omega;A_{1}^{-1}, \ldots, A_{n}^{-1})^{-1}=\emptyset_{\delta}(\omega;A_{1}, \ldots, A_{n})$ .

(P9) Determinantial identity.

$\det 6_{\delta}(\omega;A_{1}, \ldots, A_{n})=\prod_{i=1}^{n}(\det A_{i})^{w_{i}}$ .

(P10) Arithmetic-geometric-harmonic means inequalities.

$( \sum_{i=1}^{n}w_{i}A_{i}^{-1})^{-1}\leq\otimes_{\delta}(\omega;A_{1}, \ldots, A_{n})\leq\sum_{i=1}^{n}w_{i}A_{i}$ .

Moreover, instead of continuity (P5), weighted Riemannian mean sat-
isfies non-expansive property as follows:

(P5‘) $\delta_{2}(\otimes_{\delta}(\omega;A_{1}, \cdots, A_{n}), \mathfrak{G}_{\delta}(\omega;B_{1}, \cdots, B_{n}))\leq\sum_{i=1}^{n}w_{i}\delta_{2}(A_{i}, B_{i})$ .

(P3), (P5), (P6) and (P8) follow from the definition of weighted Rie-
mannian mean and properties of Riemannian metric [4, 5, 10]. (Pl),
(P2), (P9) and (P10) follow from the following characterization of
weighted Riemannian mean [10, 12, 16].

Theorem $B$ ([10, 12]). Let $A_{1},$
$\cdots,$ $A_{n}\in P_{m}(\mathbb{C})$ , and $\omega=(w_{1}, \cdots, w_{n})$

be a probability vector. Then $X=6_{\delta}(\omega;A_{1}, \cdots, A_{n})$ is a unique posi-
tive solution of the following matrix equation:

$w_{1}\log X^{\frac{-1}{2}A_{1}x^{\frac{-1}{2}}+\cdots+w_{n}\log X^{\frac{-1}{2}A_{n}X^{E^{1}}=0}}$ .

(P4) and (P7) are not easy consequences. But very recently, Lawson
and Lim have given a proof of (P4) and (P7) in [10] by using Sturm’s re-
sult [14], and then Lawson and Lim showed that weighted Riemannian
mean satisfied (P5‘) in [10]. Theorem $B$ has been obtained by Moakher
in [12] in the case of just a Riemannian mean, and then Lawson and
Lim obtained Theorem $B$ in [10], completely.

3. MAIN RESULTS

In this section, we shall show further properties of weighted Rie-
mannian mean. Almost these results are matrix inequalities, and some
of them extends well-known matrix (operator) inequalities introduced
in Section 1.

Theorem 1. Let $A_{1},$
$\cdots,$ $A_{n}\in P_{m}(\mathbb{C})$ , and $\omega=(w_{1}, \cdots, w_{n})$ be

a probability vector. Then $w_{1}\log A_{1}+\cdots+w_{n}\log A_{n}\leq 0$ implies
$\otimes_{\delta}(\omega;A_{1}, \cdots, A_{n})\leq I$ .

143



Proof. If $w_{1}\log A_{1}+\cdots+w_{n}\log A_{n}\leq 0$ , then there exists a matrix
$A\in P_{m}(\mathbb{C})$ such that $A\geq I$ and

$\frac{w_{1}}{2}\log A_{1}+\cdots+\frac{w_{n}}{2}\log A_{n}+\frac{1}{2}\log A=0$ .

Then $\omega_{1}=(\frac{w_{1}}{2}, \cdots, -w_{2}\Delta, \frac{1}{2})$ is a probability vector, and by Theorem $B$ ,
we have

$\otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, A)=I$ .

Define a matrix sequence $\{G_{n}\}_{n=0}^{\infty}$ by

$G_{n+1}=6_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, G_{n})$ and $G_{0}=\otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, I)$ .

Then by $A\geq I$ and monotonicity (P4) of weighted Riemannian mean,
we have

$I=\otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, A)\geq\otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, I)=G_{0}$ ,

and hence we obtain
$I\geq G_{0}\geq G_{1}\geq\cdots\geq G_{n}\geq\cdots\geq 0$ .

Therefore a matrix sequence $\{G_{n}\}_{n=0}^{\infty}$ converges to a positive semidef-
inite matrix.

Let $X=\mathfrak{G}_{\delta}(\omega;A_{1}, \cdots, A_{n})$ . We shall show that $G_{n}$ converges to $X$ .
Noting that by Theorem $B$ , we have

$0= \sum_{i=1}^{n}x^{\frac{-1}{2}A_{i}X^{\frac{-1}{2}}}\frac{w_{i}}{2}\log X^{\frac{-1}{2}A_{i}X^{\frac{-1}{2}}}$ ,

and hence
$\otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, X)=X$ .

Then by non-expansive property (P5’), we have
$\delta_{2}(X, G_{k})=\delta_{2}(\otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, X), \otimes_{\delta}(\omega_{1};A_{1}, \cdots, A_{n}, G_{k-1}))$

$\leq\frac{1}{2}\delta_{2}(X, G_{k-1})$

$\leq\cdots$

$\leq(\frac{1}{2})^{k}\delta_{2}(X, G_{0})arrow 0$ as $karrow+\infty$ ,

and hence $G_{k}arrow X$ as $karrow+\infty$ . Since $\{G_{k}\}_{k=0}^{\infty}$ is contractive and
decreasing sequence, we have

$\mathfrak{G}_{\delta}(\omega;A_{1}, \cdots, A_{n})=X\leq I$ .
$\square$

Theorem 2. Let $A_{1},$
$\cdots,$

$A_{n}\in P_{m}(\mathbb{C})$ . $If\otimes_{\delta}(\omega;A_{1}, \cdots, A_{n})\leq I$ holds
for a probability vector $\omega$ , then $\emptyset_{\delta}(\omega;A_{1}^{p}, \cdots, A_{n}^{p})\leq I$ holds for all
$p\geq 1$ .
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Theorem 2 is an extension of the following Ando-Hiai inequality,
because $\otimes_{\delta}(1-\alpha, \alpha;A, B)=A\#_{\alpha}B$.

Theorem $C$ (Ando-Hiai inequality [2]). Let $A$ and $B$ be positive ma-
trices. For any $\alpha\in[0,1],$ $A\#_{\alpha}B\leq I$ implies $A^{p}\#_{\alpha}B^{p}\leq I$ for all $p\geq 1$ .

Proof of Theorem 2. Let $\omega=(w_{1}, \cdots, w_{n})$ and $X=\mathfrak{G}_{\delta}(\omega;A_{1}, \cdots, A_{n})\leq$

I. Then for $p\in[1,2]$ , we have
$0=p(w_{1}\log X^{\frac{1}{2}}A_{1}^{-1}X^{\frac{1}{2}}+\cdots+w_{n}\log X^{\frac{1}{2}}A_{n}^{-1}X^{\frac{1}{2}})$

$=w_{1}\log(X^{\frac{1}{2}}A_{1}^{-1}X^{\frac{1}{2}})^{p}+\cdots+w_{n}\log(X^{\frac{1}{2}}A_{n}^{-1}X^{\frac{1}{2}})^{p}$

$\leq w_{1}\log X^{\frac{1}{2}}A_{1}^{-p}X^{\frac{1}{2}}+\cdots+w_{n}\log X^{\frac{1}{2}}A_{n}^{-p}X^{\frac{1}{2}}$,

where the last inequality holds since $\log t$ is operator monotone and
Hansen’s inequality for $p\in[1,2]$ and $X\leq I$ . It is equivalent to

$w_{1}\log X^{\frac{-1}{2}A_{1}^{p}X^{\frac{-1}{2}}}+\cdots+w_{n}\log X^{\frac{-1}{2}A_{n}^{p}X^{\frac{-1}{2}}}\leq 0$ ,

and by Theorem 1, we have
$\otimes_{\delta}(\omega;X^{\frac{-1}{2}A_{1}^{p}x\frac{-1}{2},\cdots,x^{\frac{-1}{2}A_{n}^{p}X^{\frac{-1}{2}}}})\leq I$ ,

and then
$\otimes_{\delta}(\omega;A_{1}^{p}, \cdots, A_{n}^{p})\leq X=6_{\delta}(\omega;A_{1}, \cdots, A_{n})\leq I$

for $p\in[1,2]$ by (P6). Repeating this procedure for $\emptyset_{\delta}(\omega;A_{1}^{p}, \cdots, A_{n}^{p})\leq$

$I$ , the proof is complete. $\square$

Let $p_{1},$ $\cdots,p_{n}$ be positive numbers. For $i=1,2,$ $\cdots,$ $n$ , we denote
$\prod_{j\neq i}p_{j}$ by $P\neq i$ .

Theorem 3. Let $A_{I},$
$\cdots,$ $A_{n}\in P_{m}(\mathbb{C})$ . Then the following assertions

are mutually equivalent;
(1) $\log A_{1}+\cdots+\log A_{n}\leq 0$ ,
(2) $\mathfrak{G}_{\delta}(A_{1}^{p}, \cdots, A_{n}^{p})\leq I$ for all $p\geq 1$ ,
(3) $\otimes_{\delta}(\omega’;A_{1}^{p_{1}}, \cdots, A_{n^{n}}^{p})\leq I$ for all $p_{i}\geq 1,$ $i=1,2,$ $\cdots,$ $n$ ,

where $\omega’$ is a probability vector defined by

$\omega’=(\frac{p_{\neq 1}}{\sum_{i}p\neq i}, \cdots, \frac{p\neq n}{\sum_{i}p\neq i})$ .

Theorem 3 is an extension of the following characterization of chaotic
order:

Theorem $D$ (Characterization of chaotic order [1, 7, 8, 15]). Let $A$

and $B$ be positive invertible matrices. Then the following assertions
are mutually equivalent:

(1) $\log A\geq\log B$ ,
(2) $A^{p}\geq(A^{\frac{p}{2}}B^{p}A^{\frac{p}{2}})^{\frac{1}{2}}$ for all $p\geq 0$ ,
(3) $A^{r}\geq(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{r}{p+r}}$ for all $p,$ $r\geq 0$ .
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In fact, Theorem $D$ can be rewritten in the following form:

Theorem $D’$ . Let $A$ and $B$ be positive invertible matrices. Then the
following assertions are mutually equivalent:

(1) $\log A+\log B\leq 0$ ,
(2) $A^{p}\# B^{p}\leq I$ for all $p\geq 0$ ,
(3) $A^{r} \#\frac{r}{p+r}B^{p}\leq I$ for all $p,$ $r\geq 0$ .

To prove Theorem 3, we need the following result:

Theorem $E$ ([13]). Let $A_{1},$
$\cdots,$ $A_{n}\in P_{m}(\mathbb{C})$ . Then

$\lim_{parrow+0}(\frac{A_{1}^{p}+\cdots+A_{n}^{p}}{n})^{\frac{1}{\rho}}=\exp(\frac{\log A_{1}+\cdots+\log A_{n}}{n})$ ,

uniform$ly$ .

Proof of Theorem 3. Proof of (1) $arrow(3)$ . If $\log A_{1}+\cdots+\log A_{n}\leq 0$ ,
then we have

$\frac{\prod_{i}p_{i}}{\sum_{i}p\neq i}(\log A_{1}+\cdots+\log A_{n})\leq 0$ ,

i.e.,

$\frac{P\neq 1}{\sum_{i}p\neq i}\log A_{1}^{p_{1}}+\cdots+\frac{p\neq n}{\sum_{i}p\neq i}\log A_{n^{n}}^{p}\leq 0$.

Hence by Theorem 1, we have

$\otimes_{\delta}(\omega’;A_{1}^{p_{1}}, \cdots, A_{n^{n}}^{p})\leq I$

for all $p_{i}\geq 1,$ $i=1,2,$ $\cdots,$ $n$ .

Proof of (3) $arrow(2)$ is easy by putting $p_{1}=\cdots=p_{n}=p$.

Proof of (2) $arrow(1)$ . By geometric-harmonic means inequality, we
have

$I \geq 6_{\delta}(A_{1}^{p}, \cdots, A_{n}^{p})\geq(\frac{A_{1}^{-p}+\cdots+A_{n}^{-p}}{n})^{-1}$

By Theorem $E$ , we have

$I \geq\lim_{parrow+0}(\frac{A_{1}^{-p}+\cdots+A_{n}^{-p}}{n})^{\frac{-1}{p}}$

$=( \exp\frac{\log A_{1}^{-1}+\cdots+\log A_{n}^{-1}}{n})^{-1}=\exp\frac{\log A_{1}+\cdots+\log A_{n}}{n}$.

Hence we have (1). $\square$
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4. OTHER GEOMETRIC MEANS

In the previous section, we showed further properties of weighted
Riemannian mean. Here one might expect that other geometric means
satisfy the same properties stated in the previous section. In this sec-
tion, we shall discuss about this problem, and we will give a negative
answer for it.

It is known that there are two types of geometric means of n-matrices
except weighted Riemannian mean which satisfy 10 properties (Pl) $-$

(P10) stated in Section 2. The most famous one has been defined by
Ando-Li-Mathias in [3]. In this paper, we call it ALM mean. The other
one is defined by Bini-Meini-Poloni and Izumino-Nakamura, indepen-
dently in [6, 9]. We call it BMP mean in this paper. Weighted BMP
mean has been considered in [6, 9], and recently weighted interpolation
mean between ALM and BMP means has been defined in [11].

Theorem 4. Let $A_{1},$
$\cdots,$ $A_{n}\in P_{m}(\mathbb{C}),$ $\omega$ be a probability vector, and

$\mathfrak{G}(\omega;A_{1}, \cdots, A_{n})$ be a weighted geometric mean satisfying properties
$(Pl)-(P10)$ . If the weighted geometnc mean satisfies Theorem 2, then
the weighted geometric mean $\mathfrak{G}$ coincides with weighted Riemannian
mean.

Proof. Let $\omega=(w_{1}, \cdots, w_{n})$ . If $w_{1}\log A_{1}+\cdots+w_{n}\log A_{n}\leq 0$ is
satisfied, then by arithmetic-geometric means inequality, we have

$I \geq w_{1}(I+\frac{\log A_{1}}{k})+\cdots+w_{n}(I+\frac{\log A_{n}}{k})\geq\emptyset(\omega;I+\frac{\log A_{1}}{k},$
$\cdots,$ $I+ \frac{\log A_{n}}{k})$

hold for sufficiently large $k$ . Since the weighted geometric mean $\emptyset$

satisfies Theorem 2, we have

$\mathfrak{G}(\omega;(I+\frac{\log A_{1}}{k})^{k},$
$\cdots,$ $(I+ \frac{\log A_{n}}{k})^{k})\leq I$ .

By well-known formula $\lim_{karrow+\infty}(I+\frac{\log A_{i}}{k})^{k}=A_{i}$ and (P5), we have

$\emptyset(\omega;A_{1}, \cdots, A_{n})\leq I$,

i.e., weighted geometric mean $\emptyset$ satisfies Theorem 1.

If geometric mean satisfies Theorem 1, we have

$\sum_{i=1}^{n}w_{i}\log A_{i}\geq 0\Leftrightarrow\sum_{i=1}^{n}w_{i}\log A_{i}^{-1}\leq 0$

$\Rightarrow\emptyset(\omega;A_{1}^{-1}, \cdots, A_{n}^{-1})\leq I$

$\Leftrightarrow \mathfrak{G}(\omega;A_{1}, \cdots, A_{n})\geq I$ by (P8).

Hence we obtain

(4.1) $w_{1}\log A_{1}+\cdots+w_{n}\log A_{n}=0\Rightarrow \mathfrak{G}(\omega;A_{1}, \cdots, A_{n})=I$.
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Let $X=6_{\delta}(\omega;A_{1}, \cdots, A_{n})$ be a weighted Riemannian mean. Then by
Theorem $B$ , we have

$w_{1} \log X^{\frac{-1}{2}A_{1}X^{\frac{-1}{2}}}+\cdots+w_{n}\log x\frac{-1}{2}A_{n}X^{\frac{-1}{2}}=0$,

and by (4.1) and (P6),

Q5 $(\omega;X^{\frac{-1}{2}A_{1}x\frac{-1}{2},})=I$

$\Leftrightarrow\emptyset(\omega;A_{1}, \cdots, A_{n})=X=\otimes_{\delta}(\omega;A_{1}, \cdots, A_{n})$ .

It completes the proof. $\square$

Generally, ALM, BMP and Riemannian means are different from
each other. Here we shall introduce a concrete example. Before intro-
ducing an example, we shall introduce definitions of ALM and BMP
means in the 3-matrices cases, briefly.

Let $A,$ $B,$ $C\in P_{m}(\mathbb{C})$ . Define matrices sequences $\{A_{n}\}_{n=0}^{\infty},$ $\{B_{n}\}_{n=0}^{\infty}$ ,
$\{C_{n}\}_{n=0}^{\infty}$ as follows: $A_{0}=A,$ $B_{0}=B,$ $C_{0}=C$ and

$A_{n+1}=B_{n}\# C_{n}$ , $B_{n+1}=C_{n}\# A_{n}$ , $C_{n+1}=A_{n}\# B_{n}$ .

Then we can obtain the same limit, and we define it as ALM mean [3]
(denoted by $6_{alm}(A,$ $B,$ $C)$ ), i.e.,

$\lim_{narrow\infty}A_{n}=\lim_{narrow\infty}B_{n}=\lim_{narrow\infty}C_{n}=\otimes_{alm}(A, B, C)$ .

On the other hand, BMP mean is defined as follows: $A_{0}=A,$ $B_{0}=$

$B,$ $C_{0}=C$ and

$A_{n+1}=(B_{n}\# C_{n})\#_{\frac{1}{3}}A_{n}$ , $B_{n+1}=(C_{n}\# A_{n})$ tf $\frac{1}{3}B_{n}$ , $C_{n+1}=(A_{n}\# B_{n})\#_{\frac{1}{3}}C_{n}$ .

Then we can obtain the same limit, and we define it as BMP mean
[6, 9] (denoted by $\emptyset_{bmp}(A,$ $B,$ $C)$ ), i.e.,

$\lim_{narrow\infty}A_{n}=\lim_{narrow\infty}B_{n}=\lim_{narrow\infty}C_{n}=\otimes_{bmp}(A, B, C)$ .

Example. Let

$A=(\begin{array}{ll}18 55 2\end{array})$ $B=(_{0}^{1}$

Then

$2^{0}oo),$ $C=(\begin{array}{ll}75 5454 40\end{array})$ .

$G_{1}=\otimes_{alm}(A, B, C)=(\begin{array}{ll}9.06732 4.864364.86436 8.89146\end{array})$

and
$\log G^{\frac{1}{12}}A^{-1}G^{\frac{1}{12}}+\log G^{\frac{1}{12}}B^{-1}G^{\frac{1}{12}}+\log G^{\frac{1}{12}}C^{-1}G^{\frac{1}{12}}$

$=(\begin{array}{ll}-0.263706 -0.0340424-0.0340424 0.263706\end{array})\neq O$ .
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Hence by Theorem $B,$ $\mathfrak{G}_{\delta}(A, B, C)\neq G_{1}=\mathfrak{G}_{alm}(A, B, C)$ . On the
other hand,

$G_{2}=\emptyset_{bmp}(A, B, C)=(\begin{array}{ll}9.39875 4.915694.91659 8.63133\end{array})$

and
$\log G^{\frac{1}{22}}A^{-1}G^{\frac{1}{22}}+\log G^{\frac{1}{22}}B^{-}$ ’ $G^{\frac{1}{22}}+\log G^{\frac{1}{22}}C^{-1}G^{\frac{1}{22}}$

$=(\begin{array}{ll}-0.101249 -0.0568546-0.0568546 0.101249\end{array})\neq O$ .

Hence by Theorem $B,$ $\emptyset_{\delta}(A, B, C)\neq G_{2}=\mathfrak{G}_{bmp}(A, B, C)$ .

Corollary 5. $ALM$ and $BMP$ means do not satisfy Theorems 1 and 2.

Proof. ALM and BMP means do not coincide with Riemannian mean.
Hence by Theorem 4 and its proof, the proof is complete. 口
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