A CORRESPONDENCE OF CANONICAL Bases IN THE q-DEFORMED HIGHER LEVEL FOck SPACES

KAZUTO IJJIMA

ABSTRACT. The q-deformed Fock spaces of higher levels were introduced by Jimbo-Misra-Miwa-Okado. The q-decomposition matrix is a transition matrix from the standard basis to the canonical basis defined by Uglov in the q-deformed Fock space. In this paper, we show that parts of q-decomposition matrices of level \(\ell \) coincide with that of level \(\ell - 1 \) under certain conditions of multi charge.

1. Introduction

The q-deformed Fock spaces of higher levels were introduced by Jimbo-Misra-Miwa-Okado [JMM09]. For a multi charge \(s = (s_1, \ldots, s_\ell) \in \mathbb{Z}_{\ell}^\ell \), the q-deformed Fock space \(F_q[s] \) of level \(\ell \) is the \(\mathbb{Q}(q) \)-vector space whose basis are indexed by \(\ell \)-tuples of Young diagrams, i.e. \(\{ |\lambda; s\rangle | \lambda \in \Pi^\ell \} \), where \(\Pi \) is the set of Young diagrams.

The canonical bases \(\{ G^+(\lambda; s) | \lambda \in \Pi^\ell \} \) and \(\{ G^-(\lambda; s) | \lambda \in \Pi^\ell \} \) are bases of the Fock space \(F_q[s] \) that are invariant under a certain involution \(- \) [Ug00]. Define matrices \(\Delta^+(q) = (\Delta^+_{\lambda,\mu}(q))_{\lambda,\mu} \) and \(\Delta^-(q) = (\Delta^-_{\lambda,\mu}(q))_{\lambda,\mu} \) by

\[
G^+(\lambda; s) = \sum_\mu \Delta^+_{\lambda,\mu}(q) |\mu; s\rangle, \quad G^-(\lambda; s) = \sum_\mu \Delta^-_{\lambda,\mu}(q) |\mu; s\rangle.
\]

We call \(\Delta^+_{\lambda,\mu}(q) \) and \(\Delta^-_{\lambda,\mu}(q) \) q-decomposition numbers. These q-decomposition matrices play an important role in representation theory. However, it is difficult to compute q-decomposition matrices.

In the case of \(\ell = 1 \), Varagnolo-Vasserot [VV99] proved that \(\Delta^+(q) \) coincides with the decomposition matrix of \(\nu \)-Schur algebra. For \(\ell \geq 2 \), Yvonne [Yvo07] conjectured that the matrix \(\Delta^+(q) \) coincides with the \(q \)-analogue of the decomposition matrix of cyclotomic Schur algebras at a primitive \(n \)-th root of unity under a suitable condition of multi charge. Rouquier [Rou08, Theorem 6.8, \S 6.5] conjectured that, for arbitrary multi charge, the multiplicities of simple modules in standard modules in the category \(\mathcal{O} \) of rational Cherednik algebras are equal to the corresponding coefficients \(\Delta^+_s(q) \).

We say that the \(j \)-th component \(s_j \) of the multi charge is sufficiently large for \(|\lambda; s\rangle \) if \(s_j - s_i \geq \lambda^{(0)}_i \) for any \(i = 1, 2, \ldots, \ell \), and that \(s_j \) is sufficiently small for \(|\lambda; s\rangle \) if \(s_i - s_j \geq |\lambda| = |\lambda^{(1)}| + \cdots + |\lambda^{(\ell)}| \) for any \(i = 1, 2, \ldots, \ell \) (see Definition 3.1). If \(s_j \) is sufficiently large for \(|\lambda; s\rangle \) and \(|\lambda; s\rangle > |\mu; s\rangle \), then the \(j \)-th components of \(\lambda \) and \(\mu \) are both the empty Young diagram \(\emptyset \) (Lemma 3.2). On the other hand, if \(s_j \) is sufficiently small for \(|\lambda; s\rangle \) and \(|\lambda; s\rangle \geq |\mu; s\rangle \), then \(\mu^{(j)} = \emptyset \) implies \(\lambda^{(j)} = \emptyset \) (Lemma 3.3).

Our main results are as follows.

Theorem A. (Theorem 3.4) [Iij]

Let \(\epsilon \in \{ +, - \} \). If \(s_j \) is sufficiently large for \(|\lambda; s\rangle \), then

\[
\Delta^\epsilon_{\lambda,\mu;\beta}(q) = \Delta^\epsilon_{\lambda,\mu;\beta}(q).
\]
where λ (resp. μ, s) is obtained by omitting the j-th component of λ (resp. μ, s), $\Delta_{\lambda,\mu,s}^\epsilon(q)$ is the q-decomposition number of level ℓ and $\Delta_{\lambda,\mu,s}^{\epsilon}(q)$ is the q-decomposition number of level $\ell - 1$.

Theorem B. (Theorem 3.5) [Iij]

Let $s \in \{+,-\}$. If s_j is sufficiently small for $|\mu; s)$ and $\mu^{(i)} = 0$, then

$$\Delta_{\lambda,\mu,s}^\epsilon(q) = \Delta_{\lambda,\mu,s}^{\epsilon}(q),$$

where λ (resp. μ, s) is obtained by omitting the j-th component of λ (resp. μ, s).

This paper is organized as follows. In Section 2, we review the q-deformed Fock spaces of higher levels and its canonical bases. In Section 3, we state the main results.

Acknowledgments. I am deeply grateful to Hyohe Miyachi and Soichi Okada for their advice.

Notations. For a positive integer N, a partition of N is a non-increasing sequence of non-negative integers summing to N. We write $|\lambda| = N$ if λ is a partition of N. The length $l(\lambda)$ of λ is the number of non-zero components of λ. And we use the same notation λ to represent the Young diagram corresponding to λ. For an ℓ-tuple $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \cdots, \lambda^{(\ell)})$ of Young diagrams, we put $|\lambda| = |\lambda^{(1)}| + |\lambda^{(2)}| + \cdots + |\lambda^{(\ell)}|.$

2. The q-deformed Fock spaces of higher levels

2.1. q-wedge products and straightening rules.

Let n, ℓ, s be integers such that $n \geq 2$ and $\ell \geq 1$. We define $P(s)$ and $P^{++}(s)$ as follows;

1. $P(s) = \{ k = (k_1, k_2, \cdots) \in \mathbb{Z}^\infty \mid k_r = s - r + 1 \text{ for any sufficiently large } r \} ,$
2. $P^{++}(s) = \{ k = (k_1, k_2, \cdots) \in P(s) \mid k_1 > k_2 > \cdots \} .$

Let Λ^s be the $\mathbb{Q}(q)$ vector space spanned by the q-wedge products

$$u_k = u_{k_1} \wedge u_{k_2} \wedge \cdots , \quad (k \in P(s))$$

subject to certain commutation relations, so-called straightening rules. Note that the straightening rules depend on n and ℓ. [Ugl00, Proposition 3.16].

Example 2.1. (i) For every $k_1 \in \mathbb{Z}$, $u_{k_1} \wedge u_{k_1} = -u_{k_1} \wedge u_{k_1}$. Therefore $u_{k_1} \wedge u_{k_1} = 0$.

(ii) Let $n = 2$, $\ell = 2$, $k_1 = -2$, and $k_2 = 4$. Then

$$u_{-2} \wedge u_4 = q u_4 \wedge u_{-2} + (q^2 - 1) u_2 \wedge u_0 .$$

(iii) Let $n = 2$, $\ell = 2$, $k_1 = -1$, $k_2 = -2$ and $k_3 = 4$. Then

$$u_{-1} \wedge u_{-2} \wedge u_4 = u_{-1} \wedge (u_{-2} \wedge u_4) = u_{-1} \wedge (q u_4 \wedge u_{-2} + (q^2 - 1) u_2 \wedge u_0)$$

$$= q u_{-1} \wedge u_4 \wedge u_{-2} + (q^2 - 1) u_{-1} \wedge u_2 \wedge u_0 .$$

By applying the straightening rules, every q-wedge product u_k is expressed as a linear combination of so-called ordered q-wedge products, namely q-wedge products u_k with $k \in P^{++}(s)$. The ordered q-wedge products $\{ u_k \mid k \in P^{++}(s) \}$ form a basis of Λ^s called the *standard basis*.
2.2. Abacus. It is convenient to use the abacus notation for studying various properties in straightening rules.

Fix an integer $N \geq 2$, and form an infinite abacus with N runners labeled $1, 2, \cdots N$ from left to right. The positions on the i-th runner are labeled by the integers having residue i modulo N.

\begin{align*}
\cdots & \cdots \cdots \cdots \cdots \\
-N + 1 & -N + 2 & \cdots & -1 & 0 \\
1 & 2 & \cdots & N - 1 & N \\
N + 1 & N + 2 & \cdots & 2N - 1 & 2N \\
\cdots & \cdots \cdots \cdots \cdots
\end{align*}

Each $k \in P^{++}(s)$ (or the corresponding q-wedge product u_k) can be represented by a bead-configuration on the abacus with $n\ell$ runners and beads put on the positions k_1, k_2, \cdots. We call this configuration the abacus presentation of u_k.

Example 2.2. If $n = 2$, $\ell = 3$, $s = 0$, and $k = (6, 3, 2, -2, -4, -5, -7, -8, -9, \cdots)$, then the abacus presentation of u_k is

\begin{align*}
d = 1 & | d = 2 & | d = 3 \\
\cdots & \cdots & \cdots \\
1 & 1 & 1 & 1 & 1 & \cdots m = 3 \\
1 & 1 & -9 & -8 & -7 & -6 & \cdots m = 2 \\
-5 & -4 & -3 & -2 & -1 & 0 & \cdots m = 1 \\
1 & 2 & 3 & 4 & 5 & 6 & \cdots m = 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{align*}

We use another labeling of runners and positions. Given an integer k, let c, d and m be the unique integers satisfying

\begin{equation}
k = c + n(d - 1) - n\ell m , \quad 1 \leq c \leq n \quad \text{and} \quad 1 \leq d \leq \ell.
\end{equation}

Then, in the abacus presentation, the position k is on the $c + n(d - 1)$-th runner (see the previous example). Relabeling the position k by $c - nm$, we have ℓ abaci with n runners.

Example 2.3. In the previous example, relabeling the position k by $c - nm$, we have

\begin{align*}
d = 1 & | d = 2 & | d = 3 \\
\cdots & \cdots & \cdots \\
-5 & -4 & -5 & -4 & -5 & -4 & \cdots m = 3 \\
-3 & -2 & -3 & -2 & -3 & -2 & \cdots m = 2 \\
-1 & 0 & -1 & 0 & -1 & 0 & \cdots m = 1 \\
1 & 2 & 1 & 2 & 1 & 2 & \cdots m = 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{align*}
We assign to each of \(\ell \) abacus presentations with \(n \) runners a \(q \)-wedge product of level 1. In fact, straightening rules in each “sector” are the same as those of level 1 by identifying the abacus in the sector with that of level 1. (see Example 2.5 below)

We introduce some notation.

Definition 2.4. For an integer \(k \), let \(c, d \) and \(m \) be the unique integers satisfying (4), and write

\[
(5) \quad u_k = u_{c-nm}^{(d)}.
\]

Also we write \(u_{c_{1} - m_{1}}^{(d_{1})} > u_{c_{2} - m_{2}}^{(d_{2})} \) if \(k_{1} > k_{2} \), where \(k_{i} = c_{i} + n(d_{i} - 1) - n\ell m_{i} \), \((i = 1, 2) \).

We regard \(u_{c-nm}^{(d)} \) as \(u_{c-nm} \) in the case of \(\ell = 1 \).

Example 2.5. If \(n = 2, \ell = 3 \), then we have

\[
(6) \quad u_{-10} \wedge u_{1} = -q^{-1} u_{1} \wedge u_{-10} + (q^{-2} - 1) u_{-4} \wedge u_{-5},
\]

that is,

\[
(7) \quad u_{-2}^{(1)} \wedge u_{1}^{(1)} = -q^{-1} u_{1}^{(1)} \wedge u_{-2}^{(1)} + (q^{-2} - 1) u_{0}^{(1)} \wedge u_{-1}^{(1)}.
\]

On the other hand, in the case of \(n = 2, \ell = 1 \),

\[
(8) \quad u_{-2} \wedge u_{1} = -q^{-1} u_{1} \wedge u_{-2} + (q^{-2} - 1) u_{0} \wedge u_{-1}.
\]

2.3. \(\ell \)-tuples of Young diagrams. Another indexation of the ordered \(q \)-wedge products is given by the set of pairs \((\lambda, s)\) of \(\ell \)-tuples of Young diagrams \(\lambda = (\lambda^{(1)}, \cdots , \lambda^{(t)}) \) and integer sequences \(s = (s_{1}, \cdots , s_{t}) \) summing up to \(s \). Let \(k = (k_{1}, k_{2}, \cdots) \in P^{++}(s) \), and write

\[
k_{r} = c_{r} + n(d_{r} - 1) - n\ell m_{r} \quad , \quad 1 \leq c_{r} \leq n \quad , \quad 1 \leq d_{r} \leq \ell \quad , \quad m_{r} \in \mathbb{Z}.
\]

For \(d \in \{1, 2, \cdots , \ell\} \), let \(k_{1}^{(d)}, k_{2}^{(d)}, \cdots \) be integers such that

\[
(9) \quad \beta^{(d)} = \{c_{r} - nm_{r} \mid d_{r} = d\} = \{k_{1}^{(d)}, k_{2}^{(d)}, \cdots\} \quad \text{and} \quad k_{1}^{(d)} > k_{2}^{(d)} > \cdots
\]

Then we associate to the sequence \((k_{1}^{(d)}, k_{2}^{(d)}, \cdots)\) an integer \(s_{d} \) and a partition \(\lambda^{(d)} \) by

\[
k_{r}^{(d)} = s_{d} - r + 1 \quad \text{for sufficiently large } r \quad \text{and} \quad \lambda_{r}^{(d)} = k_{r}^{(d)} - s_{d} + r - 1 \quad \text{for } r \geq 1.
\]

In this correspondence, we also write

\[
(10) \quad u_{k} = |\lambda; s\rangle \quad (k \in P^{++}(s)).
\]

Example 2.6. If \(n = 2, \ell = 3, s = 0, \) and \(k = (6, 3, 2, 1, -2, -4, -5, -7, -8, -9, \cdots) \), then

\[
k_{1} = 6 = 2 + 2(3 - 1) - 6 \cdot 0 \quad , \quad k_{2} = 3 = 1 + 2(2 - 1) - 6 \cdot 0 \quad ,
\]

\[
k_{3} = 2 = 2 + 2(1 - 1) - 6 \cdot 0 \quad , \quad \cdots \quad \text{and so on.}
\]

Hence,

\[
\beta^{(1)} = \{2, 1, 0, -1, -2, \cdots\} \quad , \quad \beta^{(2)} = \{1, 0, -2, -3, -4, \cdots\} \quad , \quad \beta^{(3)} = \{2, -3, -4, -5, \cdots\}.
\]

Thus, \(s = (2, 0, -2) \) and \(\lambda = (\emptyset, (1, 1), (4)). \)

Note that we can read off \(s = (2, 0, -2) \) and \(\lambda = (\emptyset, (1, 1), (4)) \) from the abacus presentation. (see Example 2.3)
2.4. The q-deformed Fock spaces of higher levels.

Definition 2.7. For $s \in \mathbb{Z}^\ell$, we define the q-deformed Fock space $F_q[s]$ of level ℓ to be the subspace of Λ^ℓ spanned by $|\lambda; s\rangle$ ($\lambda \in \Pi^\ell$):

\[
F_q[s] = \bigoplus_{\lambda \in \Pi^\ell} Q(q) |\lambda; s\rangle.
\]

We call s a multi-charge.

2.5. The bar involution.

Definition 2.8. The involution $\overline{\cdot}$ of Λ^ℓ is the \mathbb{Q}-vector space automorphism such that $\overline{q} = q^{-1}$ and

\[
\overline{u_k} = \overline{u_{k_1} \wedge \cdots \wedge u_{k_r} \wedge \cdots} = (-q)^{\kappa(c_1, \cdots, c_r)} q^{-\kappa(c_1, \cdots, c_r)} (u_{k_r} \wedge \cdots \wedge u_{k_1} \wedge \cdots),
\]

where c_i, d_i are defined by k_i as in (4), r is an integer satisfying $k_r = s - r + 1$. And $\kappa(a_1, \cdots, a_r)$ is defined by

\[
\kappa(a_1, \cdots, a_r) = \#\{(i, j) | i < j, a_i = a_j\}.
\]

Remarks (i) The involution is well defined, i.e. it doesn’t depend on r [Ugl00].

(ii) The involution comes from the bar involution of affine Hecke algebra H_r. (see [Ugl00] for more detail.)

(iii) The involution preserves the q-deformed Fock space $F_q[s]$ of higher level.

2.6. The dominance order. We define a partial ordering $|\lambda; s\rangle \geq |\mu; s\rangle$. For $|\lambda; s\rangle$ and $|\mu; s\rangle$, we define multi-sets $\overline{\lambda}$ and $\overline{\mu}$ as

\[
\overline{\lambda} = \{\lambda_a^{(d)} + s_d | 1 \leq d \leq \ell, 1 \leq a \leq \max(l(\lambda^{(d)}), l(\mu^{(d)}))\},
\]

\[
\overline{\mu} = \{\mu_a^{(d)} + s_d | 1 \leq d \leq \ell, 1 \leq a \leq \max(l(\lambda^{(d)}), l(\mu^{(d)}))\}.
\]

We denote by $(\overline{\lambda}_1, \overline{\lambda}_2, \cdots)$ (resp. $(\overline{\mu}_1, \overline{\mu}_2, \cdots)$) the sequence obtained by rearranging the elements in the multi-set $\overline{\lambda}$ (resp. $\overline{\mu}$) in decreasing order.

Definition 2.9. Let $|\lambda; s\rangle = u_{k_1} \wedge u_{k_2} \wedge \cdots$ and $|\mu; s\rangle = u_{g_1} \wedge u_{g_2} \wedge \cdots$. We define $|\lambda; s\rangle \geq |\mu; s\rangle$ if $|\lambda| = |\mu|$ and

\[
\left\{ \begin{array}{ll}
(\text{a}) & \overline{\lambda} \neq \overline{\mu}, \quad \sum_{j=1}^{r} \lambda_j \geq \sum_{j=1}^{r} \mu_j \quad (\text{for all} \quad r = 1, 2, 3, \cdots) \quad \text{or} \\
(\text{b}) & \overline{\lambda} = \overline{\mu}, \quad \sum_{j=1}^{r} k_j \geq \sum_{j=1}^{r} g_j \quad (\text{for all} \quad r = 1, 2, 3, \cdots)
\end{array} \right.
\]

Remark. The order in Definition 2.9 is different from the order in [Ugl00] (see Example 2.10 below). However, the unitriangularity in (11) holds for both of them.

Example 2.10. Let $n = \ell = 2$, $s = (1, -1)$, $\lambda = ((1, 1), \emptyset)$, and $\mu = (\emptyset, (2))$. Then, $|\lambda; s\rangle = u_2 \wedge u_1 \wedge u_{-1} \wedge u_{-3} \wedge \cdots$ and $|\mu; s\rangle = u_{3} \wedge u_1 \wedge u_{-2} \wedge u_{-3} \wedge \cdots$. In Uglov’s order, $|\mu; s\rangle$ is greater than $|\lambda; s\rangle$. However, $|\lambda; s\rangle > |\mu; s\rangle$ under our order since $\{\overline{\lambda}_1, \overline{\lambda}_2, \overline{\lambda}_3\} = \{2, 2, -1\}$ and $\{\overline{\mu}_1, \overline{\mu}_2, \overline{\mu}_3\} = \{1, 1, 1\}$.
We define a matrix \((a_{\lambda,\mu}(q))_{\lambda,\mu}\) by

\[
\overline{\langle \lambda; s \rangle} = \sum_{\mu} a_{\lambda,\mu}(q) \langle \mu; s \rangle.
\]

Then the matrix \((a_{\lambda,\mu}(q))_{\lambda,\mu}\) is unitriangular with respect to \(\geq\), that is

\[
\begin{cases}
(a) & \text{if } a_{\lambda,\mu}(q) \neq 0, \text{ then } \langle \lambda; s \rangle \geq \langle \mu; s \rangle, \\
(b) & a_{\lambda,\lambda}(q) = 1.
\end{cases}
\]

Thus, by the standard argument, the unitriangularity implies the following theorem.

Theorem 2.11. [Ugl00] There exist unique bases \(\{G^{+}(\lambda; s)|\lambda \in \Pi^{\ell}\}\) and \(\{G^{-}(\lambda; s)|\lambda \in \Pi^{\ell}\}\) of \(F_{q}[s]\) such that

\[
\begin{align*}
(1) \quad & G^{+}(\lambda; s) = G^{+}(\lambda; s) \mod qL^{+}, \\
& G^{-}(\lambda; s) = G^{-}(\lambda; s) \mod q^{-1}L^{-}
\end{align*}
\]

where

\[
L^{+} = \bigoplus_{\lambda \in \Pi^{\ell}} \mathbb{Q}[q] \langle \lambda; s \rangle, \quad L^{-} = \bigoplus_{\lambda \epsilon \Pi^{\ell}} \mathbb{Q}[q^{-1}] \langle \lambda; s \rangle.
\]

Definition 2.12. Define matrices \(\Delta^{+}(q) = (\Delta_{\lambda,\mu}^{+}(q))_{\lambda,\mu}\) and \(\Delta^{-}(q) = (\Delta_{\lambda,\mu}^{-}(q))_{\lambda,\mu}\) by

\[
G^{+}(\lambda; s) = \sum_{\mu} \Delta_{\lambda,\mu}^{+}(q) \langle \mu; s \rangle, \quad \quad \quad \quad G^{-}(\lambda; s) = \sum_{\mu} \Delta_{\lambda,\mu}^{-}(q) \langle \mu; s \rangle.
\]

The entries \(\Delta_{\lambda,\mu}^{\pm}(q)\) are called \(q\)-decomposition numbers. Note that \(q\)-decomposition numbers \(\Delta^{\pm}(q)\) depend on \(n, \ell\) and \(s\). The matrices \(\Delta^{+}(q)\) and \(\Delta^{-}(q)\) are also unitriangular with respect to \(\geq\).

It is known [Ugl00, Theorem 3.26] that the entries of \(\Delta^{-}(q)\) are Kazhdan-Lusztig polynomials of parabolic submodules of affine Hecke algebras of type \(A\), and that they are polynomials in \(p = -q\) with non-negative integer coefficients (see [KT02]).

3. A Comparison of \(q\)-Decomposition Numbers

3.1. Sufficiently large and sufficiently small.

Definition 3.1. Let \(s = (s_{1}, s_{2}, \cdots, s_{\ell}) \in \mathbb{Z}^{\ell}\) be a multi charge and \(1 \leq j \leq \ell\).

(i). We say that the \(j\)-th component \(s_{j}\) of the multi charge \(s\) is sufficiently large for \(\langle \lambda; s \rangle \in F_{q}[s]\) if

\[
s_{j} - s_{i} \geq \lambda_{1}^{(i)} \quad \text{for all} \quad i = 1, 2, \cdots, \ell.
\]

More generally, we say that \(s_{j}\) is sufficiently large for a \(q\)-wedge \(u_{k}\) if

\[
s_{j} \geq c_{r} - nm_{r} \quad \text{for all} \quad r = 1, 2, \cdots,
\]

where \(k_{r} = c_{r} + n(d_{r} - 1) - n\ell m_{r}, (r = 1, 2, \cdots), 1 \leq c \leq n\) and \(1 \leq d \leq \ell\) (see §2).

(ii). We say that \(s_{j}\) is sufficiently small for \(\langle \lambda; s \rangle\) if

\[
s_{i} - s_{j} \geq |\lambda| = |\lambda^{(1)}| + \cdots + |\lambda^{(t)}| \quad \text{for all} \quad i \neq j.
\]
Note that the definition of sufficiently small depends only on the size of \(\lambda \) and the multi charge \(s \). When we fix the multi charge \(s \), we say that \(s_j \) is sufficiently small for \(N \) if
\[
s_i - s_j \geq N \quad \text{for all } i \neq j.
\]

Remark. If \(|\lambda; s| \) is 0-dominant in the sense of [Ugl00], that is
\[
s_i - s_{i+1} \geq |\lambda| = |\lambda^{(1)}| + \cdots + |\lambda^{(\ell)}| \quad \text{for all } i = 1, 2, \ldots, \ell - 1,
\]
then \(s_1 \) is sufficiently large for \(|\lambda; s| \) and \(s_\ell \) is sufficiently small for \(|\lambda; s| \).

Lemma 3.2. If \(s_j \) is sufficiently large for \(|\lambda; s| \) and \(|\lambda; s| \geq |\mu; s| \), then

(i) \(\lambda^{(j)} = \emptyset \),

(ii) \(s_j \) is also sufficiently large for \(|\mu; s| \). In particular, \(\mu^{(j)} = \emptyset \).

Proof. It is clear that \(\lambda^{(j)} = \emptyset \) by the definition.

Note that
\[
s_j \text{ is sufficiently large for } |\lambda; s| \iff s_j - s_i \geq \lambda^{(i)}_1 \quad \text{for all } i = 1, 2, \ldots, \ell
\]
\[
\iff s_j \geq \max(\lambda^{(1)}_1 + s_1, \cdots, \lambda^{(\ell)}_1 + s_\ell) = \lambda_1.
\]

If \(|\lambda; s| \geq |\mu; s| \), then \(\lambda_1 \geq \mu_1 \) and so \(s_j \geq \mu_1 \). It means that \(s_j \) is sufficiently large for \(|\mu; s| \). \(\square \)

Lemma 3.3. Suppose that \(s_j \) is sufficiently small for \(|\lambda; s| \). If \(|\lambda; s| \geq |\mu; s| \) and \(\mu^{(j)} = \emptyset \), then \(\lambda^{(j)} = \emptyset \).

Proof. Suppose that \(k(\lambda^{(j)}) \geq 1 \). Then \(s_j \) is the minimal integer in the set \(\{\mu_{a}^{(d)} + s_d | 1 \leq d \leq \ell, 1 \leq a \leq \max(l(\lambda^{(d)}), l(\mu^{(d)})) \} \) because \(\mu^{(j)} = \emptyset \) and \(s_j \) is the minimal integer in \(s \). On the other hand, the minimal integer in the set \(\{\lambda_{a}^{(d)} + s_d | 1 \leq d \leq \ell, 1 \leq a \leq \max(l(\lambda^{(d)}), l(\mu^{(d)})) \} \) is greater than \(s_j \) because \(s_j \) is sufficiently small for \(|\lambda; s| \). Therefore \(|\lambda; s| \not\geq |\mu; s| \). This is a contradiction. \(\square \)

3.2. Main results.

Theorem 3.4 ([Iij]). Let \(\varepsilon \in \{+, -\} \). If \(s_j \) is sufficiently large for \(|\lambda; s| \), then
\[
\Delta_{\lambda,s}^\varepsilon(q) = \Delta_{\lambda,s}^\varepsilon(q),
\]
where \(\lambda \) (resp. \(\mu, s \)) is obtained by omitting the \(j \)-th component of \(\lambda \) (resp. \(\mu, s \)).

Theorem 3.5 ([Iij]). Let \(\varepsilon \in \{+, -\} \). If \(s_j \) is sufficiently small for \(|\mu; s| \) and \(\mu^{(j)} = \emptyset \), then
\[
\Delta_{\lambda,s}^\varepsilon(q) = \Delta_{\lambda,s}^\varepsilon(q),
\]
where \(\lambda \) (resp. \(\mu, s \)) is obtained by omitting the \(j \)-th component of \(\lambda \) (resp. \(\mu, s \)).

Example 3.6. (i) If \(n = \ell = 2, s = (3, -3) \) and \(\lambda = (\emptyset, (6)), \mu = (\emptyset, (5, 1)) \), then \(s_1 \) is sufficiently large for \(|\lambda; s| \). Hence
\[
\Delta_{\lambda,s}^+ (q) = \Delta_{\lambda,s}^+ (q) = \Delta_{(6), (5, 1); (3, -3)}^+ (q) = -q^{-1}.
\]

(ii) If \(n = \ell = 2, s = (3, -3) \) and \(\lambda = ((6), \emptyset), \mu = ((5, 1), \emptyset) \), then \(s_2 \) is sufficiently small for \(|\mu; s| \). Hence
\[
\Delta_{\lambda,s}^- (q) = \Delta_{\lambda,s}^- (q) = \Delta_{(6), (5, 1); (3, -3)}^- (q) = -q^{-1}.
\[\Delta_{\lambda,\mu;\nu}^{-}(q) = \Delta_{\check{\lambda},\check{\mu};\check{\nu}}^{-}(q) = \Delta_{(6),(5,1);(-3)}^{-}(q) = -q^{-1}. \]

REFERENCES

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
E-mail address: kazuto.iijima@math.nagoya-u.ac.jp