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A CORRESPONDENCE OF CANONICAL BASES IN THE ¢-DEFORMED HIGHER
LEVEL FOCK SPACES

KAZUTO IJIMA

AstracT. The g-deformed Fock spaces of higher levels were introduced by Jimbo-Misra-Miwa-Okado.
The g-decomposition matrix is a transition matrix from the standard basis to the canonical basis defined
by Uglov in the g-deformed Fock space. In this paper, we show that parts of g-decomposition matrices
of level £ coincides with that of level £ — 1 under certain conditions of multi charge.

1. INTRODUCTION

The g-deformed Fock spaces of higher levels were introduced by Jimbo-Misra-Miwa-Okado [JMMO91].

For a multi charge s = (s, . . ., s¢) € Z°, the g-deformed Fock space F,[s] of level £ is the Q(g)-vector
space whose basis are indexed by ¢-tuples of Young diagrams. ie. {|2;s)|d € IT¢}, where IT is the set
of Young diagrams.

The canonical bases {G*(4; s)| A € IT} and {G~(4; 5) | A € IT°} are bases of the Fock space F,[s]
that are invariant under a certain involution ~ [Ugl00]. Define matrices A*(g) = (A;,”(q)),l » and

A™(q) = (A7,(9)r, by
G'(45) = Z A @Dl sy G s = Z A @115 8).
H “

We call AL,(Q) and A (q) g-decomposition numbers. These g-decomposition matrices plays an
important role in representation theory. However it is difficult to compute g-decomposition matrices.

In the case of £ = 1, Varagnolo-Vasserot [VV99] proved that A*(g) coincides with the decom-
position matrix of v-Schur algebra. For £ > 2, Yvonne [Yvo07] conjectured that the matrix A*(q)
coincides with the g-analogue of the decomposition matrix of cyclotomic Schur algebras at a prim-
itive n-th root of unity under a suitable condition of multi charge. Rouquier [Rou08, Theorem 6.8,
§6.5] conjectured that, for arbitrary multi charge, the multiplicities of simple modules in standard
modules in the category O of rational Cherednik algebras are equal to the corresponding coefficients
A @

We say that the j-th component s; of the multi charge is sufficiently large for |A; 5) if 5; — s; 2 /1(1')
foranyi=1,2,---,¢,and that s; is sufficiently small for |1; s) if s; — 5; > |14 = [AD| + -+ + |29 for
anyi = 1,2,---,£ (see Definition 3.1). If s; is sufficiently large for |4; s) and |2; s) > |y; 5), then the
j-th components of A and g are both the empty Young diagram @ (Lemma 3.2). On the other hand, if
s; is sufficiently small for |4; s) and |2; s) > |; s), then u = @ implies A = 0. (Lemma 3.3).

Our main results are as follows.

Theorem A. (Theorem 3.4) [Iij]
Let € € {+, -}. I s; is sufficiently large for |4; s), then

Aiﬂ,s(q) = Ag’pj(q)’
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where A (resp. J1,¥) is obtained by omitting the j-th component of A (resp. u,s), Af,45(@) is the
g-decomposition number of level £ and A% m(q) is the g-decomposition number of level £ — 1.

Theorem B. (Theorem 3.5) {Iij]
Let ¢ € {+, —}. If s; is sufficiently small for |u; s) and 4? = 0, then

Ai’#;s(q) = A;’p;E(q)s
where A (resp. /1, §) is obtained by omitting the j-th component of A (resp. y, s).

This paper is organized as follows. In Section 2, we review the g-deformed Fock spaces of higher
levels and its canonical bases. In Section 3, we state the main results.

Acknowledgments. I am deeply grateful to Hyohe Miyachi and Soichi Okada for their advice.

Notations. For a positive integer N, a partition of N is a non-increasing sequence of non-negative
integers summing to N. We write |1| = N if A is a partition of N. The length (1) of A is the number
of non-zero components of 2. And we use the same notation A to represent the Young diagram
corresponding to A. For an ¢-tuple 4 = (A®, A, - .. | 1©) of Young diagrams, we put [4] = [AD| +
,/1(2>| e l/l(g)l-

2. THE g-DEFORMED FOCK SPACES OF HIGHER LEVELS

2.1. g-wedge products and straightening rules. Let 7, ¢, s be integers such that n > 2 and € > 1.
We define P(s) and P**(s) as follows;

(1 P(s) = {k = (ki,kz, ) €Z” | k, = s —r + 1 for any sufficiently large r } ,
(2) PT(s) = {k = (ki,kp, -~ ) €EP(s) | by > hy > -+ ).

Let A® be the Q(q) vector space spanned by the g-wedge products
3) U = U Ny A -+, (k€ P(s))

subject to certain commutation relations, so-called straightening rules. Note that the straightening
rules depend on # and £. [Ugl00, Proposition 3.16].

Example 2.1. (i) For every k; € Z, Ug, A Uy, = —ug, A ug,. Therefore uy, A uy, = 0.
@) Letn=2,0=2,k; =-2,and ky = 4. Then

Uy AUy =qu4/\u_2+(q2— Duy A uy.
(@iyLetn=2,£=2,ky = -1,k = -2 and ks = 4. Then
U g AU AUy =u AUy Aug) = U, /\(qu4 Au_y+(g* - l)uz/\uo)

=qu_yAusANuy+(g* — Du_y Auy A g

By applying the straightening rules, every g-wedge product u;, is expressed as a linear combination
of so-called ordered q-wedge products, namely g-wedge products u; with k € P**(s). The ordered
g-wedge products {uy | k € P**(s)} form a basis of A® called the standard basis.
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2.2. Abacus. It is convenient to use the abacus notation for studying various properties in straight-

ening rules. _
Fix an integer N > 2, and form an infinite abacus with N runners labeled 1,2, - -- N from left to
right. The positions on the i-th runner are labeled by the integers having residue i modulo N.

“N+1 -N+2 -~ -1 0

1 2 -« N-1 N

N+1 N+2 ... 2N-1 2N

Each k € P**(s) (or the corresponding g-wedge product u;) can be represented by a bead-
configuration on the abacus with n¢ runners and beads put on the positions &y, k2, - - - . We call this
configuration the abacus presentation of uy.

Example 2.2. Ifn=2,£=3,5s=0,and k = (6,3,2,1,-2,-4,-5,-7,-8,-9, ), then the abacus
presentation of uy is

d=1 d=2 d=3
D GO BB D e
@ @ @ -6 om=2
® @3 @|-1 o m=1
O @O 13 © e

c=1 c=2|c=1 c=2|c=1 ¢c=2
We use another labeling of runners and positions. Given an integer &, let ¢, d and m be the unique
integers satisfying
@ k=c+nd-1)-nfm , 1<c<n and 1<d<¢.

Then, in the abacus presentation, the position & is on the ¢ + n(d — 1)-th runner (see the previous
example). Relabeling the position & by ¢ — nm, we have € abaci with n runners.

Example 2.3. In the previous example, relabeling the position k by ¢ — nm, we have

d=1 d=2 d=3
© 90 @O @
@ @0 @O 2 me
@ @1 @|-1 o m=1
© ©|© 2|1 ©
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We assign to each of £ abacus presentations with # runners a g-wedge product of level 1. In fact,
straightening rules in each “sector” are the same as those of level 1 by identifying the abacus in the
sector with that of level 1. (see Example 2.5 below)

We introduce some notation.

Definition 2.4. For an integer k, let ¢, d and m be the unique integers satisfying (4), and write

) up = u,..

Also we write uﬁ‘f’_),lml > uﬁ‘f_),,mZ ifky > ky, where k; = ¢; + n(d; — 1) — nfm;, (i = 1, 2).

We regard uﬁ‘?,,m as Uc—m in the case of £ = 1.
Example 2.5. If n = 2, { = 3, then we have
u_go Ay =—q  ug Ao+ (@ = Dua Aus,

that is,
1 1 -1.3 1 -2 a )
u(_z)Au(l)= -q u(l)/\u(_2)+(q - l)uo)/\u_l.
On the other hand, in the case of n = 2,£ =1,

U Auy=—q  uy Auy + (q"2 —Dup Au,.

2.3. ¢-tuples of Young diagrams. Another indexation of the ordered g-wedge products is given
by the set of pairs (4, s) of £-tuples of Young diagrams 2 = (A, ---, 1Y) and integer sequences
s = (s1,--+,5¢) summing up to s. Let k = (ky, k», - --) € P**(s), and write

ke=c,+nd,—1)-ntm, , 1<c¢,<n , 1<d., <t , meZ
For d e{1,2,-~,f],letkﬁd),kgd),mbeintegers such that

B ={c,~nm, |d,=d} = (K K,---} and K2 > >
Then we associate to the sequence (k(d), kgd), -++) an integer s, and a partition A@D by
K9 =sy—r+1 forsufficiently larger and A9 =k? -s;+r-1 forr>1.

In this correspondence, we also write

©) ur = |4, 8) (ke PH(s)).
Example 2.6. Ifn=2,£=3,5s=0,and k= (6,3,2,1,-2,-4,-5,-7,-8,-9,---), then

ki=6=2+2B3-1)-6-0 , k,b=3=1+22-1)-6-0 ,
k3=2=2+2(1-1)-6-0 ,--- and so on.
Hence,
BY=12,1,0-1,-2,--} , p?={1,0,-2,-3,-4,---} , B¥={2,-3,-4,-5,---} .

Thus, s = (2,0,-2)and A = (0, (1, 1), (4)).
Note that we can read off s = (2,0,-2) and A = (0, (1, 1), (4)) from the abacus presentation. (see
Example 2.3)
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2.4. The g-deformed Fock spaces of higher levels.

Definition 2.7. For s € Z¢, we define the q-deformed Fock space F [s] of level £ to be the subspace
of A® spanned by |4; s) (A € TT%):

Q) F,Is1= P a@k;s).

Aeltt

We call s a multi charge.
2.5. The bar involution.

Definition 2.8. The involution — of A® is the Q-vector space automorphism such that g = q~* and

8 U = Uy A AN, AN, A-+- = (_q)x(d,,...,d,)q-K(q,"-,cr)(ukr A---A ukl) Al Aoe s
where c;, d; are defined by k; as in (4), r is an integer satisfying k, = s —r + 1. And k(ay," - ,a,) is
defined by

k(ay, -+ ,a) =#{(i, pli< j, a = aj}.

Remarks (i) The involution is well defined. i.e. it doesn’t depend on r [Ugl00].
(ii) The involution comes from the bar involution of affine Hecke algebra H.,. (see [Ugl00] for more

detail.)
(iii) The involution preserves the g-deformed Fock space F,[s] of higher level.

2.6. The dominance order. We define a partial ordering [4;s) > |u; ). For |4; s) and |u; s), we
define multi-sets A and g as

A1={9 + 5411 <d <€, 1< a<max(A9), (L)},
=+ 501 <d<€,1<a<max((A9), 1))}

We denote by | (A1, A3, -+ -) (resp. (fiy, iz, - - +)) the sequence obtained by rearranging the elements in
the multi-set A (resp. ) in decreasing order.

Definition 2.9. Let [A;s) = ug, Ay, A -++ and |u;8) = ug, Aug, A ---. We define |4; s) 2 |u; s) if
|4l = |pl and

®

@ AzHE , YaA2XE (foral r=1,23,--) ,or
(b) 1 ﬁ s Z;:] k_1225=1 gj (forall r= 192,39"')

Remark. The order in Definition 2.9 is different from the order in [Ugl00] (see Example 2.10
below). However, the unitriangularity in (11) holds for both of them.

Example 2.10. Letn=£¢=2,5s = (1,-1), A = ((1,1),0), and p = (0,(2)). Then, |A;s) = up A u; A
Uy ANusA---and|u;s) = us ANuy ANuz A U3 A-e-. In Uglov’s order, |u; s) is greater than |4; s).
However, |A; s) > |u; s) under our order since {1, A5, A3} = {2,2, -1} and {fi,, jir, fiz} = {1, 1, 1}.
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We define a matrix (@4,(q))1u by
(10) ) =) an(q) s s).
H

Then the matrix (a,,(g))a, is unitriangular with respect to >, that is

an (@ if aiu(g) #0 ,then |4;5) > |u;s),
b)) ag =1.

Thus, by the standard argument, the unitriangularity implies the following theorem.

Theorem 2.11. [Ugl00] There exist unique bases {G*(A;s)| A € I} and {G~(A;5) | A € IT¢} of F 78]
such that .

(@) G*(4s) =G (4;s) G (4;5) =G (4;5)
(i) G'(4;s)=|A;s) mod gL , G (A;s)=|A;s) mod gt L™
where L=Pags . L =Palg s
Aellt Aell?

Definition 2.12. Define matrices A*(q) = (A} #(q)) A and A™(q) = (A} u (@)ayu by

(12) G'h9) =) A @Ims . GCAH= D AL@ IS,
u 2

The entries Aiﬂ(q) are called g-decomposition numbers. Note that g-decomposition numbers A*(gq)
depend on n, £ and s. The matrices A*(g) and A™(g) are also unitriangular with respect to >.

It is known [Ugl00, Theorem 3.26] that the entries of A~(g) are Kazhdan-Lusztig polynomials of
parabolic submodules of affine Hecke algebras of type A, and that they are polynomials in p = —¢q
with non-negative integer coefficients (see [KT02]).

3. A COMPARISON OF (¢-DECOMPOSITION NUMBERS

3.1. Sufficiently large and sufficiently small.

Definition 3.1. Let s = (s, 52, -+ , 5¢) € Z¢ be amulti charge and 1 < j < €.
(1). We say that the j-th component s; of the multi charge s is sufficiently large for |A; s) € F,[s] if

(3) sj—SiZA(li) forall i=1,2,---,¢.

More generally, we say that s; is sufficiently large for a g-wedge uy if

(14) §j = ¢ —nm, forallr=1,2,---,

where k, = ¢, + n(d, — 1) —ntm,,(r =1,2,---),1<c<nand 1 <d < €(see §2).
(ii). We say that s; is sufficiently small for |2; s) if

(15) si—8; 2 A=AV +- + 129 forall i#j
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Note that the definition of sufficiently small depends only on the size of A and the multi charge s.
When we fix the multi charge s, we say that s; is sufficiently small for N if

(16) si—sj2N forall i# j.
Remark. If |4;s) is O-dominant in the sense of [Ugl00], that is
Si— S 2 A=A+ + 129 forall i=1,2,---,£-1,
then s, is sufficiently large for [4; s) and s, is sufficiently small for |4; s).

Lemma 3.2. If s; is sufficiently large for |\A; s) and |; s) 2 |u; s), then
(i) A2 =0,
(i) s; is also sufficiently large for |u; s). In particular, u@ = 0.

Proof. 1t is clear that ) = @ by the definition.
Note that

s; is sufficiently large for |4;s) © s;—5; 2 /1(10 foralli=1,2,---,¢
S > max{/l(ll) + S, ,/l(le) + 8¢} = ;i].
If|A; s) > |y; s), then A; > [1; and so s; > fi;. It means that s; is sufficiently large for |u; s). O

Lemma 3.3. Suppose that s is sufficiently small for |; s). If|A; s) > |u; s) and p» = 0, then A9 = 0.

Proof. Suppose that ((A%) > 1. Then s, is the minimal integer in the set {4 + s4]1 <d < €, 1 <
a < max(i(A9), (D)) }} because u¥ = @ and s; is the minimal integer in s. On the other hand,

the minimal integer in the set {2 + s;|11 < d < £, 1 < a < max(I(A9), [(®)) }} is greater than s;

because s; is sufficiently small for |4; s). Therefore |4; s) # |u; s). This is a contradiction.
O

3.2. Main results. Now, we are ready to state our main theorems.

Theorem 3.4 ([Iij]). Let € € {+, -}. If s is sufficiently large for |4; s), then

(17) 25,s@) = 85, (@),
where A (resp. [, §) is obtained by omitting the j-th component of A (resp. u, s).
Theorem 3.5 ([Iij]). Let € € {+, —}. If s; is sufficiently small for |u; s) and uP =0, then

N8

(18) A5 (@) = A, (@),
where A ( resp. 1, 5) is obtained by omitting the j-th component of A (resp. u, s).

Example 3.6. (i) Ifn=¢=2,s=(3,-3)and A = (0,(6)), u = (0, (5, 1)), then s, is sufficiently large
for |A; s). Hence

Arus(@) = Aip;x(q) = Mgy s.u-n@ = =4

() Ifn=¢=2,5s=3,-3)and A = ((6),0), u = ((5,1),0), then s is sufficiently small for |u; s).
Hence



(1ij]
[IMMO91]
[KT02]

[Rou05]

[Rou08]
[VV99]
[VVO08]

[Ugloo]

[Yvo07]

41

K.INIMA

Auss (@ = B3@ = Degy 5,10-3(D = -q".
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