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A note on the asymptotic formula for solutions
of the linealized Gel’fand problem'

FIEKRF - THEH KEFE %5 (Hiroshi Ohtsuka)'
Department of Applied Physics, Faculty of Engineering,
University of Miyazaki

Abstract

The purpose of this note is to present another approach to the proof
of the asymptotic formula for the solutions of the linealized Gel’fand
problem in two space dimensions. The formula is a key lemma in
our recent paper concerning the asymptotic non-degeneracy for the
Gel’fand problem in two space dimensions.

1 Introduction

In the recent paper [5], we are concerned with the asymptotic behavior of
solutions for the the Gel’fand problem as the non-negative parameters A —
0:

—Auy = Xe* in ), u=0 on 0Q, (1.1)

where Q C R? is a bounded domain with smooth boundary 6.

More precisely, let {\, }.en be a sequence satisfying A, | 0 and u = up(x)
be a solution to (1.1) for A = \,. The possible asymptotic behaviors of u, as
n — oo are well-studied by Nagasaki-Suzuki[8] in terms of £, = A, [, €*.
They established that {¥,} accumulates to ¥, which is either 0, 87m for
some positive integer m, or +00. We are concerned with the cases Yo, = 87m,
where the (sub-)sequence of solutions {u,} is known to blow-up at m-points,
that is, there is a blow-up set ¥ = {k1,...,km} C Q of distinct m-points
such that ||up||Lew) = O(1) for every w CC O\« and {u,(z)} have a limit
for z € O\~ while u,|s» — +00. In this case, the limiting function u., has
the form

Uoo(T) = SWiG(x,mj), (1.2)

where G(z,y) is the Green function of —A under the Dirichlet condition,

that is,
-AG(-,y) =0, inQ, G(-,y) =0 on 09.

t1This work is supported by Grant-in-Aid for Scientific Research (No.22540231), Japan
Society for the Promotion of Science.
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Furthermore, the blow-up points x;(i = 1,--- ,m) satisfy the relations
K(z,55) + Y Gla, naJ =0 1Sj<m), (13
i#j T=K;
where K (z,y) = G(z,y) — 5= log|z — y|™".
Now we introduce the function
1 m
H™(1,...,&m) = 5 Z (z:) + Y Glai,zy),
=1 1<z;<m
i#]

which we call the Hamiltonian. Here R(z) = K(z,z) is the Robin function
of Q. Then the relation (1.3) means that . € Q™ is a critical point of the
function H™ of 2m-variables. Therefore we may say that the limit function
of {u,} blows up at the critical point of the Hamiltonian H™. The main
result in [5] shows a deeper link between H™ and {uy,}.

Let us introduce the functional

Fi(u) = %/QIVulr"d:U— /\/Qe“da:

over H} (Q), which leads (1.1) as an Euler-Lagrange equation. Then we get
the following:

Theorem 1.1 ([5, Theorem 1.2]). Suppose & is a non-degenerate critical
point of H™. Then u, is a non-degenerate critical point of Fy, for n large
enough.

This kind of result is sometimes called the asymptotic nondegeneracy of
u,, and it has been already established by Gladiali and Grossi [3] for the case
m = 1. Similarly to [3], we proved Theorem 1.1 arguing by contradiction. For
this purpose we assumed the existence of a sequence {v,} of non-degenerate
critical point of F, as n — oo. Using a standard argument, we see that v,
is a non-trivial solution of the linearized problem of (1.1):

—Av=Xpe"v inQ, v=0 ondQ, (1.4)
Without loss of generality we are able to assume
|vnl| Loy = 1. (1.5)

Then we got a contradiction ||v,|[ze(q) — O after several calculations.
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Take a sufficiently small positive number R > 0 and a sequence {z;, } for
each k; € & satisfying

xjyn - K;.77 un(xj,n) = Bg%gx)un(x) — o0
7,

as n — 00, see [7]. Then we re-scale u,, and v, around z;, as follows:
Ujn(T) = un(0jnT + Tjpn) — Un(zjs) in B 2 (0)
in
Ujn(Z) = vn(0jnZ + z;») in B_r (0) (1.6)

%5,n

where the scaling parameter 4, , is chosen to satisfy )\ne“"(“’i’")df,n = 1.
Then u;, and v;, satisfy

(AT, = e, in B%(O)

<\ Uin SWin(0)=0, in B%(O)
(AT = €Ty, in B . (0)
4 1l <1

k Loo (BXJB; (0))

Using standard arguments ([3]) based on the classification results in [2, 1],
we are able to get a; = (a;1,a;2) € R?, b; € R for each j, and subsequences
of u;, and v, (denoted by the same symbol) satisfying

1
— N2’
()

~ a]‘ 52" 8 — I5|2 1 bj ~
jn > ~ b ~ = ;o ——U - M 2 ) 1.
v;, 8+[z|2+ FYNED a; -V 1 + 5 {z-VU+2}, (1.7)

Ujn — U(Z) = log

locally uniformly in R?. We note that the above convergence also holds
locally in C? from the elliptic regularity theory. During the proof of Theorem
1.1, we proved a; = 0 and b; = 0 for every j.

Under the above preparations, we get the following asymptotic formula
which is one of key lemmas in our argument:

Lemma 1.2 ([5, Lemma 2.1}, cf. [3, (3.14)]). There exist C; > 0 (j =
1,--- ,m) and subsequence of v, satisfying

Un & . 1/ m

— — 21 Y _Cja;-V,G(z,k;) in C* (Q\ UL, By (k;)). (1.8)

Az j=1



The purpose of this note is to give another proof of this, which we discuss
in the next section.

We end this section with reviewing the rest of the proof to Theorem 1.1.
The rest of the argument is divided into 2 parts. The first one is to show the
following fact:

Lemma 1.3 ([5, Lemma 2.2|). If . is a non-degenerate critical point of
H™, we have a; =0 for every j =1,...,m in Lemma 1.2.

This lemma is obtained by the asymptotic formula (1.8) and the newly
obtained Rellich-Pohozaev type identity concerning the Green’s function:

Proposition 1.4 ([5, Proposition 2.3]). Take z, € Q (k. =1,2,3), R > 0

such that Bg(z1) CC Q and 2,23 &€ Br(2). Set

Iij(zl, 22, 23)

5 0
= /BBR(Zl) {é_l/—xsz (IB, z2)Gyj (CU, 23) a Gmi (.’17, z2)5V_xGyj (x, Z3)} do-x

fori,j =1,2 where x = (z1,22) and y = (y1,%2). Then, it holds that

(1) (21 # 22, 21 # 23)
—Ra:-x'(zl) (zl =22 = Z3)
3 — 24\
Im(zl,Zz,Zg) o Gil'iyj (]Zl, Z3) (21 = 22, 21 '7'é 23) (19)
G,z (21, 22) (21 # 22, 21 = 23).

We note that the definition of I;; is independent of R. We also note that
the second case of (1.9) is a localized version of the known identity

0 1
- . —G,, do, = =R;,..(y),
0 Gwz(xay)ayx Yj (z, y)do, 5 twiz] (v)
(see [3, Lemma 7] for example), while the other cases describe the correlation
of the singularities of the Green’s function between {z1, 22, 23}. Here we see
the sketch of the proof of Lemma 1.3 assuming Lemma 1.2 and Proposition
1.4.

Sketch of the proof of Lemma 1.3. Fix k; € & and R > 2R > 0 satisfying

Br(k;) CC Q and Bg(k;) N & = k;. Differentiating equation (1.1) with
respect to x;, we get the identity

~Aug, = AUy, (1.10)
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which means that u,, (i = 1, 2) is a solution to (1.4) except for the boundary
condition. Therefore, using Green’s identity we have

3 : > /
n)z;Vn — \Un)z; Un do = A Up )z;Un — (Un :E-;‘,Av’n dz
L, (ot = (e, [ (Bum)atn — (w)abn)

r(kj)

=0.
From the result in [8] mentioned above, we have
(Up)z, — 8T Z G.,(z,k;) in C' (@)
j=1
for every w CC Q\.%. Then the relation (1.8) implies

0= / {“’a_(un)zz ) ’U_? - (u'n)acz-2 ('&l) } do
8BRr(k;) Ov 22 Ov 22

n n

— 167 Z ( Z Iii'('ﬁj,fﬁk,fﬂ)) Ciay .

1<i<m \1<k<m
'=1,2

Here we use Proposition 1.4 and get

Z Liv(kj, ks k1) = HZ g (@157 Tm)

1<k<m

b
(z1,+ ,@m)=(K1,+ ,km)

which implies

0 = 16n® Hess (H™) P(Ciay, -, Crm@m)

'(-’E] )t 1mm)=('¢l )"t ,”m) )

where Hess (H™) denotes the Hessian of H™. Since (k1,: - ,Km) iS a non-
degenerate critical point of H™,this Hess(H™) is invertible. Then we con-
clude a; =0 for every j=1,--- ,m by C; > 0. O

The final step to get Theorem 1.1 is to show b; = 0 for every j and con-
sequently we show the uniform convergence v, — 0 in €2, which contradicts

1ol () = 1.

2 More about the asymptotic formula

We recall most parts of the proof of Lemma 1.2 from Section 4 of [5].



Theorem 2.1 ([6], see [5, Theorem 4.1]). For every fized 0 < R < 1, there
exists a constant C independent of j and n > 1 such that

eun (mj,n)

un(x) — log <C V€ Br(zjn).

(1+ Fpentinlle - zinl?)’
Corollary 2.2 ([5, Corollary 4.2]). For fized R, there exists a constant C
satisfying

~ i~ 1
Ujn(Z) — log —————
" (1+ 4a2)°

<C VfEBgz_(O)
7,n

for every j.

Corollary 2.3 ([5, Corollary 4.3]). For each j there exists a constant C; > 0
and a subsequence of 0,, satisfying

Ojm = Cj)\é +o0 (Aé) as n — oo.

Here we take a cut-off function £ € C$ ([0, 00)) satisfying supp& € [0, 1)13

and 1, (0 1/2)
_ ; <r<

Then it follows that

: Z "/)j,n + ¢0,n~

j=1
Recall that outside from kg, .., k,, we have that u, is bounded and then we
derive ||%0,n||z2() = O(An) and hence

Yon — 0 (M) =o(1) uniformly in T (2.1)
A2

It is the next proposition we give another proof in this note.

¥3We note that this condition is not assumed originally in [5], though it seems necessary
here. Obviously the rest of [5] holds if we choose this &.
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Proposition 2.4 ([5, Proposition 4.4]). For each j,
Yin(@) = G(T,Tjn)Vjn + 2105 - VyG(T, Tn)jm + 0(djn)

uniformly for all x € Q\Bg (), where

— x .n
YVim = / A" W (y)& (——————Iy 7 I) dy.
Q

In [5] we proved Proposition 2.4 by the argument used in the proof of [4,
Proposition 6.4]. In Section 3 we derive it similar argument to [3, Lemma 6
(p.1345)] instead. We note that the proof in this note is far complicated than
we chose in [5]. The author think, however, it worth publishing because it
may be used in other problems, where the similar argument used in [5] does
not applicable.

Here we proceed the sketch of the proof of Lemma 1.2 assuming Propo-
sition 2.4.

Since B, (k;) D Bg(zjn) for every j and n > 1, Proposition 2.4 and
Corollary 2.3 imply the following pre-asymptotic formula:

vp(z) = Z'yj nG(Z,Tjn) + 2mAL ZC a;-Vy,G(z,z;n) +o0 (/\2) (2.2)

j=1

uniformly in z € @\ U, B,z (k;) and consequently in Ct (Q\ U7L: Bar (k4))
from the elliptic regularity theory.
To get the finer asymptotic formula (Lemma 1.2) we need to get

Nim = 0 (,\é) (2.3)

for some subsequence.
To this purpose we suppose that (2.3) does not hold. Then there exists j

satisfying
1
2

lim sup < 00.

n—oo [Yjm|

Without loss of generality we may assume

2

. Yin . A'n,

rj:= lim =22 ¢:= lim
n—® Y1n n—00 Y1 n




and
l=ri2rp2>2---2rp,> -1

for some subsequence. Then we get

vn(x

" ) I ZT‘J'G(JC, fﬁ:j) + 2’/TCZ C’jaj . VyG(x, f‘&j) (24)
" j=1

j=1

uniformly in z € Q\ UJL, By (k;).
We take R > 2R satisfying

Br(k;) CCQ, Bgr(kj)NBg(kk)=0 (j#k)
and set
U = (x —p) - Vu, + 2.

This %, also satisfies (1.4) except for the boundary condition, where p € R?
is arbitrary. Taking p = z;, and using Green’s formula again, we are able
to get r1 = 0 as the limit of the identity

0= {ﬁﬂn.l’i_ﬂnﬂ (ﬂn_)}da_
OBRr(z1,n) ov T,n ov Yi,n

This contradicts r; = 1 and we obtain the claim.

3 Another proof of Proposition 2.4

For simplicity, we shall omit j in several characters, e.g., ¥, as Yjn, Un 88
Uj,n, -+ Without loss of generality, furthermore, we may assume a; = (a,0)
for some a > 0 and «; = 0.

From Corollary 2.2 we may assume

~ /
e & (Iéﬁyl)l < C~ 5 < ~C —7 inR’ (3-1)
R (1+ I_zg_li) (1+ [zl + [82])

for another constant C’ > 0. Here we prepare two lemmas similar to [3,
Lemma 6].

Lemma 3.1. Suppose f(z) € C' (R?) satisfies

C
@) S T T

for every x € R? (3.2)
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for some p > 1. Then for every a > 0, the function
w(zy, Ta) / f(at,z9)d (3.3)

satisfies

ag‘z—lw f. (3.4)

Moreover if f(x) further satisfies
/ f(z1,22)dzy =0 for every z, € R, (3.5)

there exist C' > 0 satisfying

Cl

z2)| < AT o] L) for every z, € R2. (3.6)

1w($17

Proof. The condition p > 1 is necessary to define w and (3.4) is obtained by
differentiating (3.3). We may only show (3.6) here.
When z; > 0, we have

oo oo C
< <
[w(zy, 22)| < /zax (et za)ldt < /%l (1+at+ |$2|)pdt
C 1 ok

(p—1)a Q+z+ |zt 1+ |z] + |z2)P

When z; < 0 on the contrary, it hold that

w(zy, T2) = —/: f(at, xs)dt =/a f(at, x5)dt

from the condition (3.5). Therefore we get

o 2
o

wara)l < [ " |f(at,z2)ldt < 15

oo (L= at + |z2|)?
_Cc 1 B C’
(P—Da (1—z+ |zl 1+ |z +|za] )P

d

Remark 3.2. It is necessary that w is integrable in R? in the proof of Propo-
sition 2.4. Therefore we need p > 3.



Lemma 3.3. Suppose f(z) € C? (R?\{0}) and

|f(z)| < for every z € R*\{0} (3.7)

_¢
(1+ |z|)»
for some p > 2. Then the function

¢(z) = ¢(rcosf,rsinb) := log {“T—lz /00 tf(tcos G,tsine)dt} (3.8)

forr >0 and 6 € [0,27) satisfies

div(ze‘) = f for every z € R%\{0}. (3.9)
Moreover for every R > 0 there exists a constant C' = C'(C, R) satisfying
Cl
(v 2
|z]et < A ) for every z € R*\ Bg (0). (3.10)

Here we further suppose

lim0 tf(tcosB,tsinf)dt =0 for every 6 € [0,2). (3.11)

r

Then we have |z|e$ € LL_(R?), which implies |z|e¢ € L' (R?) if p > 3 from

loc

(3.10). Moreover we have
es < g- in R?\{0}. (3.12)

and
div (ze®) = f in 2'(R?). (3.13)
To prove Lemma 3.3, it is convenient to prepare the following:

Proposition 3.4. Suppose f and g € C? (R*\{0}) satisfy

div(zg) = f in 2'(R?\{0}). (3.14)
Moreover suppose
f e L, (R?) (3.15)
and
li}’gl G(r) =0, (3.16)
where

27
G(r) = / r2|g(r cos 8, rsin §)|df € C (0, c0).
0

Then z;9 € Li.(R?) for each i = 1, 2 and the equation (3.14) holds in
2'(R?).
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Proof. We fix x(r) € C* ([0, 00)) satisfying
1 (1<)
r)= ’ and 0< x(r) <1 foreveryr.

For every ¢ € 2(R?) and every ¢ satisfying 0 < € < 1, we set

Izl
€

le) = lax () € 2R\

Then we get
/ g(z)(z - V)pe(z) = / f(z)pe(z)
R2 R2

from the equation (3.14). Here we have

F(@)pe(z) — / f(2)p(z) asel0
R2 R2

from the condition (3.15).
On the other hand, we set

||

[ s@e e = [ a1 De@ix ()

€
|z]

+ [ s@e@e v (2)
= I+ Is.

Since we assumed (3.16), we have

1 p2r 1
/ |zig] < / / r2|g(r cos @, r sin §)|dfdr =/ G(r)dr = O(1)
B (0)\B:(0) e JO €

as € | 0, that means z;9 € LL_(R?). Therefore
L — | g(z)(z-V)e(z)
R2

ase | 0.
On the other hand, we have

1
1] < L sup (@) sup X' (7)] / 12ll9(z)|de
€ B.(0\Bg (0)



and
1 1 € 27 ) .
g/ |z||g(x)|dx = - / r*|g(r cos 8, r sin 0)|dOdr
B<(0)\Bg¢ (0) € Js
/ G(r)dr < X sup |G(r)] —> 0
2¢<r rze
from (3.16). O

Proof of Lemma 3.3. Since p > 2, the function ( is well-defined. It is easy
to see (3.9) since div(zet) =12 (r e¢). The estimate (3.10) is also obtained
by the elementary calculatlons

Since f € L' (R?) from the estimate (3.7), we get

/ tf(tcos@,tsin f)dt

0
ee}

= —-/ tf(tcos,tsinf)dt + }imo tf(tcos@,tsinf)dt

,,.I

=—/ tf(tcosf,tsinf)dt

for every 6 € [0,27) by the assumption (3.11). Therefore

|r?ef| = '—/ tf(tcos@,tsin@)dtl = / tf(tcosf,tsinf)dt
T 0

< / t|f(tcosb,tsinb)|dt. (3.17)
0

Now set g(z) = €¢©@). Then
27
G(r) := / r2|g(r cos 8,7 sin §)|df
0

27 T
< / / t|f(tcosf,tsinf)|dtdd = |f(z)|de — 0O
o Jo

Br(0)

as r | 0 because f € L* (R2)
Therefore we get z;e¢ € Li . (R?) and the equation (3.13) holds by Propo-
sition 3.4. Moreover since we have (3.17) and (3.7), we get

|r2ef] </ tCdt = grz,
0 2

that is, (3.12) holds. O
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Proof of Proposition 2.4. We would like to apply Lemma 3.1 and Lemma 3.3
to

= 5@ = =05 (221

RS P
( a-V( 4e)+bdlv(2ye ))

From (3.1) we are able to assume the conditions (3.2) and (3.7) hold with
p = 4 uniformly with respect to n. The problem is that the conditions (3.5)
and (3.11) do not necessarily hold for these f,’s. Therefore we symmetrize
them.

Case 1: When a = (a,0) # 0, that is, a # 0. We note that

1 64a); 1 64(8 — |712)
V=2V | = —2— d d —geV | = ——22 -
. ( 1° ) Grpe o (2“ ) CENFRE

are odd and even functions with respect to y;, respectively. Therefore we
divide f,(7) into odd and even parts with respect to y::

fn@) — fn(glag2) - fn(—§1a372) + fn(§1a§2) + fn(—?jhg?)

2 2
=: fo(®) + f2(9).
Then we see
64ay: 64(8 — 91*)
fry) — , faly) — = 3.18
D= Grarr YT E PR (318)
locally uniformly from (1.7). Here we note that
supp fn, supp f; C supp fn € B (0). (3.19)

Corresponding to the division of f, into two parts, we also divide ¥n(x)
into two parts:

Yn(z) = / G2, 627 + T0) folD) 0T
B 5 (0)

2
- ‘/33%(0)
= I;+I.

G, 6] + 20) f2) T + /

G(:II, 0ny + xn)fﬁ@)dﬂ
33;1(0)



We note that
Cl
(1+ |31 + |g2])*

form (3.1). Moreover, it holds that

in R? (3.20)

|fals 1fal <

/ (Y1, y2)dyr = 0.

Therefore all the assumptions in Lemma 3.1 holds for f2 with p = 4 uni-
formly with respect to n and we get the estimate (3.6) for corresponding wy,
uniformly.

Here we also note that

. 3
- [ stat = [ foat s
u -0
and consequently
supp wy, C BSE_ (0) (3.21)

since (3.19).
From (3.18) and (3.20), we get

~ ~ 64ay; , ~
fal1,92) — &+ |§|12)3 =: fo in L' (R) for every fixed 7 € R.

Here we note that the function w determined from f2 by Lemma 3.1 is
Weo = —3€¥ and we have

(@) - weo(@)] < / Fo(at, Ba) — £2,(at, To)dt

< Ellf,‘i(-,ﬂz) — & B)llm — 0

as n — oo for every § € R2
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Using these facts, we get
— ~ 0

p=[  Gebi+mi@d= [ Oldd+aagund
B 3}1(0) B BE(O) n

- _d, / O Gz, 6.5+ 2 )n(@)dF
(o) oy

= —ad, —G (x xn)/ wn(9)dy
" Oy

0 0
—ad / {—G z,0,Y + z,) — —G(z, 2, }wnyd@'
], o G 8T+ ) = 5 Garz) )
Here, from (3.6) that holds for w, with p = 4 and C’ independent of n, we

get
~ - 1
| n@di— | @i =~ [ & ==
B0 R? 4 Jr2

from the Lebesgue dominated convergence theorem.

On the other hand, since 6,y + z, € Bg(x,) and suppwn, (y;—:ﬁ) S
Bji (z,,), there exists a constant C” > 0 independent of z and we have the
estimate

0 0
G(z, 6,y + z,) — —G n n(Y)dy
/-(0){33!1 (%00 + ) Oy1 (xx)}w(@)y
<c's, / Flwn @5 = O(62) = o(1)
B 3 (0)

similarly from the Lebesgue dominated convergence theorem because of (3.6)
for w, with p = 4.
Consequently we get

I? =2ma - V,G(z,x,)0n + 0(6r) (3.22)

for every z € Q\ Bz (z4).
Next we calculate I? part with Lemma 3.3. To this purpose we set

e .— div 1 _M
fomaiv (55) = S
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and observe that

2 (2)--Erp

Corresponding to this symmetry of the Kelvin transformation, we divide f?
into two parts:

r =30~ s (i) + 3 {0+ i ()
= fom(@) + f5*(@ for § € RA{0}.
Then it holds that

€,— 8~ 4 €, (4 8 4 €,
() =L@ wma () -Lrrw.
Moreover we have

o= (y) — fo(¥) locally uniformly in R*\{0}, (3.23)
et (7) — 0 locally uniformly in R*\{0} (3.24)

from (3.18) and

/

5271 181 € e mRA(O) (3.25)

for some constant C’ independent of n from (3.20). Especially (3.7) holds for

f=f>"and p=4.
Now we note that

limo tfo~(tcosf,tsin0)dt
: t . . 64 ., (8cosf 8sinf
_rl£>n0 i -2—{fn(tcosé?,tsm6) ~ 4 fn ( P )}dt

for each 0 € [0, 27). Here
o oo
/ tfr(tcosf,tsinf)dt — / tfi(tcos,tsinf)dt
T 0

since f£ is continuous at 0 and

8
/ 2—3 5(80::86,881:9) dt=/ tfe (tcosf,tsinf)dt
r 0

— / tfr (tcos@,tsin@)dt
0
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as v | 0 from (3.20). Therefore we get (3.11) for f = fo~ and consequently
all the conclusions in Lemma 3.3.

Taking another cut-off function n(r) € C§° ([0, 00)) satisfying suppn C
[0,1) and n = 1 on supp&. Then we get

It = / Gz, 5.5 + 22) f2(D) 7
B 5 (0)

= / G(z, 00y + zo)n (
Bz (0)
n

:/BB%(O)

=: IO + I,

On|

mn

) fe@dy

G(x,snam)n( ){fe @) + £ @)} dy

wu

Since r € Q\Bjz (z,), we may assume

Gz, 625 + T)1 (5”'_@") c 9'(R?)

for each fixed z. Let {, be the function ¢ determined from f = f~ in
Lemma 3.3. Then we have

o™ = =6, / ¥ V,G(z,00y + zn)n <6nl_y|) e dy
R (0) R

On|

_ / mcxany+wn)n( )y (320

:Ul

Immediately (3.10) and (3.12) give
7,
RJp

as n — oo since 7’ (i%ﬂ) — 0 for every ¥ € R? and the Lebesgue

G a5 4z () g = ot
2

convergence theorem.
We note (o := log @II%W is the corresponding ¢ to f&~ and it hold

o0
e — el < [ efem - forlde — 0
T



from (3.23), (3.25), and the Lebesgue convergence theorem. Especially we
have

en® ., $=®  for every § € R?\{0}. (3.27)
Applying these facts (3.27), (3.10), and (3.12) to (3.26), we get
15 = =4, (vyG<x,o> [ i+ o(l)) to(s) =o(6,)  (328)
R2

as n — oo since fRz Jelol) = fRZ (—84?—?17917)7 =0.

Finally we calculate I&*. We are able to divide I&" into two more parts:

- 0n|y »
Ih = / G(z, 0,9 + Zn)n (-—M> o (y)dy
B 3 (0) R

=G<an) /B . (6 lyl) Py

+ IRCLXEAESE G(x,wn)}n< nlyl) R

Here

On[]

(6(e:0a7+ ) - Gla, el (20 fer @y

~/1;3%(0)

1" ~ 5 e,
<C 6n/ lyln( Im)lf*@)ldy—o On)
333(0)

for some constant C" > 0 because z € Q\Bg (z,), supp 7 (ly ”"”l) € Bz (z4),
(3.24), (3.25), and the Lebesgue convergence theorem.
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On the other hand, we have

[ () s
R (0)
P)-4{m 1 (7))
/ 50 ¢( 70+ gt () ;9
_1 On |y|> “(3)d7 (5
2/3,1@ ( fn(3) JFQ/RZ\Js%n(o>77
/ (5 |y|) £ dy
! On 80\ _ (5’437')} °(§)dy
+ 2/38%(0) {n(R lmg) 1\ & fa(y)dy.
Here we recall that n (—-@) =lonsupp f£ C B 2 (0). Therefore
£@a= [ 5@ =
B 0

R e,
33%(0) Bb%(o) 2,,z%()

Here we recall that 7 = 1 on supp . Therefore we see

supp {1 (%2 ) =0 (%)} 0 < By 0,

where R > 0 is any fixed number satisfying [0, é) C supp&. We note that
f&(y) = O(1) on Bss, (0) and consequently we get
R

/BR ©) {77 (% ' %%) -1 (%@) } FE(@)dy = O(62) = o(6,).

Summarizing these we get

3

- |~|2) o

‘;Ull

§1

I¢t = G(z, T,) Y0 + 0(6n)

for every = € Q\Bg (,) and the conclusion.
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Case 2: When a = (a,0) =0, that is, a = 0. In this case we may apply
the analysis for f¢ in Case 1 to f,. Indeed, we use the property of even
functions with respect to y; only to determine the limit function in (3.23)
and (3.24). To get similar result, we divide f, into following two parts here:

0 =5 {000~ e () |+ 2 {20+ o (55)

= f7 (@ + £} (§) for j€ R\ {0}.

We note that the function f2(y) = @6—;1"1'% satisfies

64, (55 _
|a|4f°°(|m?> foo(®)

for every a > 0, that is,

fo — 1%
locally uniformly in general from (1.7). Since a = 0 now, we have following
behaviors instead of (3.23) and (3.24):

(@) — f&(¥) locally uniformly in R*\{0},
fH@) — 2 =0 locally uniformly in R?\{0}.

It also holds that

/

[fal 1£2] < in R*\{0}
(1+[g)*
for some constant C’ independent of n from (3.1) instead of (3.25). Therefore
we get the conclusion similarly to Case 1. O
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