AN UNSATURATED GENERIC STRUCTURE

法政大学・経営 池田宏一郎 (KOICHIRO IKEDA) FACULTY OF BUSINESS ADMINISTRATION, HOSEI UNIVERSITY

神戸大学・情報 桔梗宏孝 (HIROTAKA KIKYO) DEPARTMENT OF INFORMATICS, KOBE UNIVERSITY

ABSTRACT. We construct an *ab initio* generic structure for a predimension function with a positive rational coefficient strictly less than 1 which is unsaturated and has a non- ω -stable theory. Superstability of the theory will be discussed in a sequel paper.

1. INTRODUCTION

We consider graph structures. A graph structure has one binary relation as a first order structure. $X \subseteq_{\text{fin}} Y$ means that X is a finite subset of Y.

For a graph structure A, let

 $\delta_{\alpha}(A) = |A| - \alpha e(A).$

Here, α is a rational number such that $0 < \alpha < 1$, |A| the number of points in A, and e(A) the number of edges in A. $\delta_{\alpha}(A)$ is called a *predimension function*.

Suppose $A \subseteq_{\text{fin}} B$ (substructure = induced subgraph).

 $A \leq B$ (A is a strong substructure of B or A is closed in B) if

 $A \subseteq X \subseteq_{\text{fin}} B \Rightarrow \delta_{\alpha}(A) \leq \delta_{\alpha}(X).$

In this case, if $A = \{a\}$ (a singleton) then a is called a *closed point* in B.

We say that $A \leq B$ is minimal if $A \leq B$, $A \neq B$, and $A \leq X \leq B$ implies X = A or X = B.

With this notation, let

 $\mathbf{K}_{\alpha} = \{ A : \text{finite} : A \ge \emptyset \}.$

Definition 1.1. Suppose $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$. A countable graph M is a *generic structure* of \mathbf{K} if

• $A \subseteq_{\text{fin}} M \Rightarrow$ there exists B such that $A \subseteq B \subseteq_{\text{fin}} M$ and $B \leq M$;

- $A \subset_{\text{fin}} M \Rightarrow A \in \mathbf{K};$
- for any $A, B \in \mathbf{K}$,

$$A \xrightarrow{B} A \xrightarrow{C} A \xrightarrow{C} A$$

Definition 1.2. A class **K** has the amalgamation property (AP, in short) if for any $A, B, C \in \mathbf{K}$,

Fact 1.3. Suppose $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$,

- (1) $\emptyset \in \mathbf{K}$,
- (2) K has the AP, and
- (3) $A \subset B \in \mathbf{K}$ implies $A \in \mathbf{K}$.

Then K has a generic structure.

Definition 1.4. Suppose $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$. K has thrifty amalgamation if whenever $A \leq B$ is minimal, $A \leq C$ with $A, B, C \in \mathbf{K}$ then either $B \oplus_A C \in \mathbf{K}$ or there is a strong embedding of B into C over A.

2. AN AMALGAMATION CLASS

Definition 2.1. A graph A is a minimal 1-component (in \mathbf{K}_{α}) if $|A| \ge 2$, $\delta_{\alpha}(A) = 1$, and $\delta_{\alpha}(X) > 1$ for any $X \subset A$ such that 1 < |X| < |A|.

The following are examples of a minimal 1-component in the case $\alpha = 2/3$. In the rest of the paper, we fix $\alpha = 2/3$ and δ_{α} will be written δ .

Let S_A be the set of connected substructures of (A, a, b), i.e., the connected substructures of A containing a and b. Let S_B be the set of connected substructures of (B, a, b). Let $S_0 = S_A \cup S_B$.

Let S_1 be the smallest class with thrifty amalgamation containing S_0 .

Lemma 2.2. (1) If $(X, a, b) \in S_0$, then (X, a, b) is (A, a, b), (B, a, b), or $(Y, a, b) \leq (X, a, b)$ for some proper substructure (Y, a, b) of (B, a, b).

(2) If $(X, a, b) \in S_0$ with $1 < \delta(X) < 2$ then $\delta(X) = 4/3$ or 5/3 and there is $(Y, a, b) \in S_0$ such that $X \leq Y$ and $\delta(Y) \geq 2$.

Definition 2.3. Let S be a class of structures (X, a, b) where X is a graph and a, b are two distinguished points in X.

Suppose that there are graphs A_1, A_2, \ldots, A_n and points $a_{i-1}, a_i \in A_i$ such that (A_i, a_{i-1}, a_i) is isomorphic to some element of S for each i, and

$$Y = A_1 \oplus_{a_1} A_2 \oplus_{a_2} \cdots \oplus_{a_{n-1}} A_n.$$

We call Y a S-chain. n is called the length of the S-chain Y. Each A_i is called an amalgamand of Y. With such Y, if we can write

$$X = Y/(a_0 = a_n)$$

then we call X a S-cycle. n is called the length of the S-cycle X. Each amalgamand of Y is also called an *amalgamand* of X.

If S consists of one graph with two points and one edge, we simply call an S-chain a chain, and an S-cycle a cycle.

Let \mathbf{K}_0 be the set of S_1 -cycles of length greater than |B|.

Proposition 2.4. Suppose $X \in K_0$.

- (1) $\delta(X) = 0$ if and only if every amalgamand of X is isomorphic to (A, a, b) or (B, a, b).
- (2) $\delta(X) = 1/3$ if and only if exactly one amalgamand of X is isomorphic to a proper substructure of (A, a, b) or (B, a, b) with $\delta = 4/3$ and each of the remaining amalgamands is isomorphic to (A, a, b) or (B, a, b).
- (3) $\delta(X) = 2/3$ if and only if either exactly one amalgamand of X is isomorphic to a proper substructure of (A, a, b) or (B, a, b) with $\delta = 5/3$ or exactly two amalgamands of X are isomorphic to a proper substructure of (A, a, b) or (B, a, b) with $\delta = 4/3$, and each of the remaining amalgamands is isomorphic to (A, a, b) or (B, a, b).
- (4) $0 < \delta(X) < 1$ if and only if $\delta(X) = 1/3$ or $\delta(X) = 2/3$.

Proposition 2.5. Suppose $X \in K_0$.

- (1) If $\delta(X) = 0$ then there is no proper substructure of X closed in X.
- (2) If $\delta(C) \geq 2$ for exactly one amalgamand C of X, and each of the remaining amalgamands of X is isomorphic to (A, a, b) or (B, a, b), then there is a closed point of X in C, and all the closed points of X are in C.
- (3) If $\delta(C), \delta(D) \ge 2$ for exactly two amalgamands C, D of X, and each of the remaining amalgamands of X is isomorphic to (A, a, b) or (B, a, b), then there is a closed point of X in C, and also in D, and all the closed points of X are in C or D.

Let K_1 be the set of S_1 -chains and its substructures.

Let K_2 be the smallest set with thrifty amalgamation containing K_0 and K_1 .

Proposition 2.6. Suppose $X \in \mathbf{K}_2$ and X is connected. If $\delta(X) < 1$ then $X \in \mathbf{K}_0$.

Proposition 2.7. Suppose c_1 and c_2 are two closed points in $X \in \mathbf{K}_2$. Then there is $Y \in \mathbf{K}_2$ such that $X \leq Y$ and c_1 and c_2 are connected in Y.

Proof. If c_1 and c_2 are connected then there is nothing to prove. Suppose c_1 and c_2 are not connected in $X \in \mathbf{K}_2$. Let X_1 be the connected component of X containing c_1 and X_2 the connected component of X containing c_2 . If $c_1, c_2 \in U \subset X$, then

$$\delta(U) \ge \delta(U \cap X_1) + \delta(U \cap X_2) \ge 1 + 1 = 2$$

since $c_i \leq U \cap X_i$ for i = 1, 2. Hence, $\{c_1, c_2\} \leq X$. Consider a chain C_3 of length 3 with end points c_1 and c_2 . then $\{c_1, c_2\} \leq C_3 \in \mathbf{K}_2$. Hence there is $Y \in K_2$ such that X and C_3 are strongly embedded in Y over $\{c_1, c_2\}$.

K. IKEDA AND H. KIKYO

3. An Unsaturated Generic Structure

Let M be the generic structure of \mathbf{K}_2 .

Proposition 3.1. M has only one connected component with closed points. The other connected components are exactly $\{A, B\}$ -cycles.

Proposition 3.2. Th(M) is not ω -stable.

Proof. In a saturated model of Th(M), we have all $\{A, B\}$ -chains of countable length by compactness. Therefore, there are continuumly many types over \emptyset .

We will discuss superstability of Th(M) in a sequel paper.

References

- J.T. Baldwin, Problems on pathological structures, In Helmut Wolter, Martin Weese, editor, Proceedings of 10th Easter Conference in Model Theory 1993, 1-9. Press, 1993.
- [2] J.T. Baldwin, A field guide to Hrushovski's constructions, http://www.math.uic.edu/~jbaldwin/pub/hrutrav.pdf, 2009.
- [3] J.T. Baldwin and N. Shi, Stable generic structures, Annals of Pure and Applied Logic 79 (1996), 1-35.
- [4] E. Hrushovski, A stable \aleph_0 -categorical pseudoplane, preprint, 1988.
- [5] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic 62 (1993), 147– 166.
- [6] K. Ikeda, Ab initio generic structures which are superstable but not ω -stable, submitted.
- [7] K. Ikeda, A note on strictly superstable generic structures, this volume, 2011.
- [8] F.O. Wagner, Relational structures and dimensions, In Automorphisms of first-order structures, Clarendon Press, Oxford (1994), 153-181.
- [9] F.O. Wagner, Fields and fusions, Hrushovski constructions and their definable groups, Kokyuroku of RIMS 1718 (2010), 27-40.