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ABSTRACT. We construct an ab initio generic stmcture for a predimension function
with a positive rational coefficient strictly less than 1 which is unsaturated and has
a non-u-stable theory. Superstability of the theory will be discussed in a sequel
paper.

1. INTRODUCTION
We consider graph structures. A graph structure has one binary relation as a first

order structure. $X\subseteq finY$ means that $X$ is a finite subset of $Y$ .
For a graph structure $A$ , let

$\delta_{\alpha}(A)=|A|-\alpha e(A)$ .
Here, $\alpha$ is a rational nlmlber such that $0<\alpha<1,$ $|A|$ the number of points in $A$ , and
$e(A)$ the number of edges in A. $\delta_{\alpha}(A)$ is called a predimension function.

$S_{1}$1$ppo_{\iota}seA\subseteq finB$ ( $s\iota$lbstrllctiire $=$ induced subgraph).
$A\leq B$ (A is a strong substructure of $B$ or $A$ is closed in $B$ ) if

$A\subseteq X\subseteq finB\Rightarrow\delta_{\alpha}(A)\leq\delta_{\alpha}(X)$ .
In this case, if $A=\{a\}$ (a singleton) then $a$ is called a closed point in $B$ .

We say that $A\leq B$ is minimal if $A\leq B,$ $A\neq B$ , and $A\leq X\leq B$ implies $X=A$
or $X=B$.

With this notation, let
$K_{\alpha}=$ { $A$ : finite: $A\geq\emptyset$ }.

Definition 1.1. Suppose $K\subseteq K_{\alpha}$ . A countable graph $M$ is a generic structure of
$K$ if

$\bullet$ $A\subseteq finM\Rightarrow$ there exists $B$ such that $A\subseteq B\subseteq finM$ and $B\leq M$ ;
$\bullet A\subset finM\Rightarrow A\in K$;
$\bullet$ for any $A,$ $B\in K$ ,

$B$

$||_{\text{�^{}\backslash }\sim_{A}}^{\backslash _{c}}\backslash \nabla^{\backslash }\backslash$

$Arightarrow M\leq$
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Definition 1.2. A class $K$ has the amalgamation property (AP, in short) if for any
$A,$ $B,$ $C\in K$ ,

Fact 1.3. Suppose $K\subseteq K_{\alpha}$ ,
(1) $\emptyset\in K$,
(2) $K$ has the $AP_{f}$ and
(3) $A\subset B\in K$ implies $A\in$ K.

Then $K$ has a generic structure.

Definition 1.4. Suppose $K\subseteq K_{\alpha}$ . $K$ has thrifty amalgamation if whenever $A\leq B$

is minimal, $A\leq C$ with $A,$ $B,$ $C\in K$ then either $B\oplus_{A}C\in K$ or there is a strong
embedding of $B$ into $C$ over $A$ .

2. AN AMALGAMATION CLASS
Definition 2.1. A graph $A$ is a minimal l-component (in $K_{\alpha}$ ) if $|A|\geq 2,$ $\delta_{\alpha}(A)=1$ ,
and $\delta_{\alpha}(X)>1$ for any $X\subset A$ such that $1<|X|<|A|$ .

The following are examples of a minimal l-component in the case $\alpha=2/3$ .
In the rest of the paper, we fix $\alpha=2/3$ and $\delta_{\alpha}$ will be written $\delta$ .

$A$ $B$

Let $S_{A}$ be the set of connected substructures of $(A, a, b)$ , i.e., the connected sub-
structures of $A$ containing $a$ and $b$ . Let $S_{B}$ be the set of connected substructures of
$(B, a, b)$ . Let $S_{0}=S_{A}\cup S_{B}$ .

Let $S_{1}$ be the smallest class with thrifty amalgamation containing $S_{0}$ .
Lemma 2.2. (1) If $(X, a, b)\in S_{0}$ , then $(X, a, b)$ is $(A, a, b)_{f}(B, a, b)$ , or $(Y, a, b)\leq$

$(X, a, b)$ for some proper substructure $(Y, a, b)$ of $(B, a, b)$ .
(2) If $(X, a, b)\in S_{0}$ with $1<\delta(X)<2$ then $\delta(X)=4/3$ or 5/3 and there is

$(Y, a, b)\in S_{0}$ such that $X\leq Y$ and $\delta(Y)\geq 2$ .
Definition 2.3. Let $S$ be a class of structures $(X, a, b)$ where $X$ is a graph and $a,$ $b$

are two distinguished points in $X$ .
Suppose that there are graphs $A_{1},$ $A_{2},$

$\ldots,$
$A_{n}$ and points $a_{i-1,h}\in A_{i}$ such that

$(A_{i}, a_{i-1}, a_{i})$ is isomorphic to some element of $S$ for each $i$ , and
$Y=A_{1}\oplus_{a1}A_{2}\oplus_{a_{2}}\cdots\oplus_{a_{n-1}}A_{n}$.
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We call $Y$ a S-chain. $n$ is called the length of the S-chain $Y$ . Each $A_{i}$ is called an
amalgamand of $Y$ . With such $Y$ , if we can write

$X=Y/(a_{0}=a_{n})$

then we call $X$ a S-cycle. $n$ is called the length of the S-cycle $X$ . Each amalgamand
of $Y$ is also called an amalgamand of $X$ .

If $S$ consists of one graph with two points and one edge, we simply call an S-chain
a chain, and an S-cycle a cycle.

Let $K_{0}$ be the set of $S_{1}$ -cycles of length greater than $|B|$ .
Proposition 2.4. Suppose $X\in K_{0}$ .

(1) $\delta(X)=0$ if and only if every amalgamand of $X$ is isomorphic to $(A, a, b)$ or
$(B, a, b)$ .

(2) $\delta(X)=1/3$ if and only if exactly one amalgamand of $X$ is isomorphic to
a proper substmcture of $(A, a, b)$ or $(B, a, b)$ with $\delta=4/3$ and each of the
remaining amalgamands is isomorphic to $(A, a, b)$ or $(B, a, b)$ .

(3) $\delta(X)=2/3$ if and only if either exactly one amalgamand of $X$ is isomorphic
to a proper substructure of $(A, a, b)$ or $(B, a, b)$ with $\delta=5/3$ or exactly two
amalgamands of $X$ are isomorphic to a proper substructure of $(A, a, b)$ or
$(B, a, b)$ with $\delta=4/3$ , and each of the remaining amalgamands is isomorphic
to $(A, a, b)$ or $(B, a, b)$ .

(4) $0<\delta(X)<1$ if and only if $\delta(X)=1/3$ or $\delta(X)=2/3$ .
Proposition 2.5. Suppose $X\in K_{0}$ .

(1) If $\delta(X)=0$ then there is no proper substructure of $X$ closed in $X$ .
(2) If $\delta(C)\geq 2$ for exactly one amalgamand $C$ of $X$ , and each of the remaining

amalgamands of $X$ is isomorphic to $(A, a, b)$ or $(B, a, b)$ , then there is a closed
point of $X$ in $C$ , and all the closed points of $X$ are in $C$ .

(3) If $\delta(C),$ $\delta(D)\geq 2$ for exactly two amalgamands $C,$ $D$ of $X$ , and each of the
remaining amalgamands of $X$ is isomorphic to $(A, a, b)$ or $(B, a, b)$ , then there
is a closed point of $X$ in $C$, and also in $D_{f}$ and all the closed points of $X$ are
in $C$ or $D$ .

Let $K_{1}$ be the set of $S_{1}$-chains and its substructures.
Let $K_{2}$ be the smallest set with thrifty amalgamation containing $K_{0}$ and $K_{1}$ .

Proposition 2.6. Suppose $X\in K_{2}$ and $X$ is connected. If $\delta(X)<1$ then $X\in K_{0}$ .
Proposition 2.7. Suppose $c_{1}$ and $c_{2}$ are two closed points in $X\in K_{2}$ . Then there is
$Y\in K_{2}$ such that $X\leq Y$ and $c_{1}$ and $c_{2}$ are connected in $Y$ .

Proof. If $c_{1}$ and $c_{2}$ are connected then there is nothing to prove. Suppose $c_{1}$ and $c_{2}$

are not connected in $X\in K_{2}$ . Let $X_{1}$ be the connected component of $X$ containing
$c_{1}$ and $X_{2}$ the connected component of $X$ containing $c_{2}$ . If $c_{1},$ $c_{2}\in U\subset X$ , then

$\delta(U)\geq\delta(U\cap X_{1})+\delta(U\cap X_{2})\geq 1+1=2$

since $c_{i}\leq U\cap X_{i}$ for $i=1,2$ . Hence, $\{c_{1}, c_{2}\}\leq X$ . Consider a chain $C_{3}$ of length 3
with end points $c_{1}$ and $c_{2}$ . then $\{c_{1}, c_{2}\}\leq C_{3}\in K_{2}$ . Hence there is $Y\in K_{2}$ such that
$X$ and $C_{3}$ are strongly embedded in $Y$ over $\{c_{1}, c_{2}\}$ . $\square$

11



K. IKEDA AND H. KIKYO

3. AN UNSATURATED GENERIC STRUCTURE
Let $M$ be the generic structure of $K_{2}$ .

Proposition 3.1. $M$ has only one connected component with closed points.
The other connected components are exactly $\{A, B\}$ -cycles.

Proposition 3.2. Th$(M)$ is not $\omega$-stable.

Proof. In a saturated model of Th$(M)$ , we have all $\{A, B\}$-chains of countable length
by compactness. Therefore, there are continuumly many types over $\emptyset$ . $\square$

We will discuss superstability of Th$(M)$ in a sequel paper.
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