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Abstract

We present a polynomial-time approximation al-
gorithm for legally coloring as many edges of a
given simple graph as possible using two colors. It
achieves an approximation ratio of roughly 0.842
and runs in $O(n^{3}m)$ time, where $n$ (respectively)
m$)$ is the number of vertices (respectively, edges) in
the input graph. The previously best ratio achieved
by a polynomial-time approximation algorithm was
$\frac{5}{6}\approx 0.833$ .

Keywords: Approximation algorithms, graph al-
gorithms, edge coloring, NP-hardness.

1 Introduction
Given a graph $G$ and a natural number $t$ , the maxi-
mum edge t-coloring problem (called MAX EDGE t-
COLORING for short) is to find a maximum-sized set
$F$ of edges in $G$ such that $F$ can be partitioned into
at most $t$ matchings of $G$ . Motivated by call admit-
tance issues in satellite based telecommunication
networks, Feige et al. [3] introduced the problem
and proved its APX-hardness. They also observed
that MAX EDGE $t$-COLORING is a special case of the
well-known maximum coverage problem (see [6]).
Since the maximum coverage problem can be ap-
proximated by a greedy algorithm within a ratio
of $1-(1- \frac{1}{t})^{t}[6]$ , so can MAX EDGE $t$-COLORING.
In particular, the greedy algorithm achieves an ap-
proximation ratio of $\frac{3}{4}$ for MAX EDGE 2-COLORING,
which is the special case of MAX EDGE $t$-COLORING
where the input number $t$ is fixed to 2. For this
special case, Feige et al. [3] has improved the triv-
ial ratio $\frac{3}{4}=0.75$ to $115\approx 0.769$ by an LP approach.

The APX-hardness proof for MAX EDGE t-
COLORING given by Feige et al. [3] indeed shows
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that the problem remains APX-hard even if we re-
strict the input graph to a simple graph and fix
the input integer $t$ to 2. We call this restriction
(special case) of the problem MAX SIMPLE EDGE 2-

COLORING. Feige et al. [3] also pointed out that for
MAX SIMPLE EDGE 2-COLORING, an approximation
ratio of $\frac{4}{5}$ can be achieved by the following simple
algorithm: Given a simple graph $G$ , first compute
a maximum-sized subgraph $H$ of $G$ such that the
degree of each vertex in $H$ is at most 2 and there
is no 3-cycle in $H$ , and then remove one arbitrary
edge from each odd cycle of $H$ . This simple al-
gorithm has been improved in [1, 2, 9]. The pre-
viously best ratio (namely, $\frac{tr_{)}}{6}$ ) was given in [9]. In
this paper, we improve on both, the algorithm in [1]
and the algorithm in [9], to obtain a new approx-
imation algorithm that achieves a ratio of roughly
0.842. Roughly speaking, our algorithm is based on
global and local improvements, dynamic program-
ming, and recursion. Its analysis is based on an
intriguing charging scheme and certain structural
properties of train graphs and starlike graphs (see
Section 3 for definitions).

Kosowski et al. [10] also considered MAX SIMPLE
EDGE 2-COLORING. They presented an approxima-
tion algorithm that achieves a ratio of $\frac{28\Delta-12}{35\Delta-21}$ ,
where $\triangle$ is the maximum degree of a vertex in the
input simple graph. This ratio can be arbitrarily
close to the trivial ratio $\frac{4}{o^{\ulcorner}}$ because $\triangle$ can be very
large. In particular, this ratio is worse than our new
ratio 0.842 when $\triangle\geq 4$ . Moreover, when $\triangle=3$ ,
our algorithm indeed achieves a ratio of $\frac{6}{7}$ , which is
equal to the ratio $\frac{28\Delta-12}{35\Delta-21}$ achieved by Kosowski et
al.’s algorithm [10]. Note that MAX SIMPLE EDGE 2-

COLORING becomes trivial when $\triangle\leq 2$ . Therefore,
no matter what $\triangle$ is, our algorithm is better than
or as good as all known approximation algorithms
for MAX SIMPLE EDGE 2-COLORING.

Kosowski et al. [10] showed that approximation
algorithms for MAX SIMPLE EDGE 2-COLORING can
be used to obtain approximation algorithms for cer-
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tain packing problems and fault-tolerant guarding
problems. Combining their reductions and our im-
proved approximation algorithm for MAX SIMPLE
EDGE 2-COLORING, we can obtain improved approx-
imation algorithms for their packing problems and
fault-tolerant guarding problems immediately.

nent of $G$ is an isolated vertex, a path, or an even
cycle. Note that MAX SIMPLE EDGE 2-COLORING
is the problem of finding a maximum-sized edge-2-
colorable subgraph in a given graph.

3 Two Crucial Lemmas and

2 Basic Definitions
Throughout the remainder of this paper, a graph
means a simple undirected graph (i.e., it has neither
parallel edges nor self-loops).

Let $G$ be a graph. We denote the vertex set of $G$

by $V(G)$ , and denote the edge set of $G$ by $E(G)$ .
The degree of a vertex $v$ in $G$, denoted by $d_{G}(v)$ , is
the number of vertices adjacent to $v$ in $G$. A vertex
$v$ of $G$ with $d_{G}(v)=0$ is called an isolated vertex.
For a subset $U$ of $V(G)$ , let $G[U]$ denote the graph
$(U, E_{U})$ where $E_{U}$ consists of all edges $\{u, v\}$ of $G$

with $u\in U$ and $v\in U$ . We call $G[U]$ the subgmph
of $G$ induced by $U$. For a subset $U$ of $V(G)$ , we
use $G-U$ to denote $G[V(G)-U]$ . $G$ is a star if
$G$ is connected, $G$ has at least three vertices, and
there is a vertex u(called the center of $G$ ) such that
every edge of $G$ is incident to $u$. Each vertex of a
star other than the center is called a satellite of the
star.

A cycle in $G$ is a connected subgraph of $G$ in
which each vertex is of degree 2. A path in $G$ is
a connected subgraph of $G$ in which exactly two
vertices are of degree 1 and the others are of degree
2. Each vertex of degree 1 in a path $P$ is called
an endpoint of $P$, while each vertex of degree 2 in
$P$ is called an inner vertex of $P$. An edge $\{u, v\}$

of a path $P$ is called an inner edge of $P$ if both $u$

and $v$ are inner vertices of $P$. The length of a cycle
or path $C$ is the number of edges in $C$. A cycle
of odd (respectively, even) length is called an odd
(respectively, even) cycle.

A path-cycle cover of $G$ is a subgraph $H$ of $G$

such that $V(H)=V(G)$ and $d_{H}(v)\leq 2$ for every $|$

$v\in V(H)$ . Note that each connected component of
a path-cycle cover of $G$ is an isolated vertex, path,
or cycle. A path-cycle cover $C$ of $G$ is triangle- }

free if $C$ does not contain a cycle of length 3. A 1

path-cycle cover $C$ of $G$ is marimum-sized if the $’|$

number of edges in $C$ is maximized over all path- ]

cycle covers of $G$.
$G$ is edge-2-colomble if each connected compo-

the Outline of Our Algo-
rithm

We say that a graph $K=(V_{K}, E_{K}\cup F_{K})$ is a tmin
gmph if it satisfies the following conditions:

$\bullet$ The graph $(V_{K}, E_{K})$ has $h+1$ connected com-
ponents $C_{0},$

$\ldots,$
$C_{h}$ with $h\geq 0$ .. $C_{0}$ is a path while $C_{1}$ through $C_{h}$ are odd cy-

cles of length at least 5.. $F_{K}$ is a matching consisting of $h$ edges
$\{u_{1}, v_{1}\},$

$\ldots,$
$\{u_{h}, v_{h}\}$ .

$\bullet$ For each $i\in\{1, \ldots, h\},$ $u_{i}$ is an inner vertex
of path $C_{0}$ while $v_{i}$ is a vertex of $C_{i}$ .

We call the edges of $F_{K}$ the column edges of $K$ ,
call path $C_{0}$ the beam path of $K$ , and call cycles $C_{1}$

through $C_{h}$ the wheels of $K$ .
We say that a graph $K=(V_{K}, E_{K}\cup F_{K})$ is a

starlike graph if it satisfies the following conditions:
$\bullet$ The graph $(V_{K}, E_{K})$ has $h+1$ connected com-

ponents $C_{0},$
$\ldots,$

$C_{h}$ with $h\geq 2$ .. $C_{0}$ is a cycle of length at least 4 while $C_{1}$

through $C_{h}$ are odd cycles of length at least
5.

$\bullet$ $F_{K}$ is a matching consisting of $h$ edges
$\{u_{1}, v_{1}\},$

$\ldots,$
$\{u_{h}, v_{h}\}$ .. For each $i\in\{1, \ldots, h\},$ $u_{i}$ is a vertex of $C_{0}$

while $v_{i}$ is a vertex of $C_{i}$ .
We call the edges of $F_{K}$ the bridge edges of $K$ , call
$C_{0}$ the central cycle of $K$ , and call $C_{1}$ through $C_{h}$

the satellite cycles of $K$ .
Let $r$ be the root of the quadratic equation $23r^{2}-$

$55r+30=0$ that is smaller than 1. Note that
$r=0.84176\ldots\approx 0.842$ . The reason why we choose

in this way will become clear later in the proof of
Lemma 4.8.
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Lemma 3.1. Suppose that $K$ is a tmin gmph such
that each wheel of $K$ is charged a penalty of $6-7r$ .
Let $p(K)$ be the total penalty charged to the wheels
of K. Then, $K$ has an edge-2-colorable subgraph
$K’$ such that $|E(K’)|-p(K)\geq r|E_{K}|$ , where $E_{K}$

is the set of edges on the beam path or the wheels
of $K$ .

Proof. Note that the degree of each vertex in $K$ is
at most 3. We prove the lemma by induction on $\kappa$

which is the number of edges $e$ on the beam path
of $K$ such that both endpoints of $e$ are of degree 3
in $K$ .

(Basis) In the base case, $\kappa=0$ . We obtain $K’$

from $K$ by deleting the column edges of $K$ and
removing one edge from each wheel of $K$ . Let $\tau$

be the number of wheels of $K$ . Then, $|E(K’)|=$
$|E_{K}|-\tau$ . Moreover, $|E_{K}|\geq 5\tau+2\tau=7\tau$ because
the wheels of $K$ contain at least $5\tau$ edges while
the beam path of $K$ contains at least $2\tau$ edges for
$\kappa=0$ . So, $|E(K’)|-p(K)\geq r|E_{K}|$ because $p(K)=$
$(6-7r)\tau$ .

(Induction step) Suppose that $\kappa\geq 1$ . Let
$\{u_{1}, u_{2}\}$ be an arbitrary edge on the beam path
of $K$ such that both $u_{1}$ and $u_{2}$ are of degree 3
in $K$ . For each $i\in\{I, 2\}$ , let $\{u_{i}, v_{i}\}$ be the col-
umn edge of $K$ incident to $u_{i}$ , and let $C_{i}$ be the
wheel of $K$ with $v_{i}\in V(C_{i})$ . We cut $K$ into two

$|$

train graphs $K_{1}$ and $K_{2}$ by deleting edge $\{u_{1}, u_{2}\}$ ,
deleting column edges $\{u_{1}, v_{1}\}$ and $\{u_{2}, v_{2}\}$ , and
deleting wheels $C_{1}$ and $C_{2}$ . By the inductive hy-

$|$

pothesis, $K_{i}$ has an edge-2-colorable subgraph $K_{i}’$

with $|E(K_{i}’)|-p(K_{i})\geq r|E(K_{i})\cap E_{K}|$ for each .
$i\in\{1,2\}$ , where $p(K_{i})$ is the total penalty charged

$l$

to the wheels of $K_{i}$ . We obtain $K’$ from $K_{1}’$ and
$K_{2}’$ by adding column edges $\{u_{1}, v_{1}\}$ and $\{u_{2}, v_{2}\}$ ,
the path obtained from $C_{1}$ by removing one edge

$J$

incident to $v_{1}$ , and the path obtained from $C_{2}$
$|$

by removing one edge incident to $v_{2}$ . Clearly,
$|$

$|E(K’)|= \sum_{i=1}^{2}(|E(K_{i}’)|+|E(C_{i})|)$ . So, $|E(K’)|-$ $i$

$\sum_{i=1}^{2}p(Ki)\geq\sum_{i=1}^{2}(r|E(K_{i})\cap E_{K}|+|E(C_{i})|)$ . $|$

Note that $p(K)= \sum_{i=1}^{2}p(K_{i})+2(6-7r)$ and $|$

$|E_{K}|= \sum_{i=1}^{2}(|E(K_{i})\cap E_{K}|+|E(C_{i})|)+1$ . Now, $I$

since $|E(C_{1})|+|E(C_{2})|\geq 10$ and $r \geq\frac{3}{4}$ , we have $|$

$|E(K’)|-p(K)\geq r|E_{K}|$ . 口

\v{c}

Lemma 3.2. Suppose that $K$ is a starlike gmph (

such that each satellite cycle of $K$ is charged a $t$

penalty of 6 $-7r$ . Let $p(K)$ be the total penalty a

charged to the satellite cycles of K. Then, $K$ has
an edge-2-colomble subgraph $K’$ such that $|E(K’)|-$
$p(K)\geq r|E_{K}|$ , where $E_{K}$ is the set of edges on the
central or satcllitc cyclcs of $K$ .

Proof. Let $C_{0}$ be the central cycle of $K$ . Let
$C_{1},$

$\ldots,$
$C_{h}$ be the satellite cycles of $K$ . We dis-

tinguish two cases as follows.
Case 1: No two degree-3 vertices are adjacent in

$K$ . In this case, we obtain $K’$ from $K$ as follows:. For every $i\in\{2, \ldots, h\}$ , remove one edge of
$C_{i}$ incident to the bridge edge between $C_{0}$ and
$C_{i}$ , and further remove the bridge edge.. For the bridge edge $\{u_{0}, u_{1}\}$ between $C_{0}$ and
$C_{1}$ with $u_{0}\in V(C_{0})$ and $u_{1}\in V(C_{1})$ , remove
one edge of $C_{0}$ incident to $u_{0}$ and remove one
edge of $C_{1}$ incident to $u_{1}$ .

Clearly, $|E(K’)|= \sum_{i=0}^{h}|E(C_{i})|-h$ and $p(K)=$
$(6-7r)h$. Moreover, since $|E(C_{0})|\geq 2h$ and
$|E(C_{i})|\geq 5$ for each $i\in\{1, \ldots, h\}$ , we have $E_{K}=$

$\sum_{i=0}^{h}|E(C_{i})|\geq 7h$ . Thus, $|E(K’)|-p(K)\geq r|E_{K}|$ .
Case 2: There are two degree-3 vertices adjacent

in $K$ . In this case, there is an edge $\{u_{1}, u_{2}\}\in E(C_{0})$

such that both $u_{1}$ and $u_{2}$ are of degree 3in $K$ .
Without loss of generality, we may assume that for
each $i\in\{1,2\},$ $C_{i}$ contains the vertex $v_{i}$ such that
$\{u_{i}, v_{i}\}$ is the bridge edge of $K$ between $C_{0}$ and $C_{i}$ .
Consider the train K. obtained from $K$ by deleting
edge $\{u_{1}, u_{2}\}$ , deleting bridge edges $\{u_{1}, v_{1}\}$ and
$\{u_{2}, v_{2}\}$ , and deleting satellite cycles $C_{1}$ and $C_{2}$ . By
Lemma 3.1, we can obtain an edge-2-colorable sub-
graph $K_{1}’$ of $K_{1}w$ th $|E(K_{1}’)|-p(K_{1})\geq r|E(K_{1})\cap$

$E_{K}|$ . We obtain $K’$ from $K_{1}’$ by adding bridge edges
$\{u_{1}, v_{1}\}$ and $\{u_{2}, v_{2}\}$ , the path obtained from $C_{1}$ by
removing one edge inc ’ent to $v_{1}$ , and the $pah$ ob-
tained from $C_{2}$ by removing one edge incident to
$v_{2}$ . Clearly, $|E(K’)|=|E(K_{1}’)|+|E(C_{1})|+|E(C_{2})|$ .
So, $|E(K’)|-p(K_{1})\geq r|E(K_{1})\cap E_{K}|+|E(C_{1})|+$

$|E(C_{2})|$ . Note that $|E_{K}|$ $=$ $|E(K_{1})\cap E_{K}|+$

$|E(C_{1})|+|E(C_{2})|+1$ and $p(K)=p(K_{1})+2(6-7r)$ .
Now, since $\sum_{i=1}^{2}|E(Ci)|\geq 10$ and $r \geq\frac{2}{3}$ , we have
$|E(K’)|-p(K)\geq r|E_{K}|$ . 口

Based on Lemmas 3.1 and 3.2, we will design our
algorithm roughly as follows: Given an input graph
$G$ , we will first construct a suitable maximum-sized
triangle-free path-cycle cover $C$ of $G$ and compute

suitable set $F$ of edges such that the endpoints of
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each edge in $F$ fall into different connected compo-
nents of $C$ and each odd cycle of $C$ has at least one
vertex that is an endpoint of an edge in $F$ . Note
that $C$ has at least as many edges as a maximum-
sized edge-2-colorable subgraph of $G$ . The edges in
$F$ will play the following role: we will break each
odd cycle $C$ in $C$ by removing one edge of $C$ inci-
dent to an edge of $F$ and then this edge of $F$ can
possibly be added to $C$ so that $C$ becomes an edge-2-
colorable subgraph of $G$ . Unfortunately, not every
edge of $F$ can be added to $C$ and we have to discard
some edges from $F$ , leaving some odd cycles of $C$

F-free (i.e., having no vertex incident to an edge
of $F)$ . Clearly, breaking an F-free odd cycle $C$ of
short length (namely, 5) by removing one edge from
$C$ results in a signfficant loss of edges from $C$ . We
charge the loss to the non-F-hee odd cycles (un-
evenly) as penalties. Fortunately, adding the edges
of $F$ to $C$ will yield a graph whose connected com-
ponents are train graphs, starlike graphs, or certain
other kinds of graphs with good properties. Now,
Lemmas 3.1 and 3.2 help us show that our algo-
rithm achieves a ratio of $r$ .

4 The Algorithm

Throughout this section, fix a graph $G$ and a
maximum-sized edge-2-colorable subgraph $\mathcal{B}$ (for
“best“) of $G$. Let $n$ (respectively, m) be the number
of vertices (respectively, edges) in $G$. Our algorithm
starts by performing the following four steps:

1. If $|V(G)|\leq 2$ , then output $G$ itself and halt.

2. Compute a maximum-sized triangle-free
path-cycle cover $C$ of G. (Comment: This
step can be done in $O(n^{2}m)$ time [5]. $)$

3. While there is an edge $\{u, v\}\in E(G)-E(C)$

such that $d_{C}(u)\leq 1$ and $v$ is a vertex of some
cycle $C$ of $C$ , modify $C$ by deleting one (ar-
bitrary) edge of $C$ incident to $v$ and adding
edge $\{u,\uparrow)\}$ .

4. Construct a graph $G_{1}=(V(G), E_{1})$ , where
$E_{1}$ is the set of all edges $\{u, v\}\in E(G)-$

$E(C)$ such that $u$ and $v$ appear in different
connected components of $C$ and at least one
of $u$ and $v$ appears on an odd cycle of $C$ .

Hereafter, $C$ always refers to the path-cycle cover
obtained after the completion of Step 3. We give
several definitions related to the graphs $G_{1}$ and $C$ .
Let $S$ be a subgraph of $G_{1}$ . $S$ satumtes an odd
cycle $C$ of $C$ if at least one edge of $S$ is incident to
a vertex of $C$. The weight of $S$ is the number of odd
cycles of $C$ saturated by $S$. For convenience, we say
that two connected components $C_{1}$ and $C_{2}$ of $C$ are
$adj$acent in $G$ if there is an edge $\{u_{1}, u_{2}\}\in E(G)$

such that $u_{1}\in V(C_{1})$ and $u_{2}\in V(C_{2})$ .

Lemma 4.1. We can compute a mastmum-
weighted path-cycle cover in $G_{1}$ in $O(nm\log n)$

time.

Proof. The proof is similar to that of Proposition
2.2 in [9], and is hence by a reduction to the
maximum-weight $[f,g]$ -factor problem. Recall that
for two functions $f$ and $g$ mapping each vertex $v$

of a graph $\mathcal{G}$ to an integer with $f(v)\leq g(v)$ , an
$[f,g]$ -factor of $\mathcal{G}$ is a subgraph $\mathcal{H}$ of $\mathcal{G}$ such that
$V(\mathcal{H})=V(\mathcal{G})$ and $f(v)\leq d_{\mathcal{H}}(v)\leq g(v)$ for every
$v\in V(\mathcal{G})$ . The weight of an $[f, g]$ -factor $\mathcal{H}$ of $\mathcal{G}$ is
the total weight of edges in $\mathcal{H}$ . It is known that
a maximum-weight $[f, g]$ -factor of a given edge-
weighted graph with $n’$ vertices and $m’$ edges can
be computed in $O(n’m’\log n’)$time [4].

Let $C_{1},$
$\ldots,$

$C_{k}$ be the odd cycles of $C$ . We
construct an auxiliary edge-weighted graph $\mathcal{G}=$

$(V(G)\cup X, E_{1}\cup F_{1}\cup F_{2})homG_{1}$ as follows:. $X=\{x_{i}, y_{i}, z_{i}|1\leq i\leq k\}$ .
$\bullet$ $F_{1}=\{\{x_{i}, v\}, \{y_{i}, v\}|1\leq i\leq k, v\in V(C_{i})\}$

and $F_{2}=\{\{x_{i}, z_{i}\}, \{y_{i}, z_{i}\}|1\leq i\leq k\}$ .
$\bullet$ The weight of each edge in $E_{1}\cup F_{1}$ is $0$ while

the weight of each edge in $F_{2}$ is 1.

$\bullet$ For each $v\in V(G),$ $f(v)=g(v)=2$ .. For each $i\in\{1, \ldots, k\},$ $f(x_{i})=f(y_{i})=$
$f(z_{i})=0,$ $g(x_{i})=g(y_{i})=|V(C_{i})|$ , and
$g(z_{i})=1$ .

For each weighted path-cycle cover $M$ of $G_{1}$ , we
can obtain an $[f, g]$ -factor $N$ of $\mathcal{G}homM$ as follows.

1. Initially, $N=M$ .
2. For each $i\in\{1, \ldots, k\}$ and for each $v\in V(C_{i})$

with $d_{M}(v)\leq 1$ , add edge $\{v, x_{i}\}$ to $N$ if
$d_{M}(v)=1$ , and add edges $\{v, x_{i}\}$ and $\{v, y_{i}\}$

to $N$ otherwise.
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3. For each $i\in\{1, \ldots, k\}$ with $d_{N}(x_{i})<|V(C_{i})|$

or $d_{N}(y_{i})<|V(C_{i})|$ , add edge $\{x_{i}, z_{i}\}$ to $N$ if
$d_{N}(x_{i})<|V(C_{i})|$ , and add edge $\{y_{i}, z_{i}\}$ to $N$

otherwise.

Fact 4.2. Suppose that $H$ is a cormected compo-
nent of $G_{3}$ . Then, the following statements hold;

1. $H$ is a vertex, an edge, or a star.

Obviously, the weight of $N$ is the same as that of
$M$ , i.e., equal to the number of odd cycles satu-
rated by $M$ . Thus, the maximum weight of an
$[f,g]$-factor of $\mathcal{G}$ is at least as large as the max-
imum weight of a path-cycle cover of $G_{1}$ . Con-
versely, for each maximum-weight $[f, g]$ -factor $N$ of
$\mathcal{G}$ , we can obtain a path-cycle cover $M$ of $G_{1}$ from
$N$ by letting $E(M)=E(N)\cap E_{1}$ . We claim that
the weight of $M$ is the same as that of $N$ . To see
this claim, observe that for each $i\in\{1, \ldots, k\}$ with
$V(M)\cap V(C_{i})\neq\emptyset$ , exactly one of edges $\{x_{i}, z_{i}\}$ and
$\{y_{i}, z_{i}\}$ is contained in $N$ . This observation holds
because $N$ is a maximum-weight $[f, g]$ -factor of $\mathcal{G}$ .
By the claim, the maximum weight of a path-cycle
cover of $G_{1}$ is at least as large as the maximum $||$

weight of an $[f, g]$ -factor of $\mathcal{G}$ . So, by the discus-
sion in the last paragraph, the maximum weight of
a path-cycle cover of $G_{1}$ is the same as the maxi-
mum weight of an $[f, g]$ -factor of $\mathcal{G}$ . $\square$

.
Our algorithm then proceeds to perform the fol-

lowing four steps:

2. If $H$ is an edqe, then at least one endpoint of
$H$ corresponds to an odd cycle of $C$ .

3. If $H$ is a star, then every satellite of $H$ corre-
sponds to an odd cycle of $C$ .

An isolated odd-cycle of $G_{2}$ is an odd cycle of $G_{2}$

whose corresponding vertex in $G_{3}$ is isolated in $G_{3}$ .
Similarly, a leaf odd-cycle of $G_{2}$ is an odd cycle of
$G_{2}$ whose corresponding vertex in $G_{3}$ is of degree
1 in $G_{3}$ . Moreover, a bmnching odd-cycle of $G_{2}$ is
an odd cycle of $G_{2}$ whose corresponding vertex in
$G_{3}$ is of degree 2 or more in $G_{3}$ .

The next lemma is essentially the same as
Lemma 2.1 in [9]. We include its proof here for
self-containedness.

Lemma 4.3. Let I be the set of isolated odd-cycles
in $G_{2}$ . Then, $|E(\mathcal{B})|\leq|E(C)|-|I|$ .

Proof. Let $C_{1},$
$\ldots,$

$C_{h}$ be the odd cycles of $C$ such
that for each $i\in\{1, \ldots, h\},$ $\mathcal{B}$ contains no edge $\{u, v\}$

vvith $|\{u, v\}\cap V(C_{i})|=1$ . Let $U_{1}= \bigcup_{i=1}^{h}V(C_{i})$

and $U_{2}=V(G)-U_{1}$ . For convenience, let $C_{0}=$

$?[U_{2}]$ . Note that for each $e\in E(B)$ , one of the
raphs $C_{0},$ $C_{1},$

$\ldots,$
$C_{h}$ contains both endpoints of

So, $\mathcal{B}$ can be partitioned into $h+1$ disjoint
ubgraphs $\mathcal{B}_{0},$

$\ldots,$
$\mathcal{B}_{h}$ such that $\mathcal{B}_{i}$ is a path-cycle

over of $G[V(C_{i})]$ for every $i\in\{0, \ldots, h\}$ . Since
$[U_{2}]$ must be a maximum-sized path-cycle cover

$fC_{0},$ $|E(C[U_{2}])|\geq|E(\mathcal{B}_{0})|$ . The crucial point is
hat for every $i\in\{1, \ldots , h\},$ $|E(\mathcal{B}_{i})|\leq|V(C_{i})|-$

$=|E(C_{i})|-1$ because $|V(C_{i})|$ is odd. Thus,
$\lrcorner\zeta i^{\urcorner}(C)|=|E(C[U_{2}])|+\sum_{i=1}^{h}|E(C_{i})|\geq|E(B_{0})|+$

$\lrcorner\neg hi=1(|E(\mathcal{B}_{i})|+1)=|E(\mathcal{B})|+h$ .
Note that $(V(G), E(G_{1})\cap E(\mathcal{B}))$ is a path-cycle

$)ver$ in $G_{1}$ of weight $k-h$ , where $k$ is the number
$f$ odd cycles in $C$ . So, $k-h\leq k-|I|$ because
$I$ is a maximum-weight path-cycle cover in $G_{1}$ of
eight $k-|I|$ . So, by the last inequality in the last
aragraph, $|E(\mathcal{B})|\leq|E(C)|-h\leq|E(C)|-|I|$ . 口
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Figure 1: An example of $G_{2}$ , where the hollow ver-
tices are free, the bold edges belong to $C$ , the upper
left connected component is a bicycle, and the up-
per right connected component is a tricycle.

Some definitions are in order (see Figure 1 for an
example). A bicycle of $G_{2}$ is a connected compo-
nent of $G_{2}$ that consists of two odd cycles and an
edge between them. Note that a connected compo-
nent of $G_{3}$ is an edge if it corresponds to a bicycle in
$G_{2}$ . A tricycle of $G_{2}$ is a connected component $T$ of
$G_{2}$ that consists of one branching odd-cycle $C_{1}$ , two
leaf odd-cycles $C_{2}$ and $C_{3}$ , and two edges $\{u_{1}, u_{2}\}$

and $\{u_{1}, u_{3}\}$ such that $u_{1}\in V(C_{1}),$ $u_{2}\in V(C_{2})$ ,
and $u_{3}\in V(C_{3})$ . For convenience, we call $C_{1}$ the
front cycle of tricycle $K$, call $C_{2}$ and $C_{3}$ the back
cycles of tricycle $K$, and call $u_{1}$ the front joint of
tricycle $K$.

A cherry of $G_{2}$ is a subgraph $Q$ of $G_{2}$ that con-
sists of two leaf odd-cycles $C_{1}$ and $C_{2}$ of $C$ , a vertex
$u\in V(G)-(V(C_{1})\cup V(C_{2}))$ , and two edges $\{u, v_{1}\}$

and $\{u, v_{2}\}$ such that $v_{1}\in V(C_{1})$ and $v_{2}\in V(C_{2})$ .
For convenience, we call edges $\{u, v_{1}\}$ and $\{u, v_{2}\}$

the tutgs of cherry $Q$. By the construction of $G_{2}$ ,
each pair of cherries are vertex-disjoint.

We classify the cherries of $G_{2}$ into two types as
follows. A cherry $Q$ of $G_{2}$ is of type-l if $Q$ is a
subgraph of a tricycle of $G_{2}$ . Note that the two
odd cycles in a type-l cherry of $G_{2}$ are the back
cycles of a tricycle of $G_{2}$ . A cherry of $G_{2}$ is of type-
2 if it is not of type-l. Further note that there is no
edge $\{u, v\}$ in $G$ such that $u$ appears on an isolated

odd-cycle of $G_{2}$ and $v$ appears on an odd cycle in
a cherry of $G_{2}$ .

A lollipop of $G_{2}$ is a subgraph $L$ of $G_{2}$ that con-
sists of a leaf odd-cycle $C$ of $G_{2}$ , a vertex $u\not\in V(C)$ ,
and an edge $\{u, v\}$ with $v\in V(C)$ . For conve-
nience, we call edge $\{u, v\}$ the stick of lollipop $L$

and call vertex $u$ the end vertex of lollipop $L$ . A
lollipop of $G_{2}$ is special if it is neither a subgraph
of a cherry of $G_{2}$ nor a subgraph of a bicycle of $G_{2}$ .
A vertex t4 of $G_{2}$ is free if no lollipop of $G_{2}$ has $u$

as its end vertex. Because of Step 3, each vertex of
degree at most 2 in $G_{2}$ is free.

We next define two types of operations that will
be performed on $G_{2}$ . An operation on $G_{2}$ is mbust
if it removes no edge of $C$ , creates no new odd cycle,
and creates no new isolated odd-cycle of $G_{2}$ .

Type 1: Suppose that $C$ is an odd cycle of a cherry
$Q$ of $G_{2}$ and $u$ is a free vertex of $G_{2}$ with $u\not\in V(C)$

such that

$\bullet$ some vertex $v$ of $C$ is adjacent to $u$ in $G$ and. if $Q$ is a type-l cherry of $G_{2}$ , then $u$ is not an
endpoint of a twig of $Q$ .

Then, a type-l opemtion on $G_{2}$ using cherry $Q$

and edge $\{u, v\}$ modifies $G_{2}$ by performing the fol-
lowing steps:

(1) If $u$ appears on a leaf odd cycle $C’$ of $G_{2}$ such
that $C’$ is not part of a bicycle of $G_{2}$ and $Q$

is not a type-l cherry of $G_{2}$ with $u\in V(Q)$ ,
then delete the stick of the lollipop containing
$C’$ from $G_{2}$ .

(2) Delete the twig of $Q$ incident to a vertex of $C$

$homG_{2}$ .

(3) Add edge $\{u, v\}$ to $G_{2}$ .

(Comment: A type-l operation on $G_{2}$ is robust
and destroys at least one cherry of $G_{2}$ without cre-
ating a new cherry in $G_{2}.$ )

Type 2: Suppose that $Q$ is a type-2 cherry of
$G_{2},$ $B$ is a bicycle of $G_{2}$ , and $\{u, v\}$ is an edge
in $E(G_{1})-E(G_{2})$ such that $u$ appears on an odd
cycle $C$ of $Q$ and $v$ appears on an odd cycle of $B$ .
Then, a type-2 opemtion on $G_{2}$ using cherry $Q$ , bi-
cycle $B$ , and edge $\{u, v\}$ modifies $G_{2}$ by deleting
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the twig of $Q$ incident to a vertex of $C$ and adding
edge $\{u, v\}$ (see Figure 3 for example cases).

(Comment: A type-2 operation on $G_{2}$ is robust.
Moreover, when no type-l operation on $G_{2}$ is pos-
sible, a type-2 operation on $G_{2}$ destroys a type-2
cherry of $G_{2}$ and creates a new type-l cherry in
$G_{2}.)$

Now, Step 9 of our algorithm is as follows.

9. While a type-l or type-2 operation on $G_{2}$ is
possible, perform the following step:

(a) If a type-l operation on $G_{2}$ is possible,
perform a type-l operation on $G_{2}$ ; oth-
erwise, perform a type-2 operation on
$G_{2}$ .

Fact 4.4. After Step $g$, the following statements
hold:

1. There is no edge $\{u, v\}$ in $E(G)$ such that $u$

appears on an odd cycle in a type-2 cherry of
$G_{2}$ and $v$ appears on another odd cycle in a
type-2 cherry of $G_{2}$ .

(a) Obtain an edge-2-colorable subgraph $R$

of $G-U$ by recursively calling the algo-
rithm on $G-U$.

(b) For each type-2 cherry $Q$ of $G_{2}$ , obtain
an edge-2-colorable subgraph of $Q$ by
removing one edge from each odd cycle
$C$ of $Q$ that shares an endpoint with a
twig of $Q$ .

(c) Let $\mathcal{A}_{1}$ be the union of $R$ and the edge-
2-colorable subgraphs computed in Step
12(b).

(d) For each connected component $K$ of
$G_{2}$ , compute a maximum-sized edge-2-
colorable subgraph of K. (Comment:
Because of the simple structure of $K$ ,
this step can be done in linear time by
a standard dynamic programming.)

(e) Let $\mathcal{A}_{2}$ be the union of the edge-2-
colorable subgraphs computed in Step
12(d).

(f) If $|E(\mathcal{A}_{1})|\geq|E(A_{2})|$ , output $\mathcal{A}_{1}$ and
halt; otherwise, output $\mathcal{A}_{2}$ and halt.

2. If $\{u, v\}$ is an edge of $G_{1}$ such that $u$ appears .
on an odd cycle of a type-2 cherry of $G_{2}$ and
no type-2 cherry of $G_{2}$ contains $v$ , then $v$ is
the end vertex of a special lollipop or the fronオ
joint of a tncycle of $G_{2}$ .

Hereafter, $G_{2}$ always means that we have finished
$j$

modifying it in Step 9. Now the final three steps
$1$

of our algorithm are as follows:

Lemma 4.5. Assume that $G_{2}$ has no type-2
cherr. $\cdot$ Then, the edqe-2-colomble sub.qraph of $G$

output in Step 11 $(b)$ contains at least $r|E(B)|$ edges.

Proof
$\cdot$. Let $C_{2}$ be the graph obtained from $G_{2}$ by

removing one edge from each isolated odd-cycle
of $G_{2}$ . By Lemma 4.3, $|E(C_{2})\cap E(C_{1}|\geq|E(B)|$ .
Consider an arbitrary connected component $K$ of
$C_{2}$ . To prove the lemma, it suffices to prove
hat $K$ has an edge-2-colorable subgraph $K’$ with
$E(K’)|\geq r|E(K)\cap E(C)|$ . We distinguish several
:ases as follows:

Case 1: $K$ is a bicycle of $C_{2}$ . To obtain an
!dge-2-colorable subgraph $K’$ of $K$ , we remove one
$|dgee$ from each odd cycle of $K$ such that one
!ndpoint of $e$ is of degree 3 in $K$ . Note that
$E(K’)|=|E(K)|-2=|E(K)\cap E(C)|-1$ . Since
$E(K)\cap E(C)|\geq 10,$ $|E(K’)| \geq\frac{9}{10}|E(K)\cap E(C)|>$

$’|E(K)\cap E(C)|$ .
Case 2: $K$ is a tricycle of $C_{2}$ . To obtain an edge-

$|$-colorable subgraph $K’$ of $K$ , we first remove one
dge $e$ from each back odd-cycle of $K$ such that
$|ne$ endpoint of $e$ is of degree 3 in $K$ , and then
emove the two edges of the front odd-cycle incident
$0$ the vertex of degree 4 in $K$ . Note that $|E(K’)|=$
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$|E(K)|-4=|E(K)\cap E(C)|-2$ . Since $|E(K)\cap$

$E(C)|\geq 15,$ $|E(K’)| \geq\frac{13}{15}|E(K)\cap E(C)|>r|E(K)\cap$

$E(C)|$ .
Case 3: $K$ is neither a bicycle nor a tricycle of

$C_{2}$ . If $K$ contains no odd cycle of $C$ , then $K$ itself is
edge-2-colorable and hence we are done. So, assume
that $K$ contains at least one odd cycle of $C$ . Then,
$K$ is also a connected component of $G_{2}$ . Moreover,
the connected component $K”$ of $G_{3}$ corresponding
to $K$ is either an edge or a star.

Case 3.1: $K”$ is an edge. To obtain an edge-
2-colorable subgraph $K’$ of $K$ , we start with $K$ ,
delete the edge in $E(K)-E(C)$ , and delete one
edge from the unique odd cycle of $K$ . Note that
$|E(K’)|=|E(K)|-2=|E(K)\cap E(C)|-1$ . More-
over, $|E(K)\cap E(C)|\geq 7$ because of Step 3 and the
robustness of Type-l or Type-2 operations. Hence,
$|E(K’)| \geq\frac{6}{7}|E(K)\cap E(C)|>r|E(K)\cap E(C)|$ .

Case 3.2: $K”$ is a star. Let $C_{0}$ be the connected
component of $C$ corresponding to the center of $K”$ .
Let $C_{1},$

$\ldots,$
$C_{h}$ be the odd cycles of $C$ corresponding

to the satellites of $K$“. If $C_{0}$ is a path, then $K$

is a train graph and we are done by Lemma 3.1;
otherwise, $K$ is a starlike graph and we are done
by Lemma 3.2. 口

Lemma 4.7. Let $E(\mathcal{B}_{2})$ be the set of all edges
$e\in E(B)$ such that at least one endpoint of $e$ ap-
pears in a type-2 cherry of $G_{2}$ . Then, $|E(\mathcal{B}_{2})|\leq l+$

$2s+2t$ .

Pmof. $E(B_{2})$ can be partitioned into the following
three subsets:. $E(B_{2,1})$ consists of those edges $e\in E(\mathcal{B})$ such

that at least one endpoint of $e$ is the vertex of a
type-2 cherry of $G_{2}$ that is a common endpoint
of the two twigs of the cherry.

$eE(B_{2,2})$ consists of those edges $e\in E(B)$ such
that each endpoint of $e$ appears on an odd cy-
cle of a type-2 cherry of $G_{2}$ .. $E(B_{2,3})$ consists of those edges $\{u, v\}\in E(B)$

such that $u$ appears on an odd cycle of a type-2
cherry of $G_{2}$ and no type-2 cherry of $G_{2}$ con-
tains $v$ .

Obviously, $|E(B_{2,1})|\leq 2c$ . By Statement 1 in Fact
4.4, $|E(B_{2,2})|\leq l-2c$ because for each odd cy-
cle $C,$ $\mathcal{B}_{2,2}$ can contain at most $|V(C)|-1$ edges
$\{u, v\}$with $\{u, v\}\subseteq V(C)$ . By Statement 2 in Fact
4.4, $|E(B_{2,3})|\leq 2s+2t$ . So, $|E(\mathcal{B}_{2})|\leq l+2s+2t$ . 口

Corollary 4.6. If the maximum degree $\Delta$ of a ver-
tex in $G$ is at most 3, then the mtio achieved by the
algorethm is at least 9.
Pmof. When $\Delta\leq 3,$ $G_{2}$ has no cherry because of
Step 3. Moreover, Lemmas 3.1, 3.2 and 4.5 still
hold even when we replace the ratio $r$ by $\frac{6}{7}$ . $\square$

In order to analyze the approximation ratio
achieved by our algorithm when $G_{2}$ has at least
one type-2 cherry after Step 9, we need to define
several notations as follows:. Let $s$ be the number of special lollipops in $G_{2}$ .

$\bullet$ Let $t$ be the number of tricycles in $G_{2}$ .. Let $c$ be the number of type-2 cherries in $G_{2}$ .

$\bullet$ Let $l$ be the total number of vertices that ap-
pear on odd cycles in the type-2 cherries in $|$

$G_{2}$ .

Lemma 4.8. The mtio achieved by the alqorithm
is at least $r$ .

Pmof. The proof is by induction on $|V(G)|$ ,
the number of vertices in the input graph $G$ .
If $|V(G)|$ $\leq 2$ , then our algorithm outputs a
maximum-sized edge-2-colorable subgraph of $G$ .
So, assume that $|V(G)|\geq 3$ . Then, after our al-
gorithm finishes executing Step 10, the set $U$ may
be empty or not. If $U=\emptyset$ , then by Lemma 4.5, the
edge-2-colorable subgraph output by our algorithm
has at least $r|E(\mathcal{B})|$ edges and we are done. So,
suppose that $U\neq\emptyset$ .

First consider the case where $s+t \leq\frac{1-r}{2r}l$ . In this
case, $\frac{l+r|E(B_{1})|}{l+2s+2t+|E(B_{1})|}\geq r$ , where $\mathcal{B}_{1}$ is a maximum-
sized edge-2-colorable subgraph of $G-U$ . More-
over, by the inductive hypothesis, $|E(\mathcal{A}_{1})|\geq l+$

$r|E(\mathcal{B}_{1})|$ . Furthermore, by Lemma 4.7, $|E(B)|\leq l+$

$2s+2t+|E(\mathcal{B}_{1})|$ . So, the lemma holds in this case.
Next consider the case where $s+t> \frac{1-r}{2r}l$ . Let

$C_{2}$ be the graph obtained from $G_{2}$ by removing
one edge from each isolated odd-cycle of $G_{2}$ . By
Lemma 4.3, $|E(C_{2})\cap E(C)|\geq|E(\mathcal{B})|$ . Let $C_{3}$ be
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the graph obtained from $C_{2}$ by removing one twig
from each type-2 cherry. Note that there are ex-
actly $c$ isolated odd-cycles in $C_{3}$ . Moreover, since
the removed twig does not belong to $E(C)$ , we have
$|E(C_{3})\cap E(C)|\geq|E(B)|$ . Consider an arbitrary con-
nected component $K$ of $C_{3}$ . To prove the lemma,
we want to prove that $K$ has an edge-2-colorable
subgraph $K’$ with $|E(K’)|\geq r|E(K)\cap E(C)|$ .This
goal can be achieved because of Lemma 4.5, when
$K$ is not an isolated odd-cycle. On the other hand,
this goal can not be achieved when $K$ is an isolated
odd-cycle (of length at least 5). Our idea behind
the proof is to charge the deficit in the edge num-
bers of isolated odd-cycles of $C_{3}$ to the other con-
nected components of $K$ because they have surplus
in their edge numbers.

The deficit in the edge number of each isolated
odd-cycle of $C_{3}$ is at most $5r-4$ . So, the total deficit
in the edge numbers of the isolated odd-cycles of $C_{3}$

is at most $(5r-4)c$. We charge a penalty of $6-7r$ to
each non-isolated odd-cycle of $C_{3}$ that is also an odd
cycle in a type-2 cherry of $G_{2}$ or is also the odd cycle
in a special lollipop of $G_{2}$ . We also charge a penalty
of $\frac{6-7r}{3}$ to each odd cycle of $C_{3}$ that is part of a
tricycle of $G_{2}$ . Clearly, the total penalties are (6-
$7r)c+(6-7r)(s+t)>(6-7r)c+ \frac{(6-7r)(1-r)}{2r}l$ . Note

$|$

that $l\geq 10c$ . The total penalties are thus at least
$(6-7r)c+ \frac{5(6-7r)(1-r)}{r}c=\frac{30-59r+28r^{2}}{r}c\geq(5r-4)c$, $\cdot$

where the last inequality follows from the equation
$23r^{2}-55r+30=0$ . So, the total penalties are at
least as large as the total deficit in the edge num-
bers of the isolated odd-cycles of $C_{3}$ . Therefore, to

$x$

prove the lemma, it suffices to prove that for ev-
$]$

ery connected component $K$ of $C_{3}$ , we can compute
an edge-2-colorable subgraph $K’$ of $K$ such that

$c$

$|E(K’)|-p(K)\geq r|E(K)\cap E(C)|$ , where $p(K)$ is
the total penalties of the odd cycles in $K$ . As in the ]

$J$

proof of Lemma 4.5, we distinguish several cases as
$0$

follows:
$1$

Case 1: $K$ is a bicycle of $C_{2}$ . In this case, $p(K)=$ a
0. Moreover, we can compute an edge-2-colorable

$\xi$

subgraph $K’$ of $K$ such that $|E(K’)| \geq\frac{9}{10}|E(K)\cap$
$m$

$E(C)|$ (cf. Case 1 in the proof of Lemma 4.5). So, ]
$|E(K’)|-p(K)\geq r|E(K)\cap E(C)|$ because $r \leq\frac{9}{10}$ . ]

Case 2: $K$ is a tricycle of $C_{2}$ . In this case, $f$

$p(K)=6-7r$ . Moreover, we can compute an edge-
2-colorable subgraph $K’$ of $K$ such that $|E(K’)|=$ $\in$

$|E(K)\cap E(C)|-2$ (cf. Case 2 in the proof of Lemma $v$

$4.5)$ . So, $|E(K’)|-p(K)\geq r|E(K)\cap E(C)|$ because $0$

$|E(K)\cap E(C)|\geq 15$ and $r \leq\frac{7}{8}$ .
Case 3: $K$ is neither a bicycle nor a tricycle of $C_{2}$ .

We may assume that $K$ contains at least one odd
cycle of $C$ . Then, $K$ is also a connected component
of $G_{2}$ . Moreover, the connected component $K”$ of
$G_{3}$ corresponding to $K$ is either an edge or a star.

Case 3.1: $K”$ is an edge. In this case, $p(K)\leq 6-$

$7r$ . Moreover, we can compute an edge-2-colorable
subgraph $K’$ of $K$ such that $|E(K’)|=|E(K)\cap$
$E(C)|-1$ (cf. Case 3.1 in the proof of Lemma
4.5). So, $|E(K’)|-p(K)\geq r|E(K)\cap E(C)|$ because
$|E(K)\cap E(C)|\geq 7$ .

Case 3.2: $K”$ is a star. Let $C_{0}$ be the connected
component of $C$ corresponding to the center of $K”$ .
Let $C_{1},$

$\ldots,$
$C_{h}$ be the odd cycles of $C$ corresponding

to the satellites of $K”$ . If $C_{0}$ is a path, then $K$

is a train graph and we are done by Lemma 3.1;
otherwise, $K$ is a starlike graph and we are done
by Lemma 3.2. 口

Clearly, each step of our algorithm except Step
12(a) can be implemented in $O(n^{2}m)$ time. Since
the recursion depth of the algorithm is $O(n)$ , it runs
in $O(n^{3}m)$ total time. In summary, we have shown
the following theorem:

Theorem 4.9. There is an $O(n^{3}m)$ -time ap-
proximation algorithm for $M\Lambda X$ SIMPLE EDGE 2-
COLORING that achieves a ratio of roughly 0.842.

5 An Application

Let $G$ be a graph. An edge cover of $G$ is a set
of edges of $G$ such that each vertex of $G$ is in-

cident to at least one edge of $F$ . For a natural
number $k$ , a $[$ 1, $\triangle]$-factor k-packing of $G$ is a col-
lection of $k$ disjoint edge covers of G. The size
of a $[1,\triangle]$-factor k-packing $\{F_{1}, \ldots, F_{k}\}$ of $G$ is
$|F_{1}|+\cdots+|F_{k}|$ . The problem of deciding whether

given graph has a $[1,\triangle]$ -factor k-packing was con-
sidered in [7, 8]. In [10], Kosowski et al. defined the
minimum $[$ 1, $\triangle]$ -factor k-packing problem (MIN-k-
FP) as follows: Given a graph $G$ , find a $[1,\triangle]$ -factor
$k$-packing of $G$ of minimum size or decide that $G$

has no $[1,\triangle]$ -factor k-packing at all.
According to [10], MIN-2-FP is of special inter-

est because it can be used to solve a fault tolerant
ariant of the guards problem in grids (which is

one of the art gallery problems [11, 12] $)$ . Indeed,
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they proved the NP-hardness of MIN-2-FP and the
following lemma:

in: Lecture Notes in Computer Science, vol.
4508, 2007, pp. 27-36.

Lemma 5.1. If MAX SIMPLE EDGE 2-COLORJNG
admits an appmximation algorithm $A$ achieving a
mtio of $\alpha$ , then MlN-2-FP admits an appmxima-
tion algorithm $B$ achieving a mtio of $2-\alpha$ . More-
over, if the time complemty of $A$ is $T(n)$ , then the
time complexity of $B$ is $O(T(n))$ .

So, by Theorem 4.9, we have the following im-
mediately:

Theorem 5.2. There is an $O(n^{3}m)$ -time approx-
imation algorithm for MlN-2-FP achieving a mtio
of roughly 1.158.

6 Open Problems
One obvious open question is to ask whether one
can design a polynomial-time approximation al-
gorithm for MAX SIMPLE EDGE 2-COLORING that
achieves a ratio signfficantly better than 0.842.
Assuming $P\neq NP$ , the APX-hardness proof of
the problem given in [3] implies a lower bound
of roughly 0.999937 on the ratio achievable by
a polynomial-time approximation algorithm. It
seems interesting to prove a signfficantly better
lower bound.
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