
A Searchable Compressed Edit-Sensitive Parsing *

Naoya Kishiue1 , Masaya Nakahara1, Shirou Maruyama2, Hiroshi Sakamoto1,3
1 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Rkuoka 820-8502,
2 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395,

3 JST PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

Abstract
Practical data structures for the edit-sensitive parsing (ESP) are proposed. Given a

string S , its ESP tree is equivalent to a context-free grammar G generating just S , which is
represented by a DAG. Using the succinct data structures for trees and permutations, G is
decomposed to two LOUDS bit strings and single array in $(1+\epsilon)n\log n+4n+o(n)$ bits for
any $0<\epsilon<1$ and the number n of variables in G . The time to count occurrences of P in
S is in $O(\frac{1}{\epsilon}(m\log n+occ_{c}(\log m\log u))$, whereas $m=|P|,$ $u=|S|$, and occ_{c} is the number
of occurrences of a maximal common subtree in ESPs of P and S . The efficiency of the
proposed index is evaluated by the experiments conducted on several benchmarks complying
with the other compressed indexes.

1 Introduction
The edit distance is one of the most fundamental problems with respect to every string in dealing
with the text. Exclusively with the several variants of this problem, the edit distance with move
where moving operation for any substring with unit cost is permitted is NP-hard and $O(\log u)-$

approximable [14] for string length u . With regard to the matching problem whose approximate
solution can be obtained by means of edit-sensitive parsing (ESP) technique [4], utilization of
detected maximal common substrings makes it possible to expect application of the problem to
plagiarism detection and clustering of texts. As a matter of fact, a compression algorithm based
on ESP has been proposed [13], which results in exhibition of its approximation ratio for the
optimum compression.

In this work, we propose a practical compressed index for ESP. Utilization of a compressed
index makes it possible to search patterns rapidly, which is regarded as a specffic case of max-
imum common substrings of the two strings where one is entirely in the other. Comparison of
the compressed index proposed in this work with the indexes dealt with in the other methods
reveals that sufficient performance is provided in accordance with the proposed method. On the
other hand, it is shown from theoretical analysis of ESP that thanks to the proposed method, a
long enough common substring of the two strings of the text and pattern can be found rapidly
from the compressed index.

Edit distance is closely related to optimum compression. Particularly with one of approxi-
mation algorithms, assigning a same name to common subtrees allows approximately optimum
parsing tree, i.e. approximately optimum CFG. This optimization problem is not only NP-hard
but also $O(\log n)$-approximable [1, 10, 12]. As a consequence, compressing two strings and find-
ing occurrences of a maximal subtree from these parsing trees make it possible to determine
with great rapidity whether one string appears in another as a substring.

Our contributions are hereunder described. The proposed algorithm for indexed grammar-
based compression outputs a CFG in Chomsky normal form. The said CFG, which is equivalent
to a DAG G where every internal node has its left and right children, is also equivalent to the
two spanning trees. The one called the left tree is exclusively constructed by the left edges,
whereas the one called the right tree is exclusively constructed by the right edges. Both the left
and the right trees are encoded by LOUDS [5], one of the types of the succinct data structure
for ordered trees. Furthermore the correspondence among the nodes of the trees is memorized in
an array. Adding the data structure for the permutation [7] over the array makes it possible to
traverse the G . Meanwhile it is possible for the size of the data structure to be constructed with
$(1+\epsilon)n\log n+4n+o(n)$ bits for arbitrary $0<\epsilon<1$, where n is the number of the variables in
the G .

At the next stage, the algorithm should refer to a function, called reverse dictionary for the
text when compression of the pattern is executed. For example, if a production rule $Zarrow XY$ is

*The full paper is available from http: $//arxiv$. org$/abs/1101.0080$

数理解析研究所講究録
第 1744巻 2011年 115-122 115

included in G , an occurrence of the digram XY in a pattern, which is determined to be replaced,
should be replaced without fail by the same Z . Taking up the hash function $H(XY)=Z$ for the
said purpose compels the size of the index to be increased. Thus we propose the improvement for
compression so as to obtain the name Z directly from the compression. It is possible to calculate
the number of occurrences of a given pattern P from a text S in $O(\frac{1}{\epsilon}(m\log n+occ_{c}(\log m\log u))$

time in accordance with the contrivance referred to above together with the characteristics of
the ESP, where $m=|P|$ and $u=|S|$. On the other hand, occ_{c} is the occurrence number of
maximal common subtree called a core in the parsing tree for S and P . The core is obtained
from ESP for S and P , and it is understood that a constant α is in existence to show the lower
bound that a core encodes a substring longer than αm .

At the final stage, comparison is made between the performance of our method and that of
other practical compressed indexes [8, 9, 11]. Compressed indexes to comply with text corpus
formed from large English texts and DNA sequences are constructed. Thereafter comparison is
made with the search time to count occurrences of patterns to correspond to the pattern length.
As a result, it is ascertained that the proposed index is efficient enough among these benchmarks
in case the pattern is long enough to accomplish the construction of the indexes.

2 Preliminaries
The set of all strings over an alphabet Σ is denoted by Σ^{*} . The length of a string $w\in\Sigma^{*}$ is
denoted by $|w|$. A string $\{a\}^{*}$ of length at least two is called a repetition of a . $S[i]$ and $S[i,j]$

denote the i-th symbol of S and the substring from $S[i]$ to S la $]$, respectively. The expression
$\log^{*}n$ indicates the maximum number of logarithms satisfying $\log log\cdots\log n\geq 1$. For instance,
$\log^{*}n=5$ for $n=2^{65536}$. We thus treat $\log^{*}n$ as a constant.

We assume that any context-free grammar G is adimissible, i.e., G derives just one string.
For a production rule $Xarrow AB\cdots C$, symbol X is called variable. If G derives a string w , the
derivation is represented by a rooted ordered tree, called the parsing tree of G . The size of G

is the total length of strings in the right hand sides of all production rules, and is denoted by
$|G|$. The optimization for the grammar-based compression is to minimize the size of G deriving
a given string w . For the approximation ratio of this problem, see [1, 10, 12, 13].

We consider a special parsing tree of CFG constructed by edit sensitive parsing by [4], which
is based on a transformation of string called alphabet reduction. A string $S\in\Sigma^{*}$ of length
n is partitioned into maximal nonoverlapping substrings of three types; Typel is a maximal
repetition of a symbol, Type2 is a maximal substring longer than $\log^{*}n$ not containing any
repetition, and Type3 is any other short substring. Each such substring is called a metablock.
We focus on only Type2 metablocks since the others are not related to the alphabet reduction.
From a Type2 string S , a label string label (S) is computed as follows.

Alphabet reduction: Consider $S[i]$ and $S[i-1]$ represented as binary integers. Denote by ℓ

the least bit position in which $S[i]$ differs from $S[i-1]$. For instance, if $S[i]=101,$ $S[i-1]=100$
then $\ell=0$, and if $S[i]=001,$ $S[i-1]=101$ then $P=2$. Let bit $(\ell, S[i])$ be the value of $S[i]$ at
ℓ . Then label(S[i]) $=2P+b\dot{n}t(\ell, S[i])$. By this, a string label (S) is obtained as the sequence of
such label(S[i]).

For the resulting label (S) , label(S[i]) $\neq label(S[i+1])$ if $S[i]\neq S[i+1]$ for any i (See the
proof by [4] $)$. Thus the alphabet reduction is recursively applicable to label (S) , which is also
Type2. If the alphabet size in s is σ , the new alphabet size in label (S) is $2\log\sigma$. We iterate this
process for the resulting string label (S) until the size of the alphabet no longer shrinks. This
takes $\log^{*}\sigma$ iterations.

After the final iteration of alphabet reduction, the alphabet size is reduced to at most
6 like $\{0, \cdots, 5\}$. Finally we transform label $(S)\in\{0, \cdots, 5\}^{*}$ to the same length string in
label $(S)\in\{0,1,2\}^{*}$ by replacing each 3 with the least integer in $\{0,1,2\}$ that does not neighbor
the 3, and doing the same replacement for each 4 and 5. We note that the final string label (S)

is also Type2 string. This process is illustrated for a concrete string S in Fig. 1.
Landmark: For a final string label (S) , we pick out special locations called landmarks that

are sufficiently close together. We select any position i as a landmark if label(S[i]) is maximal,
i.e., label(S[i]) $>label(S[i-1]),$ $label(S[i+1])$. Following this, we select any position j as a
landmark if label $(Sb])$ is minimal and both $j-1,j+1$ are not selected yet. We also display
this selection of landmarks in Fig. 1.

Edit sensitive parsing: After computing final string label (S) and its landmarks for a
Type2 string S , we next partition S into blocks of length two or three around the landmarks
in the manner: We make each position part of the block generated by its closest landmark,
breaking ties to the right.

116

(1) smng in binary

(2) label

a deghec a d e g

000 $01\underline{1}$ $10\underline{0}$ $1\underline{1}0$ $11\underline{1}$ $10\underline{0}$ $0\underline{1}0$ $0\underline{0}0$ $01\underline{1}$ $10\underline{0}$ $1\underline{1}0$

$-$ 001 000 011 001 000 011 010 001 000 011

(3) $label$ as integer $-$ 1 0 3 1 0 3 2 1 0 3

(4)final label&landmark – 1 0 2 1 0 1 2 1 0 2

Figure 1: Alphabet reduction: The line (1) is an original Type2 string S from the alphabet
$\{a, b, \cdots, h\}$ with its binary representation. An underline denotes the least different bit position
to the left. (2) is the sequence of label(S[i]) formed from the alphabet $\{0,1,2,3\}$ whose size is
less than 6, and (3) is its integer representation. (4) is the sequence of the final labels reduced
to $\{0,1,2\}$ and the landmarks indicated by squares.

(3) resulting stnng

(2) position block

(l)landmark - 1 0 2 1 0 1 2 1 0 $\underline{\prod 2}$

Figure 2: Single iteration of ESP: The line (1) is the computed final labels and landmarks. (2)
shows the groups of all positions in s having two or three around the landmarks. (3) is the
resulting string ABCDB, and the production rules $Aarrow ad,$ $Barrow eg$, etc.

Since label $(S)\in\{0,1,2\}^{*}$ contains no repetition, for any two successive landmark positions
i and j , we have $2\leq|i-j|\leq 3$. Thus, each position block is of length two or three. The
string S is transformed to a shorter string $S’$ by replacing any block of two or three symbols to
a new suitable symbol. Here “suitable” means that any two blocks for a same substring must
be replaced by a same symbol. This replacement is called edit sensitive parsing (ESP). We
illustrate single iteration of ESP for determined blocks in Fig. 2.

Finally, we mention Typel or Type3 string S . If $|S|\geq 2$, we parse the leftmost two symbols
of S as a block and iterate on the remainder and if the length of it is three, then we parse the
three symbols as a block. We note that no Typel S in length one exists. The remaining case
is Type3 S and $|S|=1$, which appears in a context $a^{*}bc^{*}$. If $|a^{*}|=2,$ b is parsed as the block
aab . If $|a^{*}|>2,$ b is parsed as the block ab . If $|a^{*}|=0,$ b is parsed with c^{*} analogously.

If S is partitioned into $S_{1},$
$\ldots,$

S_{k} of Typel, Type2, or Type3, after parsing them, all the
transformed strings $S_{i}’$ are concatenated together. This process is iterated until a tree for S is
constructed. By the parsing manner, we can obtain a balanced 2–3 tree, called ESP tree, in
which any internal node has two or three children.

3 Algorithms and Data Structures
3.1 Basic notions
A set of production rules of a CFG is represented by a directed acyclic graph (DAG) with the
root labeled by the start symb$o1$. In Chomsky normal form hereby taken up, each internal node
has respectively two children called the left/right child, and each edge is also called the left/right
edge. An internal node labeled by X with left/right child labeled by A/B is corresponding to
the production rule $Xarrow AB$. We note that this correspondence is one-to-one so that the DAG
of a CFG G is a compact representation of the parsing tree T of G . Let v be a node in T , and
the subtree of v is the induced subgraph by all descendant of v . The parent, left/right child,
and variable on a node v is denoted by parent(v), left(v)/right(v), and label(v), respectively.

With respect to an ordered binary tree T , a node v is called the lowest right ancestor of a
node x and is denoted by $lra(x)$, provided that v is the lowest ancestor so that the path from
v to x will contain at least one left edge. If x is a node in the right most path in $T,$ $lra(x)$ is
undefined. Otherwise, $lra(x)$ is uniquely decided. The subtree of x is left adjacent to the subtree
of y provided that $lra(x)=lla(y)$, thus the adjacency in the right is similarly defined.

fact 1 For an ordered binary tree, a node y is right adjacent to a node x iff y is in the left
most path from right$(lra(x))$, and y is left adjacent to x iff y is in the right most path from
left(lla(x)).

117

Algorithm ESP-COMP
$Input:astrino_{utput:aCF}\S_{represented}^{s}$ by D deriving S .

initialize D ;
while$(|S|>1)$

$for-each$ ($X_{k}arrow X_{i}X_{j}$ produced in same level of ESP)
$sortallX_{k}arrow X_{i}Xg_{byX_{\ell},the}by(i,j);renamea11X_{k}in$

rank of sorted $X_{k}arrow X_{i}X_{j}$;
update D for renovated $X_{\ell}arrow X_{i}X_{j}$;

return D ;

procedure $ESP(S, D)$
compute one iteration of ESP for S ;
update D ;
retum the resulting string;

Figure 3: The compression algorithm to output a dictionary D for a string S . We assume the
reverse dictionary D^{R} .

3.2 Pattern embedding on parsing tree
For two parsing trees of strings P and S , if there is a common subtree for them, then its root
variable is called a core. It is shown that with respect to each of strings P and S , these ESP
trees concerning a same naming function contain a sufficiently large core X provided S contains
P . This property is available as a necessary condition in searching P . In other words, any
occurrence of P in S is restricted in a region around X .

Lemma 1 There exists a constant $0<\alpha<1$ such that for any occurrence of P in S , its core
is encoding a substring longer than $\alpha|P|$.

Lemma 2 For a given ESP tree T of a text S and a pattem $P,$ $S[i,j]=P$ iff there exist
$k=O(\log|P|)$ adjacent subtrees in T rooted by variables $X_{1},$

$\ldots,$
X_{k} such that the concatenation

of all strings encoded by them is equal to P .

Two algorithms are developed for compression and search based on Lemma 1 and 2. At first,
since any ESP tree is balanced 2–3 tree, each production rule is of $Xarrow AB$ or $Xarrow ABC$.
The latter is identical to $Xarrow AB’$ and $B’arrow BC$. Assumption is hereby made exclusively
with Chomsky normal form. A data stmcture D to access the digram XY from a variable Z

associated by $Zarrow XY$ is called a dictionary. In the meantime, another data structure D^{R} to
compute the reverse function $f(XY)=Z$ is called a reverse dictionary.

ESP-COMP is described in Fig. 3 with a view to computing the ESP tree of a given string.
This algorithm outputs the corresponding dictionary D . The reverse dictionary D^{R} is required to
replace different occurrences of XY by means of a common variable Z . This function, which can
be developed by a hash function with high probability [6], requires large extra space regardless
of such a circumstance. In the next subsection, we propose a method to simulate D^{R} by D .
The improvement brought about as above makes it possible to compress a given pattem for the
purpose of obtaining the core exclusively by D .

ESP-SEARCH is described in Fig. 4 to count occurrences of a given pattem P in S . To
extract the sequence of cores, P is also compressed by ESP-COMP referring to D^{R} for S .
Furthermore if XY is undefined in D^{R} , a new variable is produced and D^{R} is updated. Then
ESP-SEARCH gets the sequence of cores, $X_{1},$

$\ldots,$
X_{k} to be embedded on the parsing tree of S .

The algorithm checks if X_{i} is left adjacent to X_{i+1} for all $i=1,$. .
$:,$

$k-1$ from a node v labeled
by X_{1} . As we propose several data structures in the next subsection, we can access to all such
v randomly. Thus, the computation time is faster than the time to traverse of the whole ESP
tree, which is proved by the time complexity.

Lemma 3 If we assume the reverse dictionary D^{R} with constant time access, the running time
of ESP-COMP is $O(u)$ and the height of the ESP tree is $O(\log u)$ for the length of string, u .

Lemma 4 ESP-SEARCH correctly counts the occurrences of a given pattern in the ESP tree
of a text.

118

Algorithm ESP-SEARCH
Preprocess: $Darrow ESP-COMP(S)$ for text S .
Input: a pattern P .
Output: the number of occurrences of P in S

$countarrow 0and(X_{l},.,X_{k}f_{0}r-each(vsatisfying.i_{abel}/v)=X_{1})arrow FACT(P, D)$
;

$iarrow 2,$ $tarrow right(lra(v))$, and $typearrow$ true;
while$(i\leq k)$

if(a left descendant $v’$ of t satisfies label $(v’)=X_{i}$)

else
$varrow v^{f},$
$tarrow riht(lra(vtypearrow false,andbrea)$, and $iarrow i+1$;

if(type $=$ true), $countarrow count+1$;
return count;

procedure FACT(P, D)

compute the variable by CORE(P, D) which encodes $P[i,j]$;
recursively compute the variables

$returna11_{V}ariac^{ORE}c_{ORE}\}_{t_{1esfromthe1e}^{P),D)forsuf}\mathfrak{t}_{toccurrence;}^{P)=P[i+1}}^{pre(P),D)forpre(P)=P[1,i-1}suf,|_{P|];}^{and}$

procedure CORE(P, D)
$larrow 1$ and $rarrow|P|=m$;
while$(|P|>1$ and $\ell<r)$

$Parrow ESP(P, D)$
$\ellarrow(P+\lceil\log^{*}n\rceil+5)$ and $rarrow r-5$;

return the symbol $P[1]$;

Figure 4: The pattern search algorithm from the compressed text represented by a dictionary
D . We assume the reverse dictionary D^{R} again.

3.3 Compact representation for ESP
We propose compact data structures used by the algorithms. These types of improvement are
achieved by means of two techniques: one is the decomposition of DAG representation into
left/right tree, and the other is the simulation of the reverse dictionary D^{R} by the dictionary
D with an auxiliary data structure. First the decomposition of DAG is considered. Let G be
a DAG representation of a CFG in Chomsky normal form. By introducing a node v together
with addition of left/right edges from any sink of G to $v,$ G can be modified to have the unique
source and sink.

fact 2 Let G be a DAG representation with single source/sink of a CFG in Chomsky normal
form. For any in-branching spanning tree of G , the graph defined by the remaining edges is also
an in-branching spanning tree of G .

An in-branching spanning tree of G , which is called the left tree of G , is concurrently denoted
T_{L} provided that the tree consists exclusively of the left edges. Thus the complementary tree is
called the right tree of G to be denoted T_{R} . A schematic of such trees is given in Fig. 5.

When a DAG is decomposed into T_{L} and T_{R} , the two are represented by succinct data
structures for ordered trees and permutations. Brief description concerning the structures is
hereunder made. The bit-string by LOUDS [5] for an ordered tree is defined as shown below.
We visit any node in level-order from the root. As we visit a node v with $d\geq 0$ children, we
append $1^{d}0$ to the bit-string beginning with the empty string. Finally, we add 10 as the prefix
corresponding to an imaginary root, which is the parent of the root of the tree. A schematic of
the LOUDS representations for T_{L} and T_{R} is also given in Fig. 5. For n node tree, LOUDS uses
$2n+o(n)$ bits to support the constant time access to the parent, the i-th child, and the number
of children of a node, which are required by our algorithm.

For traversing the DAG, we also need the correspondence of the set of nodes in one tree to
the one in the other. For this purpose, we employ the succinct data structure for permutations
by [7]. For a given permutation P of $N=(0, \ldots, n-1)$, using $(1+\epsilon)n\log n+o(1)$ bits space, the
data structure supports to access to $P[i]$ in $O(1)$ time and $P^{-1}[i]$ in $O(1/\epsilon)$ time. For instance,
if $P=(2,3,0,4,1)$, then $P[2]=0$ and $P^{-1}[4]=3$, that is, $P[i]$ is the i-th member of P and

119

$\otimes\cdot\cdot\cdot oy_{6}$.
Oy_{8}

\copyright Oy_{5}

Oy_{7} .
$(y_{2}>$

\otimes

$y_{0}\cdots\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot$

$\cap T_{R}$

CFG G DAG representation of G

10110111010101000101000 10110101011101010010000
with a vimal sink

LOUDS(T_{ι}) し OUDS$(T,)$

$node\ln T_{\iota}nodeinT_{l_{\frac}}^{\overline{\frac{0123456789}{0137425lC9Comspondenceofnode\}}}$

Figure 5: A DAG representing a CFG in Chomsky normal form and its decomposition into two
ordered trees with their succinct representations.

The children ofx in T_{L} sorted by the parents in T_{R}

t 1 1 t \uparrow

$\underline{X_{2}X_{4}X_{5}X_{7}X_{10}}$

The vanable in T_{L} corresponding to y,

Figure 6: The simulation of D^{R} using binary search over the nodes of T_{L} . For each node x in
T_{L} , the children $x_{i}s$ of x are already sorted by the variables in T_{L} corresponding to the parents
of $x_{i}s$ in T_{R} .

$P^{-1}[i]$ is the position of the member i . For each node i in LOUDS(T_{L}) , the corresponding node
j in LOUDS(T_{R}) is stored in $P[i]$. These are also illustrated in Fig. 5.

In the compression algorithm in Fig. 3, all variables produced in a same level are sorted by
the left hands of production rulesl , and these variables are renamed by their rank. Thus, the
i-th variable in a DAG coincides with node i in T_{L} since they are both named in level-order.
In accordance with the improvement referred to above, storage can be made with the required
correspondence in almost $n\log n$ bits. Devoid of these characteristics, $2n\log n$ bits are required
to traverse G .

At the final stage, a method is proposed with a view to simulating the reverse dictionary
D^{R} from the data structures referred to above. Adapting this technique makes it possible to
reduce the space for the hash function to compress a pattern. Preprocessing causes the X_{k} to
denote the rank of the sorted $X_{i}X_{j}$ by $X_{k}arrow X_{i}X_{j}$. Conversely being given a variable X_{i} , the
children of X_{i} in T_{L} are already sorted by the indexes of their parents in T_{R} . Thus the variable
X_{k} associated to $X_{i}X_{j}$ can be obtained by using binary search on the children of X_{i} in T_{L} , of
which depiction is made in Fig. 6. Since LOUDS supports the number of the children and i-th
child, access can be made to the middle child X_{i} in $O(1)$ time. Thus we obtain the following
lemma.

Lemma 5 The function $f(XY)=Z$ is computable in $O(\frac{1}{\epsilon}\log k)=O(\frac{1}{\epsilon}\log n)$ time for the
maximum degree of $T_{L},$ k , bounded by the number of variables, n .

Theorem 1 A grammar-based compression G for any string S is represented in $(1+\epsilon)n\log n+$

$4n+o(n)$ bits, where n is the number of variables in G . With any pattern P , the number of
its occurrence in S is computable in $O(\frac{1}{e}(m\log n+occ_{c}(\log m\log u)))$ time for any $0<\epsilon<1$,
where $u=|S|,$ $m=|P|$, and occ_{c} is the number of occurrences of a maximal core of P for S .

lIn [3], similar technique was proposed, but variables are sorted by encoded strings.

120

4 Experiments
The experiments are conducted in the environment shown below. $OS:CentOS5.5$ (64-bit),
$CPU:Intel$ Xeon E5504 2. $0GHz(Quad)\cross 2$, Memory: $144GB$ RAM, HDD: $140GB$, and Com-
$piler:gcc4.1.2$.

Datasets are obtained from the text collection in Pizza&Chili Corpus2 to compare hereto
referred method called ESP with other compressed indexes called LZ-index $($ LZI $)^{3}$, Compressed
Suffix Array, and FM-index (CSA and FMI)4. These implementations are based on [8, 9, 11].
Due to the trade-off in the construction time and the index size, the index referred to above and
other methods for reasonable parameters are examined. In our algorithm, setting is made with
$\epsilon=1,1/4$ for the permutation. In CSA, the option (-Pl:L) means that ψ function is encoded
by the gamma function and L specffies the block size for storing ψ . In FMI, (-P4:L) means
that BW-text is represented by Huffman-shaped wavelet tree with compressed bit-vectors and L

specifies the sampling rate for storing rank values, and (-P7:L) is the uncompressed version. In
addition these CSA and FMI do not make indexes for occurrence position. Setting up is made
with $200MB$ texts for each DAN and ENGLISH to evaluate construction time, index size, and
search time.

The results in construction time are shown in Fig. 7. It is deduced from these results that
the method dealt with at this stage is comparable with FMI and CSA in the parameters in
construction time, and slower than LZI. Furthermore it is understood that none of conspicuous
difference is seen in construction time so long as the value of ϵ stand still from 1 to 1/4.

The results of index size are shown in Fig. 8. The results reveal that the index is furthermore
compact enough and comparable to CSA(-Pl:64). The size of LZI contains the space to locate
patterns

The indexes in Fig. 9 show the time to count all occurrences of a given pattern in the text.
The indexes are aligned to accomplish the maximum texts in DNA and ENGLISH $(200MB$ each$)$.
Random selection of pattern from the text is made 1000 times for each fixed pattern length,
and the search time indicates the average time. In this implementation, we modified our search
algorithm so that the core is extracted by a short prefix of a given pattern P and an occurrence
of P in S is decided by the single core and the exact match of the remaining substrings by
partial decoding of the compressed S . To determine length or the short prefix, the rate 1% of
the pattern by preliminary experiments is taken up. In DNA and ENGLISH, our method is
faster searchable than LZI and CSA in the parameters for long patterns. The proposed method
is liable to be behind the pattern with short length in case of searching, which might be for the
reason why the occurrence number is relatively made multiplied, and comparison of variables
are executed for the individual occurrences.

From the results referred to above, it is ascertained that the proposed method, which is
believed to be subject to settlement of pattem length or parameter settlement, can acquire
sufficient performance as index for pattern searching.

References
[1] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.

The smallest grammar problem. IEEE Transactions on Information Theory, $51(7):2554-$
2576, 2005.

$construct\}on$ time (DNA) construction time (ENGUSH)
160 3∞

$\overline{\underline{\omega 0\omega}}120140$

$\overline{\underline{\Phi ow}}$

250
$\sim ESP(s|$)

$\underline{\in\Phi}1\infty$ $\underline{\in v}2W$

$RESP(\epsilon 1/4)$

$\infty L2$

$\circ c$ 80 $\circ c$ 150

$arrow cs\wedge(Pl\mathfrak{h}4$

$\circ 3$ 60
$-\dot{o}$

$P1256)$

$\nu oco\omega\llcorner$ 40
$\dot{c\Phi\mathring{o}}$

50
$Rr(P712S$

$\llcorner\supset$ 100 ∞r (P4512

20

0 0

20 40 60 80 100 120 140 160 180 200 20 40 60 80 lO120140160 180 200
original text [MB] original text [MB]

Figure 7: Construction Time.

2http://pizzachili.dcc.uchile.cl/texts.html
3http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index-l
4http:$//code$.google.com/p/csalib/

121

250

index stze (DNA) ndex size (ENGUSH)

200

$\overline{\frac{\varpi=}{\simeq on}}\iota\infty$

$\tau_{\underline{c}}^{x}10$

50

$\overline{\frac{m=}{\frac{\aleph}{\omega}o}}$

$\epsilon_{\underline{c}}^{K}$

0

20 40 W 80 $1\mathbb{O}120$ 140 160180 2∞

$or|l|n*1$ text [MBl

$arrow\epsilon \mathfrak{N}e-t)$

$>\mathbb{E}S\mathcal{H}e=1/\cdot)$

$-u$
–CSA $($ Pl $l4)$

∞ CSA $(-Pt\ell 5t$

$-m|(P45t2$

$mm|(-P71Z*$

20 ω 60 90 $\iota\infty 120$ t40160 $t802\infty$

$o\ulcorner(gin\epsilon|$ text [MB]

Figure 8: Index Size.

search tme (DNA)

$\underline{\overline{\dot{\omega}0\in}}$

$\Sigmaunderline{\in}\varpi\llcorner oo$

$\underline{\overline{wo\circ\in}}$

$\Sigma\circ*\underline{\in Q}$

pattem [Byte]

searc$bt|me$ (ENGUSH)

$arrow \mathbb{E}S\wedge e=1)$

$arrow ES-e$ $t/4)$

$-u$
–CSA $(-P1 J4)$

∞ CSA (Pl 25$*$

$-W1(P\cdot 5t2)$

$\infty m|(P7 I 2|)$

pettem [Byte]

Figure 9: Search Time.

[2] R. Cilibrasi and P.M.B. Vitanyi. Clustering by compression. IEEE Transactions on Infor-
mation Theory, $51(4):1523-1545$, 2005.

[3] F. Claude and G. Navarro. Self-indexed text compression using straight-line programs. In
$MFCS09$, pages 235-246, 2009. to appear in Fundamenta Informaticae.

[4] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
A CM $\mathcal{I}kans.$ Algor., 3(1):Article 2, 2007.

[5] O. Delpratt, N. Rahman, and R. Raman. Engineering the louds succinct tree representation.
In WEA2006, pages 134-145, 2006.

[6] R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms. IBM

Joumal of Research and Development, $31(2):249-260$, 1987.
[7] J.I. Munro, R. Raman, V. Raman, and S.S. Rao. Succinct representations of permutations.

In ICALP03, pages 345-356, 2003.
[8] G. Navarro. Indexing text using the ziv-lempel tire. Joumal ofDiscrete Algotithms, $2(1):87-$

114 , 2004.
[9] G. Navarro and V. Makinen. Compressed full-text indexes. ACM Computing Surveys,

39(1):Article 2, 2007.

[10] W. Rytter. Application of lempel-ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211-222, 2003.

[11] K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J. Algo-
rithms, 48(2):294-313, 2003.

[12] H. Sakamoto. A fully linear-time approximation algorithm for grammar-based compression.
J. Discrete Algorithms, $3(2-4):416-430$, 2005.

[13] H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono. A space-saving approximation
algorithm for grammar-based compression. IEICE Trans. on Information and Systems,
E92-D(2) $:158-165$, 2009.

[14] D. Shapira and J.A. Storer. Edit distance with move operations. J. Discrete Algorithms,
$5(2):380-392$, 2007.

122

