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Cancel minimal linear grammars

with a particular nonterminal symbol

Kaoru Fujioka *

1 Introduction

Among the variety of normal forms for phrase struc-
ture grammars ([1], [2], [4]), Geffert normal forms in
[1] are unique in that each of them consists of context-
free type productions with a fixed number of specific
cancellation productions that replace a sequence of non-
terminal symbols with the empty string €.

In [3], Geffert normal forms are formalized into a
grammar which has minimal linear type productions
and a finite set of cancellation productions, called can-
cel minimal linear grammar. Within the framework of
cancel minimal linear grammars, one of the Geffert’s
results ([1]) means that the cancel minimal linear gram-
mar with two cancellation productions 4B — € and
CC — € generates any recursively enumerable lan-
guage.

The generative powers of the cancel minimal linear
grammars are examined in [3] especially with only one
of the two cancellation productions above under the as-
sumption of dealing with only e-free languages. It has
been shown that any language generated by the cancel
minimal linear grammar with AB — e is context-free,
and that any linear language can be generated by the
grammar. Furthermore, the class of languages genera-
ted by the cancel minimal linear grammar with CC — €
is showed to be a proper subset of the class of linear lan-
guages.

In this paper, we consider a particular nonterminal
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symbol C except S and examine the generative powers
of a cancel minimal linear grammar with a unique can-
cellation production C" — € for any m > 1. We
show that for any given m > 1, cancel minimal linear
grammars with C” — € only generate linear languages.
In contrast to this, for C" — € with m not bounded,
the class of languages generated by those grammars is
shown to be equivalent to the class of linear languages.

These results imply a new hierarchy of language clas-
ses using cancel minimal linear grammars[3].

2 Preliminaries

We assume the reader to be familiar with the rudi-
ments in formal language theory from [4].

A phrase structure grammar (a grammar for short)
is a quadruple G = (N, T, P,S), where N is a set of
nonterminal symbols, T is a set of terminal symbols, P
is a set of productions, and S in N is the initial symbol.
A production in P is of the form #; — m;, where 7, €
(NUT)YN(NUT) and m, € (N U T)*. For any a,
and ap in (NUT), if @) = ey ma), ar = ajma;s,
and r : m; — m € P, then we write o =r>G ay. If
G is understood, we write — a,. Similarly, for a
sequence of productions vy, we simply write = a;.
Further, if there is no confusion, we simply write a; =
a3, and we denote the reflexive and transitive closure of
= by ="

We define a language L(G) generated by a grammar
G =(N,T,P,S) as follows: L(G) ={zeT*"|S ="*z].



It is well known that the class of languages generated
by the phrase structure grammars is equal to the class
of recursively enumerable languages.

A language L is said to be e-free, if it contains no
empty string €. In this paper, we deal with only e-free
languages.

A grammar G = (N, T,P,S) is linear if each pro-
duction in P is of the form N; —» a, where N; € N
and o contains at most one nonterminal symbol. A lan-
guage generated by any linear grammar is also called
linear. 1t is obvious that any linear language can be ge-
nerated by a linear grammar each of whose productions
is of the form N; — uN,, N| — Nou, or N| — u, where
Ni,Ne Nandu € T*.

A grammar G=(N, T, P,S) is right (resp. left) linear
if it is linear and every production in P is of the form
N1 — uN; or N — u (resp. Ny = Nyu or Ny = u),
where Ni, N, € N and u € T*. Any language generated
by such a grammar is called right (resp. left) linear. It
is well known that the class of right linear languages is
equivalent to the one of left linear languages, which is
also called the class of regular languages.

A grammar G = (N, T, P,S) is minimal linear if N =
{S} and every production in P is of the form S — uSv
or§ — w, where u,v,w € T*. Any language generated
by such a grammar is called minimal linear.

Let RE, LIN, REG, and ML be the classes of recur-
sively enumerable, linear, regular, and minimal linear
languages, respectively.

Geffert [1] shows the following theorem for recursi-
vely enumerable languages.

Theorem 1 Any recursively enumerable language can
be generated by a grammar G = ({S}UNc, T, PUPc, S)
satisfying the following conditions:

e Every production in P is of the form S — a Sa, or
S — o, where ay, a3, a € (T U N¢)*,

® Nc ={A4,B,C}and Pc ={4AB — ¢, CC — €.

Motivated by this Geffert normal form, a new gram-
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mar is introduced as follows [3].

Definition 1 4 grammar G = ({S}U N, T,P,S) is an
Q-cancel minimal linear grammar (Q-cml grammar for
short) if it satisfies the following:
(1) S is the initial symbol.
(2) Nc is a finite set of nonterminal symbols except S.
(3) T is afinite set of terminal symbols.
(4 Q={Q;|1<i<n}, where Q; € N{.
(5) P = Py VU Pc is afinite set of productions, where

(@ Puc{S-aSa S -al

ay, @, a € (T'UNg)'},

() Pc={Qi—€ll<i<n}
We call a production in Py a minimal linear type

production (an ml-production for short) and call a pro-
duction in P¢ a cancellation production (a c-production
Jor short).

A language L is an Q-cancel minimal linear lan-
guage (2-cml language for short) if there is an Q-cml
grammar G such that L = L(G).

For a string @, a® represents the reverse of a.

Definition 2 Ifan mi-production has the right side with
no terminal symbol, then the production is called a
terminal-free mi-production, otherwise it is called a ter-
minal mi-production.

An Q-cml grammar G is called a terminal Q-cml
grammar, if any mi-production in P is one of the forms
of a terminal production. A language L is called a
terminal Q-cml language if there is a terminal Q-cml

grammar that generates L.

The classes of terminal Q-cml languages are denoted
by t-CMLg,.

The generative powers of some classes of terminal
{AB}-cml grammars and terminal {C?}-cml grammars
are examined in [3] and the following theorem is the
result concerning terminal {C?}-cml grammars.

Theorem 2



1. ML c t-CML >y c LIN
2. REG and t-CML ¢y are incomparable.

In this paper, we focus on a terminal {C"}-cml gram-

mar for any positive integer m.

3 Terminal {C"}-cml languages

In this section, we consider the generative power of
terminal {C™}-cml grammars. The case m = 1 is sim-
ple, because C — € means that C can be canceled any
time in derivations. Therefore, the following lemma is

obvious.

Lemma 1l -CMLc) = ML.

In the following, we consider the case m > 2.

3.1 Minimal linear type productions

In the following, for simplicity, if i = 0 then we
regard C' and C™ as € in ml-productions of {C"}-
cml grammars. For example, the ml-production § —
C'uC™ 'S represents S — uS fori = 0.

In every {C™}-cml grammar G = ({S,C}, T, P, S), we
may assume that any ml-production in P is one of the

six forms
() S§-CuCkschCi, (2) S- CiuCkS I,
B) S - Cisch, 4) S — CuCl,
(5) S-CsC, 6 S-C,

where u,v € T*, 0 < i,j,k,I < m. This is because
any ml-production can be transformed into one of the
above forms by using the c-production r¢ : C” — ¢,
or the ml-production makes no contribution to produce
a string in T*. For example, an ml-production § —
Cm+iyChS C¥+yCJ with u,v € T+ and 0 < i, j, k, 1 < m,
is equivalent to § — C'uC*SC'vC/, whereas an ml-
production § — uC'vS withu,v € T* and0 < i< mis

useless to produce a string in 7.
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According to the six forms above, we partition the set
of ml-productions P, into six sets P(1), P(2),...,P(6)
such that for each n (1 £ n < 6), P(n) consists of ml-
productions in the n-th form above. Let P(f) be a set
of terminal ml-production in P and P(¢f) be a set of
terminal-free ml-production and the c-production, then

P(t) =
P(tf) =

In the following, we call a production in P(¢f) as a

P()u P2Q)U P(3)U P4)
P(5) U P(6) U {rc).

terminal-free production.

3.2 Terminal {C"}-cml grammars and
nondeterministic finite automatons

We show that for any terminal {C™}-cml grammar
G, there exists a nondeterministic finite automaton Mg
such that L(Mg) and L(G) are closely related.

In the following, let S — C'uC*SC'vC/ be an ml-
production in P(1) U P(2) U P(3) with u,v € T* and
uv # €. Then, we assume that if ¥ = € then k = 0, and
thatifv = ethen/ = 0.

Definition 3 For a terminal {C™}-cml grammar G =
({S,C),T,P,S), Mg = (Q.%6,6, 90,,190)) is a nonde-
terministic finite automaton derived from G, where

0= {qi;10<i,j<m}Uiqol,
26 = {[ulv] | S = C'uC*SC'WRC/ €
P(1)U P(2) U PG)IU

{[u}!S - CiuC/ € P(4)).

The transition mapping 6 is defined as follows:
IfS = C"uC*SC'WRC/ is in P(1), then
6(qi j» [ulv]) > qus
withi = (m— i) mod m and j = (m — j') mod m.
IfS = C'uC*SC’ is in P(2), then
Jor each j (0 < j < m), 6(qi [ule]) 3 quy
withi=(m- 1) mod mandl = (j+ j') mod m.
IfS — C'SC'WRC/ is in P(3), then
Jor each i (0 < i < m), 8(qi[€lv]) 2 gry



withk = (i + ") mod m and j = (m - j') mod m.
IfS — C"uC’ is in P(4), then

8(qi,j» [u]) = {qo}

withi = (m— i) mod mand j = (m - j/) mod m.

We extend 6 by induction to a function 6* : QX Zf —
P(Q) according to the rules:

6*(q,0) = 6(g, 0),

6°(g,@0) = Uyesqa0(q’, o),
where o € 2 and @ € I,
Moreover, if @ = [u;lvf] e [uklv,f], then we use the
notation 6*(q, [uy - - wil(vy - - - vi)R]) 10 denote 5*(q,a)
Jor simplicity.

We note the following points about Mg in Defini-
tion 3.

1. Intuitively, a state ¢, ; (0 < i, j < m) in Mg corre-
sponds to a derivation § =7, 7;C'SC/r; for some
71,72 € (T U{C™)".

2. An mi-production in P(1)U P(4) produces a unique
transition, while an ml-production in P(2) U P(3)
produces m kinds of transitions.

The following lemmas are obvious from Definition 3.

Lemma 2 [fa string a € X7, is in L(Mg), then a is one
of the forms: [u} and [uy|n1] - - - [unlvn][u] (n = 1).

In the following, for simplicity, we assume that if n =
0 then [u;]o1] - - - [nlva) (2] = [u].

Theorem 3 For the nondeterministic finite automa-
ton Mg derived from a terminal {C™}-cml grammar
G, if a string [ui|v1]- - (unlva][u} is in L(Mg), then
ul---u,,uvf'--ufisinL(G).

Proof Consider a terminal {C™}-cml grammar G =
{S,C}, T, P,S) and the nondeterministic finite automa-
ton Mg = (0, ¢, 6, qo.0, {go0}) derived from G.

We will show that if 6(g; ;, [e1|v1] - - - [unlva][u]) > g0
then there is a derivation C'SC/ ==* uy - - - upuvf - - - of
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by using the induction on #. Note that for the case i =
J = 0, this implies Theorem 3.

Base step, n = 0: Assume that &(g; j, [u]) 3 go. By
the construction of 6, there is a production » : § —
C'uC’ withi = (m—i")y mod mand j = (m—j') mod m.
Therefore, C'SC/ = CIC"uC/ C/ =* u holds.
Induction step: For n = 1, assume that go
is an element of 6(g;;, [uilv1] - [ualv,][#]). Then,
there is a state g, such that o(gi;, [u1lvi]) 3 gus
and 6(qy s, [u2lv2] - - - [unlval{u]) > go. From the in-
duction hypothesis, there is a derivation C*SC' =
Uy R 0.

There are three cases for u;,v1: (1) u3,v1 # € (2)
uy =€ 0 # € 3) u # €, v, = €. We prove only
the first case, since the proof of the other cases is quite

*

similar to the proof of the first case.

Assume that u,,v;, # €. By the construction of 6,
there is a production r : § — C'uC*SC'WRC/ in P
with i = (m — i) mod m and j = (m — j') mod m. The-
refore, there is a derivation

C'SC/ = CIC'uiC*SCRCI/ ¢/ = u,CFSCIR
= wy gl 0RR,

a

Theorem 4 For a terminal {C"}-cml grammar G =
(S.C),T,P,S), ifastringw € T* is in L(G), then there
exists a string [uy|vy] - - - [un|v,)[u] € ZE with n > 0 such
that w = u; ---u,,uvff--mf and [uylvi]- - - [unlvn)[u] €
L(Mg).

Proof We will show that for 0 <
w € T*, if there is a derivation C'SC/ = w such
that terminal ml-productions occur n + 1 (n = 0) ti-
mes in y, then there exists a string [u|v;]- - - [unlv,][#]
such that 6*(g., [u1lv1]- - - [unlve][u]) > go and w =
uy -+ uuoR - oR. We will prove this by induction on
n. We note that for the case i = j = 0, this implies

i,j < m and

Theorem 4.
Base step, n = 0: Assume that there is a derivation
Cisci 2% w, where 0 < i, j < m,w € T*, and only one



terminal ml-production occurs in y. Then, the terminal
ml-production is § — C'wC/ with i = (m — ') mod m
and j = (m — j') mod m. By the construction of 4, there
is a transition &(g; j, [w]) 3 qo.

Induction step: Assume that there is a derivation
CiSC/ =5 w such that terminal ml-productions occur
n + 2 times in y. Let r be the first used terminal ml-
production in y. There are three cases: r € P(l);
r € P(2); r € P(3). We prove only the case r € P(l),
since the proof of other cases is similar to the proof of
the first case.

Suppose that r is § — C'uC*SCWRC/ in P(1).
Then, there exists a derivation

CiSC/ = C* uCkSCWACI*

71

= uCkSCR
72 ,
= uw'k,

such that uw'v® = w, only the c-production is applied in
1, and ml-productions occur » + 1 times in ;.

Since only the c-production is applied in ¥, it fol-
lows from the definition of ¢ that 6(g; ;. [wlv]) 3 qx,. By
the induction hypothesis and C¥*SC’ L, w, there ex-
ists a string @ € I, such that @ = [u[v] - - - [unlva](#],
6"(qs»@) 2 qo, and W' = uy---uu'vR---vR. Hence,
6*(qij» [ulv]@) 3 go and w = uuy - - - ' vk - - - VFVR hold.
o

3.3 Linear languages and regular langua-
ges

We show that the class of linear languages properly
includes the class of terminal {C™}-cml languages.

Theorem 5 For a given integer m > 2, every terminal

{C™}-cml language is linear.

Proof For a terminal {C™}-cml grammar G, con-
sider a nondeterministic finite automaton Mg; =
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(0.Z,6,q00,{q0}) derived from G. Based on Mg, con-
struct a linear grammar G, = (N, T, P}, Ny o), where

N
P

{Nijlqij€ 0}
{Njj = uN o™ | 8(qi s, [ulv]) 3 gs} U
{Nij = u|8(qi,,[u]) 3 g0}

From Theorems 3 and 4, it is obvious that L(G) = L(G)).
a

We will show that the class of terminal {C™}-cml lan-
guages and the class of regular languages are incompa-
rable.

Theorem 6 For a given integer m > 2, t-CMLcm) and

REG are incomparable.

Proof Since ML and REG are incomparable ([2]) and
ML is included in t-CMLcm, it suffices to show that
there exists a regular language that is not a terminal
{C™}-cml language.

Consider a regular language

L, = {(@0)*(@)" - - (azm)> | ko, ki, -+ ko 2 O},

Assume that there is a terminal {C™}-cml grammar
G = ({S,C),T,P,S) such that T = {agp,a,...,a,)
and L, = L(G). Let Mg = (Q,Zg,6, 900, {qo}) be the
nondeterministic finite automaton derived from G.
Foreach /(0 < I < 2m?), since {(a))* | k = 0} is a sub-
set of L,, it follows from Theorem 3 and L, = L(G) that
there exist a state g; € Q and integers i, j; > 0 such that
&*(qi, [a;" Ia{’]) 3 g; and at least one of i; and j; is greater
than 0. Similarly, if there exist strings »,v € T* such
that 6(g;, [ulv®]) > ;, then aj'ud] and a]'va]' are sub-
strings of some w € L,. Hence, if iy > O (resp. j; > 0)
then u (resp. v) is a sequence of a;. Therefore, if ;, = g;,
and /; < b, then both j;, = 0 and i;, = 0 hold. This im-
plies that there exist no three mutually distinct integers
h,h,l3suchthat0 </y,b,15 <2m? and q;, = g1, = q1,-
That is, Mg must have at least [(2m?+1)/2] = m?*+1 sta-
tes except for the final state, whereas Q consists of m?



states except for the final state. This is a contradiction.
Therefore, L, is not a terminal {C”}-cml language. O

Since REG is included in LIN, the following proper
inclusion follows from Theorems 5 and 6.

Theorem 7 For a given integer m > 2, t-CMLcwy C
LIN.

4 {C’}-cml languages

We consider the union of t-CMLc», over all m > 1

in this section.

Definition 4 A language L is a {C*}-cml language
(resp. terminal {C*}-cml language) if there is some in-
teger m 2 1 such that L is a {C™)-cml language (resp.
terminal {C™}-cml language). Let CMLc-) (resp. t-
CMLic+)) be the class of {C*}-cml languages (resp. ter-
minal {C*}-cml languages).

From Definition 4 and Theorem 5, the following are

obvious.
Umz1t-CMLcn) = t-CMLy¢-) € LIN.

Lemma 3 4 linear language is a terminal {C*}-cml

language.

Proof Consider a linear language L = L(G), where
G=(N,T,P,Ny)and N = {Ny, - -+ , N, }. Without loss
of generality, we may assume that any production in P
is one of the forms N, — ™N,, N, = N,7, N, = 7,
where 7 € T* and N,, N, € N.

We construct a terminal {C"}-cml grammar G' =
(S,C}),T,P',S) as follows: P" = PUP, U P} U Pc,
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where
P, = {§->C"PrCISCY |
N, > tN;€P, y=(n+gqg-p)modnj
P, = (§->CSCITCP |
N, - N,teP, x=(n+gq- p)modn)
P, = {S>C"PtC"P|N, > 1€ P)
Pc = {C"—¢€).

We will show that for any z € T* and any N, € N, there
is a derivation ¢ : N, =¢G z if and only if there is a
derivation y : CPSCP =7@ z. Note that for the case
p = 0, this implies that a string z is in L(G) if and only
if z is in L(G’).
[Only-if part]: We use induction on the length k of ¢.

Base step, k = 1: Assume that there is a derivation d :
N, =>¢ z, where N, € N and z € T™. For a production
N, — z in P, from the construction of P}, there is a
production 7 : § — C"PzC"? in P’. Therefore, there
is a derivation CPSC? ==, CPC"™PzC"PCP =2, z.

Induction step: Consider a derivation ¢ : N, =-£:G
@ =>( z, where the length of ¢ is k + 1, N, € N,
z € T*, and r € P. There are two cases for : (1) r is
N, = TNy, and (2) r is N, — N,7. We prove only the
first case, since the proof of the second case is similar
to the proof of the first case.

Then, the derivation ¢ becomes ¢
TN, =, 7z’ = z. For the production r, from the con-

r
N, =g

struction of Pj, a production ' : § — C"PrCISCY
is in P’, where y = (n + ¢ — p) mod n. For a deriva-
tion N, = 2, from the induction hypothesis, there
is a derivation C?SC? ==, z/. Therefore, there is
a derivation CPSCP =g CPC™PrCISCICP o
TCISCI =y,

production.

72', where o, is a sequence of the c-

[If part]: We use induction on the number & of mi-
productions that occur in y.

Base step, k£ = 1: Assume that there is a derivation
v :CPSCP =, z, where 0 < p <n,z € T*, and only



one ml-production occurs in y. Then, the ml-production
isr:S — C"PzC" P, Since risin P}, it follows from
the construction of P’ that N, — z is in P. Therefore,
there is a derivation N, ==¢ z.

Induction step: Consider a derivation 7y
CPSC? =r><;: a éacf z, where r is an ml-production,
ml-productions occur k times in y;, 0 < p < n, and
z € T*. There are two cases forr: (1) r € P;; (2)r € P,.
We prove only the first case, since the proof of the se-
cond case is similar to the proof of the first case.

Let r € P;. Then, it follows from the definition of P;
that r is S — C"PrCISCY% y = (n+q — p) mod n,
and N, - N, € P. Hence, the derivation y is
CPSCP == CPC"PTCISCYCP =6, 77 = 2. There-
fore, there is a derivation y, : CISC? —Lz-m, 2’ such that
ml-productions occur k times in ;. From the induction
hypothesis, there is a derivation N, =¢, z’. Therefore,
there is a derivation N, == TN, =7, 12’ = z. a

From Lemma 3, we have the following theorem.

Theorem 8 t-CMLc.=LIN.

S Concluding Remarks

In this paper, we considered the generative powers of
terminal cancel minimal linear grammars with a unique
nonterminal symbol except S. Figure 1 shows the re-
sults proved in this paper.

Geffert [1] shows other types of cml grammars, for

example,
(1) Pc = {AB — €,BBB — €} Nc¢ = {4, B),

(2) Pc = (ABBBA — €, Nc = {4, B},
(3) Pc ={AB - €,CD — €}, Nc=1{4,B,C,D},
(4) Pc = (ABC — ¢}, Nc =1{4,B,C).

The question of deciding generative powers of cml
grammars with two or more nonterminal symbols ex-
cept S is open and of great interest to be studied.
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LIN =t-CMLc

Fig. 1: Language hierarchy
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