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A symplectic variety $X$ is a normal algebraic variety (defined over C)
which admits an everywhere non-degenerate d-closed 2-form $\omega$ on the regu-
lar locus $X_{reg}$ of $X$ such that, for any resolution $f$ : $\tilde{X}arrow X$ with $f^{-1}(X_{reg})\cong$

$X_{reg}$ , the 2-form $\omega$ extends to a regular closed 2-form on $\tilde{X}$ . There is a nat-
ural Poisson structure $\{$ , $\}$ on $X$ determined by $\omega$ . Then we can introduce
the notion of a Poisson deformation of (X, {, }). A Poisson deformation is
a deformation of the pair of $X$ itself and the Poisson structure on it. When
$X$ is not a compact variety, the usual deformation theory does not work in
general because the tangent object $T_{X}^{1}$ may possibly have infinite dimension,
and moreover, infinitesimal or formal deformations do not capture actual
deformations of non-compact varieties. On the other hand, Poisson defor-
mations work very well in many important cases where $X$ is not a complete
variety. Denote by $PD_{X}$ the Poisson deformation functor of a symplectic
variety. In this lecture, we shall study the Poisson deformation of an affine
symplectic variety. The main result is:

Theorem 1. Let $X$ be an affine symplectic variety. Then the Poisson
deformation functor $PD_{X}$ is unobstructed.

A Poisson deformation of $X$ is controlled by the Poisson cohomology
$HP^{2}(X)$ . When $X$ has only terminal singularities, we have $HP^{2}(X)\cong$

$H^{2}((X_{reg})^{an}, C)$ , where $(X_{reg})^{an}$ is the associated complex space with $X_{reg}$ .
This description enables us to prove that PD$x$ is unobstructed. But, in gen-
eral, there is not such a direct, topological description of $HP^{2}(X)$ . Let us
explain our strategy to describe $HP^{2}(X)$ . As remarked, $HP^{2}(X)$ is identified
with $PD_{X}(C[\epsilon])$ where $C[\epsilon]$ is the ring of dual numbers over C. First, note
that there is an open locus $U$ of $X$ where $X$ is smooth, or is locally a trivial
deformation of a (surface) rational double point at each $p\in U$ . Let $\Sigma$ be the
singular locus of $U$ . Note that $X\backslash U$ has codimension $\geq 4$ in $X$ . Moreover,
we have $PD_{X}(C[\epsilon])\cong$ PD$u(C[\epsilon])$ . Put $T_{U^{\alpha n}}^{1}$ $:=\underline{Ext}^{1}(\Omega_{U^{an}}^{1}, \mathcal{O}_{U^{an}})$ . As is well-
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known, a (local) section of $T_{U^{an}}^{1}$ corresponds to a l-st order deformation of
$U^{an}$ . Let $\mathcal{H}$ be a locally constant C-modules on $\Sigma$ defined as the subsheaf
of $T_{U^{an}}^{1}$ which consists of the sections coming from Poisson deformations of
$U^{an}$ . Now we have an exact sequence:

$0arrow H^{2}(U^{an}, C)arrow$ PD$u(C[\epsilon])arrow H^{0}(\Sigma, \mathcal{H})$ .

Here the first term $H^{2}(U^{an}, C)$ is the space of locally triviall Poisson de-
formations of $U$ . By the definition of $U$ , there exists a minimal resolution
$\pi$ : $\tilde{U}arrow U$ . Let $m$ be the number of irreducible components of the excep-
tional divisor of $\pi$ . A key result is:

Proposition 2. The following equality holds:
$\dim H^{0}(\Sigma, \mathcal{H})=m$ .

In order to prove Proposition 2, we need to know the monodromy action
of $\pi_{1}(\Sigma)$ on $\mathcal{H}$ . The idea is to compare two sheaves $R^{2}\pi_{*}^{an}C$ and $\mathcal{H}$ . Note
that, for each point $p\in\Sigma$ , the germ $(U,p)$ is isomorphic to the product of an
ADE surface singularity $S$ and $(C^{2n-2},0)$ . Let $\tilde{S}$ be the minimal resolution
of $S$ . Then, $(R^{2}\pi_{*}^{an}C)_{p}$ is isomorphic to $H^{2}(\tilde{S}, C)$ . A monodromy of $R^{2}\pi_{*}^{an}C$

comes from a graph automorphism of the Dynkin diagram determined by the
exceptional (-2)-curves on $\tilde{S}$ . As is well known, $S$ is described in terms of a
simple Lie algebra $g$ , and $H^{2}(\tilde{S}, C)$ is identified with the Cartan subalgebra
り of $g$ ; therefore, one may regard $R^{2}\pi_{*}^{an}C$ as a local system of the C-module
り (on $\Sigma$ ), whose monodromy action coincides with the natural action of a
graph automorphism on り．On the other hand, $\mathcal{H}$ is a local system of り $/W$ ,
where $b/W$ is the linear space obtained as the quotient of り by the Weyl
group $W$ of $g$ . The action of a graph automorphism on り descends to an
action on り $/W$ , which gives a monodromy action for $\mathcal{H}$ . This description of
the monodromy enables us to compute $\dim H^{0}(\Sigma, \mathcal{H})$ .

Proposition 2 together with the exact sequence above gives an upper-
bound of $\dim$ PD$u(C[\epsilon])$ in terms of some topological data of $X$ (or $U$). We
shall prove Theorem 1 by using this upper-bound. The rough idea is the
following. There is a natural map of functors PD$\overline{u}arrow PD_{U}$ induced by the
resolution map $\tilde{U}arrow U$ . The tangent space PDu- $(C[\epsilon])$ to PD $\overline{u}$ is identified
with $H^{2}(\tilde{U}^{an}, C)$ . We have an exact sequence

$0arrow H^{2}(U^{an}, C)arrow H^{2}(\tilde{U}^{an}, C)arrow H^{0}(U^{an}, R^{2}\pi_{*}^{an}C)arrow 0$ ,
lMore exactly, this means that the Poisson deformations are locally trivial as usual flat

deformations of $U^{an}$
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and $\dim H^{0}(U^{an}, R^{2}\pi_{*}^{an}C)=m$ . In particular, we have $\dim H^{2}(\tilde{U}^{an}, C)=$

$\dim H^{2}(U^{an}, C)+m$ . But, this implies that $\dim$ PDu- $(C[\epsilon])\geq\dim$ PD$u(C[\epsilon])$ .
On the other hand, the map PD$u-arrow$ PD$u$ has a finite closed fiber; or more ex-
actly, the corresponding map $SpecR_{U}-arrow SpecR_{U}$ of pro-representable hulls,
has a finite closed fiber. Since PD $\overline{u}$ is unobstructed, this implies that PD$u$ is
unobstructed and $\dim$ PDu- $(C[\epsilon])=\dim$ PD$u(C[\epsilon])$ . Finally, we obtain the
unobstructedness of $PD_{X}$ from that of PD$u$ .

Theorem 1 is only concerned with the formal deformations of $X$ ; but,
if we impose the following condition $(^{*})$ , then the formal universal Poisson
deformation of $X$ has an algebraization.

$(^{*}):X$ has a $C^{*}$ -action with positive weights with a unique fixed point
$0\in X$ . Moreover, $\omega$ is positively weighted for the action.

We shall briefly explain how this condition $(^{*})$ is used in the algebraiza-
tion. Let $R_{X}$ $:= \lim R_{X}/(m_{X})^{n+1}$ be the pro-representable hull of $PD_{X}$ .
Then the formal universal deformation $\{X_{n}\}$ of $X$ defines an $m_{X}$-adic ring
$A$ $:= \lim\Gamma(X_{n}, \mathcal{O}_{X_{n}})$ and let $\hat{A}$ be the completion of $A$ along the maximal
ideal of $A$ . The rings $R_{X}$ and $\hat{A}$ both have the natural $C^{*}$ -actions induced
from the $C^{*}$ -action on $X$ , and there is a $C^{*}$-equivariant map $R_{X}arrow\hat{A}$ . By
taking the $C^{*}$-subalgebras of $R_{X}$ and $\hat{A}$ generated by eigen-vectors, we get a
map

$C[x_{1}, \ldots, x_{d}]arrow S$

from a polynomial ring to a C-algebra of finite type. We also have a Poisson
structure on $S$ over $C[x_{1}, \ldots, x_{d}]$ by the second condition of $(^{*})$ . As a conse-
quence, there is an affine space $A^{d}$ whose completion at the origin coincides
with $Spec(R_{X})$ in such a way that the formal universal Poisson deformation
over $Spec(R_{X})$ is algebraized to a $C^{*}$ -equivariant map

$\mathcal{X}arrow A^{d}$ .

According to a result of Birkar-Cascini-Hacon-McKernan, we can take a
crepant partial resolution $\pi$ : $Yarrow X$ in such a way that $Y$ has only Q-
factorial terminal singularities. This $Y$ is called a Q-factorial terminaliza-
tion of $X$ . In our case, $Y$ is a symplectic variety and the $C^{*}$-action on $X$

uniquely extends to that on $Y$ . Since $Y$ has only terminal singularities, it
is relatively easy to show that the Poisson deformation functor $PD_{Y}$ is un-
obstructed. Moreover, the formal universal Poisson deformation of $Y$ has an
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algebraization over an affine space $A^{d}$ :

$\mathcal{Y}arrow A^{d}$ .

There is a $C^{*}$-equivariant commutative diagram

. $\mathcal{Y}arrow \mathcal{X}$

$\downarrow$ $\downarrow$ (1)

$A^{d}arrow^{\psi}A^{d}$

We have the following.
Theorem 3 $(a)\psi$ is a finite Galois covering.
$(b)\mathcal{Y}arrow A^{d}$ is a locally trivial deformation of $Y$ .
$(c)$ The induced map $y_{t}arrow \mathcal{X}_{\psi(t)}$ is an isomorphism for a geneml point

$t\in A^{d}$ .
The Galois group of $\psi$ is described as follows. Let $\Sigma$ be the singular locus

of $X$ . There is a closed subset $\Sigma_{0}\subset\Sigma$ such that $X$ is locally isomorphic
to $(S, 0)\cross(C^{2n-2},0)$ at every point $p\in\Sigma-\Sigma_{0}$ where $S$ is an ADE surface
singularity. We have $Co\dim_{X}\Sigma_{0}\geq 4$ . Let $\mathcal{B}$ be the set of connected com-
ponents of $\Sigma-\Sigma_{0}$ . Let $B\in \mathcal{B}$ . Pick a point $b\in B$ and take a transversal
slice $S_{B}\subset Y$ of $B$ passing through $b$ . In other words, $X$ is locally isomor-
phic to $S_{B}\cross(B, b)$ around $b$ . $S_{B}$ is a surface with an ADE singularity. Put
$\tilde{S}_{B}$ $:=\pi^{-1}(S_{B})$ . Then $\tilde{S}_{B}$ is a minimal resolution of $S_{B}$ . Put $T_{B}$ $:=S_{B}\cross(B, b)$

and $\tilde{T}_{B}:=\pi^{-1}(T_{B})$ . Note that $\tilde{T}_{B}=\tilde{S}_{B}\cross(B, b)$ . Let $C_{i}(1\leq i\leq r)$ be the
(-2)-curves contained in $\tilde{S}_{B}$ and let $[C_{i}]\in H^{2}(\tilde{S}_{B}, R)$ be their classes in the
2-nd cohomology group. Then

$\Phi:=\{\Sigma a_{i}[C_{i}];a_{i}\in Z, (\Sigma a_{i}[C_{i}])^{2}=-2\}$

is a root system of the same type as that of the ADE-singularity $S_{B}$ . Let $W$ be
the Weyl group of $\Phi$ . Let $\{E_{i}(B)\}_{1<i\leq\overline{r}}$ be the set of irreducible exceptional
divisors of $\pi$ lying over $B$ , and let $e_{i}\overline{(}B$ ) $\in H^{2}(X, Z)$ be their classes. Clearly,
$\overline{r}\leq r$ . If $\overline{r}=r$ , then we define $W_{B}$ $:=W$ . If $\overline{r}<r$ , the Dynkin diagram of
$\Phi$ has a non-trivial graph automorphism. When $\Phi$ is of type $A_{r}$ with $r>1$ ,
$\overline{r}=[r+1/2]$ and the Dynkin diagram has a graph automorphism $\tau$ of order
2. When $\Phi$ is of type $D_{r}$ with $r\geq 5,\overline{r}=r-1$ and the Dynkin diagram
has a graph automorphism $\tau$ of order 2. When $\Phi$ is of type $D_{4}$ , the Dynkin
diagram has two different graph automorphisms of order 2 and 3. There are
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two possibilities of $\overline{r};\overline{r}=2$ or $\overline{r}=3$ . In the first case, let $\tau$ be the graph
automorphism of order 3. In the latter case, let $\tau$ be the graph automorphism
of order 2. Finally, when $\Phi$ is of type $E_{6},\overline{r}=4$ and the Dynkin diagram has
a graph automorphism $\tau$ of order 2. In all these cases, we define

$W_{B}:=\{w\in W;\tau w\tau^{-1}=w\}$ .

The Galois group of $\psi$ coincides with $W_{B}$ .

As an application of Theorem 3, we have
Corollary 4: Let $(X, \omega)$ be an affine symplectic variety with the property

$(^{*})$ . Then the following are equivalent.
(1) $X$ has a crepant projective resolution.
(2) $X$ has a smoothing by a Poisson deformation.
Example 5 (i) Let $O\subset g$ be a nilpotent orbit of a complex simple

Lie algebra. Let $\tilde{O}$ be the normalization of the closure $\overline{O}$ of $O$ in $g$ . Then
$\tilde{O}$ is an affine symplectic variety with the Kostant-Kirillov 2-form $\omega$ on $O$ .
Let $G$ be a complex algebraic group with Lie$(G)=g$ . By [Fu], $\tilde{O}$ has a
crepant projective resolution if and only if $O$ is a Richardson orbit (cf. [C-
$M])$ and there is a parabolic subgroup $P$ of $G$ such that its Springer map
$T^{*}(G/P)arrow\tilde{O}$ is birational. In this case, every crepant resolution of $\tilde{O}$

is actually obtained as a Springer map for some $P$ . If $\tilde{O}$ has a crepant
resolution, $\tilde{O}$ has a smoothing by a Poisson deformation. The smoothing
of $\tilde{O}$ is isomorphic to the affine variety $G/L$ , where $L$ is the Levi subgroup
of $P$ . Conversely, if $\tilde{O}$ has a smoothing by a Poisson deformation, then the
smoothing always has this form.

(ii) In general, $\tilde{O}$ has no crepant resolutions. But, by [Na 4], at least when
$g$ is a classical simple Lie algebra, every Q-factorial terminalization of $\tilde{O}$ is
given by a generalized Springer map. More explicitly, there is a parabolic
subalgebra $\mathfrak{p}$ with Levi decomposition $\mathfrak{p}=\mathfrak{n}\oplus 1$ and a nilpotent orbit $O^{f}$ in [so

that the generalized Springer map $G\cross^{P}(\mathfrak{n}+\overline{O}’)arrow\tilde{O}$ is a crepant, birational
map, and the normalization of $GX^{P}(\mathfrak{n}+\overline{O}’)$ is a Q-factorial terminalization
of $\tilde{O}$ . By a Poisson deformation, $\tilde{O}$ deforms to the normalization of $G\cross^{L}0^{-}’$ .
Here $G\cross^{L}\overline{O}^{f}$ is a fiber bundle over $G/L$ with a typical fiber $\overline{O}’$ , and its
normalization can be written as $G\cross^{L}\tilde{O}’$ with the normalization $\tilde{O}^{f}$ of $\overline{O}’$ .

We can apply Theorem 3 to the Poisson deformations of an affine sym-
plectic variety related to a nilpotent orbit in a complex simple Lie algebra.
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Let $g$ be a complex simple Lie algebra and let $G$ be the adjoint group. For
a parabolic subgroup $P$ of $G$ , denote by $T^{*}(G/P)$ the cotangent bundle of
$G/P$ . The image of the Springer map $s$ : $T^{*}(G/P)arrow g$ is the closure $\overline{O}$

of a nilpotent (adjoint) orbit $O$ in $g$ . Then the normalization $\tilde{O}$ of $\overline{O}$ is an
affine symplectic variety with the Kostant-Kirillov 2-form. If $s$ is birational
onto its image, then the Stein factorization $T^{*}(G/P)arrow\tilde{O}arrow\overline{O}$ of $s$ gives a
crepant resolution of $\tilde{O}$ . In this situation, we have the following commutative
diagram

$G\cross^{P}r(\mathfrak{p})arrow G\overline{\cdot r(\mathfrak{p}})$

$\downarrow$ $\downarrow$ (2)

$e(\mathfrak{p})$ $arrow t(\mathfrak{p})/W’$

where $r(\mathfrak{p})$ is the solvable radical of $\mathfrak{p},$

$G\overline{\cdot r(\mathfrak{p}}$ ) is the normalization of the
adjoint G-orbit of $r(\mathfrak{p})$ and $e(p)$ is the centralizer of the Levi part [of $\mathfrak{p}$ .
Moreover, $W’$ $:=N_{W}(L)/W(L)$ , where $L$ is the Levi subgroup of $P$ and
$W(L)$ is the Weyl group of $L$ .

Theorem 6. The diagram above coincides with the $C^{*}$ -equivariant com-
mutative diagram of the universal Poisson deformations of $\tau*(G/P)$ and $\tilde{O}$ .

Note that $W’$ has been extensively studied by Howlett and others. An-
other important example is a transversal slice of $g$ . In the commutative
diagram above, put $\mathfrak{p}=b$ the Borel subalgebra. Then we have:

$Gx_{1}^{B}b$

り

$arrow^{arrow\pi_{B}}$

り

$/W\varphi\downarrow g$

.

(3)

Let $x\in g$ be a nilpotent element of $g$ and let $O$ be the adjoint orbit containing
$x$ . Let $V\subset g$ be a transversal slice for $O$ passing through $x$ . Put $\mathcal{V}_{B}$ $:=$

$\pi_{B}^{-1}(\mathcal{V})$ . Denote by $V$ (resp. $\tilde{V}_{B}$ ) the central fiber of $\mathcal{V}arrow$ り $/W$ (resp.
$G\cross^{B}barrow$ り $)$ . Note that $\tilde{V}_{B}$ is somorphic to the cotangent bundle $T^{*}(G/B)$

of $G/B$ , and $\tilde{V}_{B}arrow V$ is a crepant resolution.
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Theorem 7 The commutative diagmm

$\tilde{\mathcal{V}}_{B}arrow$ $\mathcal{V}$

$\downarrow$ $\varphi_{\mathcal{V}}\downarrow$ (4)

り $arrow$ り/W

is the $C^{*}$ -equivariant commutative diagmm of the universal Poisson defor-
mations of $\tilde{V}_{B}$ and $V$ if $g$ is simply laced.

When $g$ is not simply-laced, Theorem 7 is no more true. In fact, Slodowy
pointed out that the transversal slice $\mathcal{V}$ for a subregular nilpotent orbit of
non-simply-laced $g$ does not give the universal deformation. However, we
have a criterion of the universality. Let

$\rho:A(O)arrow GL(H^{2}(\pi_{B,0}^{-1}(x), Q))$

be the monodromy representation of the component group $A(O)$ of $O$ .

Theorem 8. Let $g$ be a comple simple Lie algebm which is not necessar-
illy simply-laced. Then the above commutative diagram is universal if and
only if $\rho$ is trivial.
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