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ABSTRACT. In this note, we will give a brief summary of geometric approach to understanding
equations of Painlev\’e type ( $[0]$ , [Sakai], [STT], [IISI], [In]). Finally, we report the recent
result on the moduli space of the generalized monodromy data associated to 10 families of
isomonodromic problem related to the classical Painlev\’e equations in [PSa].

1. GEOMETRIC APPROACH To EQUATIONS OF PAINLEV\’E TYPES

First of all, we would like to explain about differential equations of Painlev\’e type and known
geometric approach to understand the equations.

1.1. Differential equations of Painlev\’e type.
A complex algebraic ordinary differential equation is said to have the Painleve property, if its

all solutions has no movable singularities other than poles. We call an algebraic ODE which
satisfies Painlev\’e property an ODE of Painleve type. Moreover, we can naturally extend the
definition of Painlev\’e property for a partial differential equation, so we will also use $t\}_{1e}$ terni
” an equation of Painleve type”. After a result due to L. Fuchs and H. Poincar\’e for the first order
case, P. Painlev\’e and his former student B. Gambier classified the rational differential equation
of order two $q”=R(t, q, q’)$ which may satisfy Painlev\’e property into 6 types, $P_{I},$

$\cdots,$ $P_{VI}$ . We
call them the (classical) Painlev\’e equations.

1.2. Okamoto-Painlev\’e pairs.
After the work of Okamoto [O], we understand the importance of study the families of spaces

of initial conditions (or phase spaces) of classical Painlev\’e equations, and the relative compact-
ifications of the families. In the works of Sakai [Sakai] and Saito-Takebe-Terajima [STT], the
Okamoto compactifications of the initial spaces leads to the notion of Okamoto-Painleve pair
$(S, Y)$ , which is a pair of smooth projective rational surface $S$ and an effective anti-canonical
divisor $Y\in|-K_{S}|$ satisfying certain conditions. Then, one can understand the Painlev\’e

equation from the view point of birational symmetries of families of Okamoto-Painleve pairs or
Kodaira-Spencer-Kawamata theory of deformation of Okamoto-Painlev\’e pairs $(S, Y)$ .

1.3. Isomonodromic deformations.
From these links between algebraic geometry and Painlev\’e equations, one may expect some

kind of geometric origins of the equations of Painlev\’e type, which may clarify the meaning
of the Painlev\’e property, and it is our main motivation in [IISI] to seek them. Meanwhile,
it is known that classical Painlev\’e equations can be derived from differential equations for
isomonodromic deformations of certain linear connections over $P^{1}$ with regular or irregular
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singularities (see e.g. [JMU]). This isomonodromic approach has been known to be useful in
many fields of mathematics and physics. Moreover, one has proofs of Painlev\’e property of
the differential equations derived from isomonodromic deformations of linear connections [Miw],
[Ma12]. However, their proof is rather local which we mean that they only consider a Zariski open
set of the phase spaces. On the other hand, Painlev\’e property is a global property of equations,
so one has to consider the gIobal moduli spaces of linear connections for all parameters, which are
smooth algebraic varieties. In order to pursue this point of view, one needs very careful studies
of the global moduli space of the linear connections with fixed type of regular or irregular
singularities.

1.4. Moduli of stable parabolic connections and Riemann-Hilbert correspondence.
In [IISI], in the regular singular case, we introduce the notion of a stable parabolic connection

on a smooth projective curve (cf. [AL]). Then we can prove that there exists a smooth family

$\pi:Marrow T\cross \mathcal{N}$

of the moduli spaces of stable parabolic connections over the spaces $T\cross \mathcal{N}$ which parametrizes
natural time variables and ordered local exponents (cf. [IISI], [In]). Note that the natural time
variables in $T$ come from the moduli of the curves and the locations of the regular singular points
of connections. Moreover, there also exists the moduli space $\mathcal{R}$ of the monodromy representations
related to the local system induced by the solutions of linear differential equations with regular
singularities. For simplicity, it is natural to define $\mathcal{R}$ as the categorical quotient of a product of
linear algebraic groups by the adjoint action, so that $\mathcal{R}$ becomes an affine algebraic variety.

Now it is easy to define the Riemann-Hilbert correspondence RH: $\mathcal{M}arrow \mathcal{R}$ and also the
correspondence of local exponents to the moduli of the local monodr.omies rh : $\mathcal{N}arrow \mathcal{A}$ , and
this leads the following commutative diagram

$\mathcal{M}$
$arrow^{RH}$ $\tilde{\mathcal{R}}$

$\pi\downarrow$ $\downarrow\phi$

$T\cross \mathcal{N}arrow^{(1\cross rh)}T\cross A$.
Here $\phi$ : $\tilde{\mathcal{R}}arrow T\cross A$ is a local trivial extension of $\mathcal{R}arrow A$ over $T$ .

Then in [IISI] and [In], we prove that for any fixed element $(t, \nu)\in T\cross \mathcal{N}$ , the induced map
between the fibers

(1) $RH_{(t,\nu)}:\mathcal{M}_{(t,\nu)}arrow\tilde{\mathcal{R}}_{(t,rh(\nu))}$

is a proper subjective analytic bimeromorphic map. For a general $\nu\in \mathcal{N}$ , RH$(t,\nu)$ gives an
analytic isomorphism of smooth fibers. On the other hand, for a special $\nu\in \mathcal{N}$, the fiber
$\tilde{\mathcal{R}}_{(t,rh(\nu))}$ has singularities, but the moduli space $\mathcal{M}_{(t,\nu)}$ is always smooth and ended with a
natural holomorphic symplectic structure. So our Riemann-Hilbert correspondence RH$(t,\nu)$

gives an analytic resolution of singularities for such $\mathcal{R}_{(t,rh(\nu))}$ .
The differential equations with natural time variables in $T$ coming from monodromy preserving

deformations of connections isjust given by the flatness conditions of some extended connections.
So basically it is given by the zero-curvature equation, and so the differential equation becomes
non-linear. More geometrically, we can explain as follows. In $T$ direction, the family $\phi$ :
$71arrow T\cross A$ is locally trivial. Fixing $\nu\in \mathcal{N}$, the pulling back the local trivial sections of
$\mathcal{R}_{rh(\nu)}arrow T\cross$ {rh $(\nu)$ } by RH, we obtain analytic horizontal sections for $M_{\nu}arrow T\cross\{\nu\}$ .

154



FAMILIES OF AFFINE CUBIC SURFACES ARISING FROM GENERALIZED MONODROMY DATA

These section gives analytic foliation on $\mathcal{M}_{\nu}arrow T\cross\{\nu\}$ , which is nothing but the differential
equations for isomonodromic deformations of linear connections.

2. PAINLEV\’E EQUATIONS AND FAMILIES OF $OKAMOTO-$ PAINLEVE’PAIRS

2.1. Classification of Painlev\’e equations (8 types).
Classically, Painlev\’e equations are classified into 6 types by Painlev\’e and Gambier. However,

from the view point of geometry of phase spaces or Okamoto Painlev\’e pairs, it is natural to
classify them into 8 types as in Table 1 according to Dynkin diagram of affine root systerns
$(D_{r}^{(1)}, 4\leq r\leq 8, E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)})$ (Okamoto $[0],$ $S$ akai $[S$akai], $S$aito-Takebe-Terajima [STT]).

TABLE 1. Classification of Painleve equations

2.2. Geometry of Painlev\’e equations and Okamoto-Painlev\’e pairs.
It is known that the equations $P_{J}$ are equivalent to a Hamiltonian system for some Hamiltonian

function $H_{J}(x, y, t, \nu)$ . Here $\nu is$ the set of constants which corresponds to $\alpha,$
$\beta,$ $\cdots$ in Table 1.

(2) $(H_{J}):\{\begin{array}{l}\frac{dx}{dt} = \frac{\partial H_{J}}{\partial y},\frac{dy}{dt} = -\frac{\partial H_{J}}{\partial x},\end{array}$
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The differential equation $(H_{J})$ is then equivalent to the following rational vector field.

$\overline{v}=\frac{\partial}{\partial t}+\frac{\partial H_{J}}{\partial y}\frac{\partial}{\partial x}-\frac{\partial H_{J}}{\partial x}\frac{\partial}{\partial y}\in H^{0}(C^{2}\cross B_{J}, \Theta)\subset H^{0}(P^{2}\cross B_{J}, \Theta(*H))$ .

Moreover, in $(H_{J})$ , one can take the Hamiltonian $H_{J}(x, y, t, \nu)$ as a polynomial function in $x,$ $y$

and a rational in $t$ . Then fixing a parameter $\nu$ , we obtain the following commutative diagram:
$C^{2}\cross B_{J}$ $arrow$ $P^{2}\cross B_{J}$ $-H$

(3) $\downarrow$ $\downarrow$

$B_{J}$ $=$ $B_{J}$

where $B_{J}=$ C, C $\backslash \{0\}$ , or $C\backslash \{0,1\}$ . In this notation, it is known that

(4) $\tilde{v}\in H^{0}(P^{2}\cross B_{J}, \Theta_{P^{2}\cross B_{J}}(-\log H)\otimes \mathcal{O}(H))$ .
Moreover, at the boundary divisor $H$ , the rational vector field $\tilde{v}$ has accessible singularities.
Then we can resolve the accessible singularities of $\tilde{v}$ on $H$ by the blowings-up

$\pi:Sarrow P^{2}\cross B_{J}$

and obtain

$S$ $\mathcal{D}$

(5) $\downarrow$ $f$

$B_{J}$

Finally, we can obtain a rational vector field ( $=$Painlev\’e equaions)

(6) $\tilde{v}\in H^{0}(S, \Theta_{S}(-\log \mathcal{D})\otimes \mathcal{O}(\mathcal{D}))$

which has no accessible singularities and the foliation of $\tilde{v}$ can be separated at least locally (see
Figure 1). This procedures for all classical Painlev\’e equations were done by Okamoto [O], so
one can say that the space $S$ is the family of spaces of initial conditions of Okamoto or relative
compactification of spaces of initial conditions.

2.3. Okamoto-Painlev\’e pairs.
Recall that we have a family of smooth projective surfaces

$S$ $rightarrow$ $\mathcal{D}$

(7) $\downarrow$ $\swarrow’$

$B_{J}$

One can see that each fiber $S_{t}$ has an anti-canonical divisor $y_{t}\in|-K_{S_{t}}|$ with $(\mathcal{Y}_{t})_{red}=\mathcal{D}_{t}$ such
that $(S_{t}, \mathcal{Y}_{t})$ is an Okamoto-Painlev\’e pairs in the following sense.

Definition 2.1. Let $S$ be a complex projective smooth surface, and $Y\in|-K_{S}|$ an anticanonical
divisor. Let $Y=\sum_{i=1}^{r}m_{i}Y_{i}$ be the irreducible decomposition of $Y$ . Then $(S, Y)$ is said to be
an Okamoto-Painleve’ Pair it and only if the following condition is satisfied.

(8) $Y\cdot Y_{i}=\deg Y_{|Y_{i}}=\deg-K_{S|Y_{i}}=0$ for all $i,$ $1\leq i\leq r$
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$P^{2}-L=C^{2}$

$P^{2}\cross B_{IV}$

$-t_{0}t_{1}$.
$t_{2}$

$t$

$\pi$

$-t_{0}t_{1}$.
$t_{2}$

$t$

$B_{IV}$

FIGURE 1

Proposition 2.2. Let $(S, Y)$ be a rational $Okamoto-Painlev\mathscr{E}$ pair. Then $S$ can be obtained by
9 points blowings-up of $P^{2}$ . Moreover

(1) $\dim|-nK_{S}|=\dim|nY|\leq 1$ for all $n\geq 1$ .
(2) If $\dim|-nK_{S}|=\dim|nY|=1$ for some $n\geq 1$ , there exists an elliptic fibraiton $f$ :

$Sarrow P^{1}$ with $f^{*}(\infty)=nY$ .

Definition 2.3. Let $(S, Y)$ be a rational Okamoto-Painlev\’e pair. Then $(S, Y)$ is said to be of
fiberd type if there exists an elliptic fibration $f$ : $Sarrow P^{1}$ such that $f^{*}(\infty)=nY$ for some $n\geq 1$ .
Otherwise $(S, Y)$ is said to be of $nonarrow fiberd$ type. The later is equivalent to $\dim|-nK_{S}|=0$

for all $n\geq 1$ .

Proposition 2.4. Let $(S, Y)$ be a rational Okamoto-Painleve pair such that $Y_{red}$ is a divisor
with only normal crossings. Then the type of $Y$ is same as one in the list of Table 2.

2.4. Deformation of Okamoto-Painlev\’e pairs. After we introduce the notion of Okamoto-
Painlev\’e pairs, in [STT] we prove the following theorem which shows that Painlev\’e vector field
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TABLE 2

$\overline{D}_{5}(P_{V})$ $\overline{D}_{4}(P_{VI})$

FIGURE 2. Configuration $of-K_{S}=Y$ for Okamoto- $=$Painleve pair $(S, Y)$

$\tilde{v}$ is the unique rational vector fields on a global semi universal family of Okamoto-Painleve
pairs of each additive type. Moreover the Painlev\’e vector field can be derived from the special
deformation of pairs $(S, Y)$ .

Theorem 2.5. Let $R=R(Y)$ be one of types of the root systems $\tilde{D}_{i},$ $4\leq i\leq 8$ or $\tilde{E}_{j},$ $6\leq j\leq 8$).
Let $r$ be the number of irreducible components of $D=Y_{red}$ , and set $s=s(R)=9-r$ . Then
there exist Zariski open affine subsets $\mathcal{N}_{R}\subset C^{s}=$ SpecC $[\alpha_{1}, \cdots, \alpha_{s}],$ $\mathcal{B}_{R}\subset C=$ SpecC $[t]$ , and
a commutative diagram

$s$ $arrow$ $\mathcal{D}$

$\mathcal{N}_{R}\cross \mathcal{B}_{R}\pi\downarrow$

$\swarrow$
$\varphi$

which satisfies the following properties.

(1) . $S$ : a smooth quasi-projective manifold. $\mathcal{D}$ : a divisor with nomal crossing of $S$ .
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FAMILIES OF AFFINE CUBIC SURFACES ARISING FROM GENERALIZED MONODROMY DATA. $\pi$ ; a smooth and projective morphism, $\varphi$ is a flat morphism.
(2)

$\exists$

$\omega s\in\Gamma(S, \Omega_{S/N_{R}\cross B_{R}}^{2}(*\mathcal{D}))$

$\mathcal{Y}:=the$ pole divisor of $\omega s\cdot\forall(\alpha, t)\in \mathcal{N}_{R}\cross \mathcal{B}_{R}$ ,
$(S_{\alpha,t}, \mathcal{Y}_{\alpha,t})$ a mtional O.P. pair of type $R=R(Y)$ (non-fibered type).

(3)
$\text{ョ^{}1}$

$\tilde{v}\in\Gamma(S, \Theta_{S}(-\log \mathcal{D})\otimes \mathcal{O}_{S}(\mathcal{D}))$

such that $\pi_{*}(\tilde{v})=\frac{\partial}{\partial t}$ . (Painleve vector fields).
(4) The family is semi universal at a general point $(\alpha, t)\in \mathcal{N}_{R}\cross B_{R}$ , that is, the Kodaira-

Spencer map
$\rho:T_{\alpha,t}(\mathcal{N}_{R}\cross \mathcal{B}_{R})arrow H^{1}(S_{\alpha,t}, \Theta_{S_{\alpha,t}}(-\log \mathcal{D}_{\alpha,t}))$

is an isomorphism for a geneml point $(\alpha, t)$ .
The Kodaim-Spencer class $\rho(\frac{\partial}{\partial t})$ of t-direction $(=\mathcal{B}_{R})$ lies in the image of the natural

map :

$\delta:C\simeq H_{D_{\alpha,t}}^{1}(S_{\alpha,t}, \Theta_{S_{\alpha,t}}(-\log \mathcal{D}_{\alpha,t}))arrow H^{1}(S_{\alpha,t}, \Theta_{S_{\alpha,t}}(-\log \mathcal{D}_{\alpha,t}))$ .

(5)
$\exists$

$\tilde{\omega}s\in\Gamma(S, \Omega_{S/N_{R}}^{2}(\mathcal{Y}))$

which is a lift of $\omega s$ and satisfy

$\iota_{\overline{v}}$ $(c2 s)=0$ .
(6) There exists affine open subsets $\overline{U}_{i}=C^{2}\cross \mathcal{N}_{R}\cross B_{R}$ of $S$ with canonical coordinates

$(x_{i}, y_{i})$ and Hamiltonian functions $H_{i}(x_{i}, y_{i}, \alpha, t)$

$\tilde{\omega}_{S|\tilde{U}_{i}}=dx_{i}\wedge dy_{i}-dt\wedge dH_{i}(x_{i}, y_{i}, \alpha, t)$

In view of Theorem 2.5, we can expect the following geometric scheme to understand equations
of Painlev\’e type.

Logarithmic symplectic varieties
with certain conditions
and special deformations

However, we can also ask the following question.

Question 2.6. What is more intrinsic meaning of semi universal family of Okamoto-Painleve
pairs $\pi$ : $Sarrow \mathcal{N}_{R}\cross \mathcal{B}_{R}$ in Theorem $2.5^{l}$?

3. MODULI SPACE OF STABLE PARABOLIC CONNECTIONS

In order to answer Question 2.6 in the former section, we will introduce the notion of stable
parabolic connection and explain about the results in [IISI], [IIS2] and [In]. The answer of
the question should be as in the following. The semi universal family of Okamoto-Painleve’
pairs can be constructed by the natuml relative compactification of the family of moduli spaces
of linear connections with singularities over a curve. We can prove this statement for regular
singular cases in [IISI] and [In]. For connections with general singularities (regular or irregular
singularities), we did not see any difficulty to extend the methods in [IISI] and [In].
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3.1. Stable parabolic connection. Let us fix integers $g\geq 0,$ $n>0,$ $r>0,$ $d$ . Let $C$ be a
nonsingular projective curve of genus $g$ and $t=\{t_{1}, --, t_{n}\}$ a set of ordered n-distinct points
on $C$ . For a data $t=\{t_{1}, \cdots, t_{n}\}$ , we set $D(t)=t_{1}+\cdots+t_{n}$ the divisor associated to $t$ . In
this section, according to [IISI], [IIS2] and [In], we review known results on the moduli space of
stable parabolic connections of rank. $r$ and degree $d$ on $C$ with at most regular singularities at
$D(t)$ .

A logarithmic connection on $C$ with singularity at $D(t)$ is a pair $(E, \nabla)$ where $E$ is an algebraic
vector bundle on $C$ of rank $r$ and degree $d$ and a morphism $\nabla$ of sheaves

(9) $\nabla:Earrow E\otimes\Omega_{C}^{1}(D(t))$

which satisfies Leibniz rule, i.e., for any local section of $a\in \mathcal{O}_{C},$ $\sigma\in E$

(10) $\nabla(a\sigma)=\sigma\otimes da+a\nabla(\sigma)$ .

Let $(E, \nabla)$ be a logarithmic connection with singularities at $D(t)$ . For each $t_{i}\in t$ , we can define
a residue homomorphism $res_{t_{i}}(\nabla)\in$ End$(E_{|t_{i}})$ which is a C-linear morphism on $E_{|t_{i}}\simeq C^{r}$ . We

denote by $\{\nu_{0}^{(i)}, \nu_{1}^{(i)}, \cdots, \nu_{r-1}^{(i)}\}$ the set of (ordered) eigenvalues of $res_{t_{i}}(\nabla)$ which are called local
exponents of $\nabla$ at $t_{i}$ . Moreover we define the set of all local exponents $\nu$ of $(E, \nabla)$ by

(11) $\nu=(\nu_{j}^{(i)})_{0\leq j\leq r-1}^{1\leq i\leq n}$ .

The following lemma is a generalization of Fuchs relation when $C\simeq P^{1}$ .

Lemma 3.1. (Fuchs relation) For a logarithmic connection $(E, \nabla)$ with singularity at $D(t)$

as above, let $\nu$ be the set of local exponents as in (11). Then

(12) $\sum_{i=1}^{n}(\sum_{j=0}^{r-1}\nu_{j}^{(i)})=-\deg E=-\deg\wedge^{r}E=-d$ .

By this lemma, for each $(n, r, d)$ , it is natural to define the set of local exponents by

(13) $\mathcal{N}_{r}^{n}(d):=\{\nu=(\nu_{j}^{(i)})_{0\leq j\leq r-1}^{1\leq i\leq n}\in C^{nr}$ $d+ \sum_{1\leq i\leq n}\sum_{0\leq j\leq r-1}\nu_{j}^{(i)}=0\}\simeq C^{nr-1}$

Definition 3.2. For $(C, t)$ and $\nu\in \mathcal{N}_{r}^{n}(d)$ , a $\nu$ -parabolic connection of $mnkr$ and degree $d$ on $C$

with at most logarithmic singularity at $D(t)$ is a collection of data $(E, \nabla, \{l_{*}^{(i)}\}_{1\leq i\leq n})$ consisting
of:

(1) a logarithmic connection $(E, \nabla)$ on $C$ with a singularity at $D(t)$ such that rank $E=r$
and $\deg E=\deg\wedge^{r}E=d$ ,

(2) and a filtration $l_{*}^{(i)}$ : $E_{|t_{i}}=l_{0}^{(i)}\supset l_{1}^{(i)}\supset\cdots\supset l_{r-1}^{(i)}\supset l_{r}^{(i)}=0$ for each $i,$ $1\leq i\leq n$ such
that $\dim(l_{j}^{(i)}/l_{j+1}^{(i)})=1$ and $(res_{t_{i}}(\nabla)-\nu_{j}^{(i)})(l_{j}^{(i)})\subset l_{j+1}^{(i)}$ for $j=0,1,$ $\cdots,$ $r-1$ .

Note that for each fixed $i,$ $1\leq i\leq n,$ $\{\nu_{j}^{(i)}\}_{0\leq j\leq r-1}$ is the set of ordered eigenvalues of the

residue matrix $res_{t_{i}}(\nabla)$ , so the parabolic structure $\{l_{*}^{(i)}\}$ gives the eigenspaces for $res_{t_{i}}(\nabla)$ .
In order to construct the good moduli space of v-connections, it is necessary to introduce the

stability condition on the v-parabolic connections $(E, \nabla, \{l_{*}^{(i)}\}_{1\leq i\leq n})$ . Let $\alpha=(\alpha_{j}^{(i)})_{1\leq j\leq r}^{1\leq i\leq n}$ be a
sequence of rational numbers such that

(14) $0<\alpha_{1}^{(i)}<\alpha_{2}^{(i)}<\cdots<\alpha_{r}^{(i)}<1$
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for $i=1,$ $\ldots,$
$n$ and $\alpha_{j}^{(i)}\neq\alpha_{j}^{(i’)}$ for $(i, j)\neq(i’, j’)$ . We choose $\alpha=(\alpha_{j}^{(i)})$ sufficiently generic.

Let $(E, \nabla, \{l_{*}^{(i)}\}_{1\leq i\leq n})$ be a $\nu$-parabolic connection, and $F\subset E$ a nonzero subbundle satisfying
$\nabla(F)\subset F\otimes\Omega_{C}^{1}(D(t))$ . We define integers length $(F)_{j}^{(i)}$ by

(15) length $(F)_{j}^{(i)}=\dim(F|_{t_{i}}\cap l_{j-1}^{(i)})/(F|_{t_{i}}\cap l_{j}^{(i)})$ .

Note that length $(E)_{j}^{(i)}=\dim(l_{j-1}^{(i)}/l_{j}^{(i)})=1$ for $1\leq j\leq r$ .

Definition 3.3. A $\nu$-parabolic connection $(E, \nabla, \{l_{*}^{(i)}\}_{1\leq i\leq n})$ is $\alpha$-stable if for any proper
nonzero subbundle $F\subsetneqq E$ satisfying $\nabla(F)\subset F\otimes\Omega_{C}^{1}(D(t))$ , the inequality

(16) $\frac{\deg F+\sum_{i=1}^{m}\sum_{j=1}^{r}\alpha_{j}^{(i)}1ength(F)_{j}^{(i)}}{rankF}<\frac{\deg E+\sum_{i=1}^{n}\sum_{j=1}^{r}\alpha_{j}^{(i)}1ength(E)_{j}^{(i)}}{rankE}$

holds.

For a fixed $(C, t)$ and $\nu\in \mathcal{N}_{r}^{n}(d)$ , let us define the coarse moduli space by

(17) $\Lambda\Lambda^{\alpha}$ $(\nu,$ $r,$ $n,$ $d$ $E\nabla$
$l^{(i)}$

an $\alpha$-stable $\nu$-parabolic connection
$(C,t)$ $)=$ { $($

“
$\{_{*}\}_{1\leq i\leq n})|$

of rank $r$ and degree $d$ over $C$ } $/\simeq$

Let $M_{g,n}$ be the moduli space of n-pointed smooth projective curves $(C, t)$ . Taking a finite cov-
ering $\tilde{M}_{g,n}arrow M_{g,n}$ , we may assume that there exists a universal family $(C,\tilde{t})=(C, t_{1}^{\sim}, \cdots, t_{n}^{\sim})$

over $\tilde{M}_{g,n}$ . We have the following fundamental result (cf. [IISI], [In]).

Theorem 3.4. For sufficiently generic weight $\alpha$ , there exists a relative fine moduli scheme

(18) $\pi:M_{(C,\tilde{t})/\overline{M}_{g,n}\cross N_{r}^{n}(d)}^{\alpha}(r, d, n)arrow\tilde{M}_{g,n}\cross \mathcal{N}_{r}^{n}(d)$

of $\alpha$ -stable pambolic connection of rank $r$ and degree $d$ , which is smooth and quasi-projective. The
fiber of $\pi$ over $((C, t), \nu)\in\tilde{M}_{g,n}\cross \mathcal{N}_{r}^{n}(d)$ is isomorphic to the moduli space $J\backslash \Lambda_{(C,t)}^{\alpha}(\nu, r, n, d)$

in (17). The moduli space $\Lambda\Lambda_{(C,t)}^{\alpha}(\nu, r, n, d)$ is a smooth quasi-projective algebmic scheme of
dimension $2r^{2}(g-1)+nr(r-1)+2$ .

Remark 3.5. We can also introduce the notion of stable v-parabolic $\phi$-connections on $(C, t)$ .
The moduli space of the objects gives a compactification $\overline{\Lambda 4^{\alpha}}_{(C,t)}(\nu, r, n, d)$ of $\Lambda 4_{(C,t)}^{\alpha}(\nu, r, n, d)$ .
(See [IISI], [In]).

3.2. Fixing the $determinant-SL_{r}$-case. Under the same notation as above, let us consider
the case $r=1$ . Let $(L, \nabla)$ be a line bundle on $C$ with a logarithmic connection $\nabla$ : $Larrow$

$L\otimes\Omega_{C}^{1}(D(t))$ . At each singular point $t_{i}$ , we have a trivial parabolic structure $1_{t}=\{l_{*}^{(i)}\}$ by
$L_{|t_{i}}=l_{0}^{(i)}\supset l_{1}^{(i)}=0$ . Moreover, for any weight $\alpha$ , a parabolic connection $(L, \nabla)=(L, \nabla, 1_{t})$

with the trivial parabolic structure is $\alpha$-stable, hence we do not specify the weight and stability
conditions for the case of rank 1.

For $\nu’=(\nu_{1}, \cdots, \nu_{n})\in \mathcal{N}_{1}^{n}(d)$, the moduli space $M_{(C,t)}(\nu, 1, n, d)$ of the isomorphism class
of $\nu’$-parabolic connection $(L, \nabla, 1_{t})$ is defined in the same way as above.

For an exponent $\nu=(\nu_{j}^{(i)})_{0\leq j\leq r-1}^{1\leq i\leq n}\in \mathcal{N}_{r}^{n}(d)$ , we define the trace of the exponent

tr $( \nu)=(\sum_{j=0}^{r-1}\nu_{j}^{(1)}, \cdots,\sum_{j=0}^{r-1}\nu_{j}^{(n)})\in \mathcal{N}_{1}^{n}(d)$ ,
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which induces the morphism tr : $\mathcal{N}_{r}^{n}(d)arrow \mathcal{N}_{1}^{n}(d)$ . We can obtain the following natural
morphism between two moduli spaces

$\det$ : $\mathcal{A}4_{(C,t)}^{\alpha}(\nu, r, n, d)$ $arrow$ $M_{(C,t)}(tr(\nu), 1, n, d)$

(19)
$(E, \nabla, \{l_{*}^{(i)}\}_{1\leq i\leq n})$ $\mapsto$ $(\wedge^{r}E, \wedge^{r}\nabla)$

For $\nu’\in \mathcal{N}_{1}^{n}(d)$ , define
$\mathcal{N}_{r}^{n}(d)(\nu’)=tr^{-1}(\nu’)\subset \mathcal{N}_{r}^{n}(d)$

For any $(L, \nabla_{1})\in M_{(C,t)}(\nu^{l}, 1, n, d)$ and $\nu\in \mathcal{N}_{r}^{n}(d)(\nu’)$ , we define the submoduli space of
$\mathcal{M}_{(C,t)}^{\alpha}(\nu, r, n, d)$ by
(20)

$M_{(C,t)}^{\alpha}(\nu, r, n, (L, \nabla_{1}))=\det^{-1}((L, \nabla_{1}))=\{(E, \nabla, \{l_{*}^{(i)}\}_{1\leq i\leq n})|(\wedge^{r}E, \wedge^{r}\nabla)\simeq(L, \nabla_{1})\}/\simeq$ .

The moduli space $\mathcal{M}_{(C,t)}^{\alpha}(\nu,r, n, (L, \nabla_{1}))$ can be considered as the moduli space of $\alpha$-parabolic
connection with the fixed determinant $(L, \nabla_{1})$ . From Theorem 3.4, one can easily see the
following

Theorem 3.6. The moduli space $\mathcal{M}_{(C,t)}^{\alpha}(\nu, r, n, (L, \nabla_{1}))$ is a smooth quasipmjective scheme of
dimension $2r^{2}(g-1)+nr(r-1)+2-2g$ .

4. THE RIEMANN-HILBERT CORRESPONDENCES AND PAINLEV\’E PROPERTY FOR

ISOMONODROMIC FLOWS

4.1. Moduli space of monodromy representations. For each n-pointed curve $(C, t)=$

$(C, t_{1}, \cdots, t_{n})\in T=\mathcal{M}_{g,n}’(g\geq 0, n\geq 1)$ , set $D(t)=t_{1}+\cdots+t_{n}$ . By abuse of notation, we
denote by $\pi_{1}(C\backslash D(t), *)$ the fundamental group of $C\backslash \{t_{1}, \cdots, t_{n}\}$ with a starting point $*\in C$ .
The set

(21) $Hom(\pi_{1}(C\backslash D(t), *), GL_{r}(C))$

of $GL_{r}(C)$-representations of $\pi_{1}(C\backslash D(t), *)$ is an affine variety, on which $GL_{r}(C)$ naturally
acts by the adjoint action. It is natural to define the moduli space by

(22) $\mathcal{R}\mathcal{P}_{(C,t)}^{r}=Hom(\pi_{1}(C\backslash D(t), *), GL_{r}(C))//Ad(GL_{r}(C))$ ,

where the quotient //means the categorical quotient. More precisely, since $\pi_{1}(C\backslash D(t), *)$ is
generated by $(2g+n)$-elements $\alpha_{1},$

$\ldots,$ $\alpha_{g},$
$\beta_{1},$

$\ldots,$
$\beta_{g},$ $\gamma_{1},$

$\ldots,$
$\gamma_{n}$ with one relation

$\prod_{i=1}^{g}[\alpha_{i}, \beta_{i}]\gamma_{1}\cdots\gamma_{n}=1$ ,

the ring $R$ of invariants of the simultaneous adjoint action of $GL_{r}(C)$ on the coordinate ring of
$GL_{r}(C)^{2g+n-1}$ , then we have an isomorphism

(23) $\mathcal{R}\mathcal{P}_{(C,t)}^{r}\simeq Spec(R)$ .

Hence the moduli space $\mathcal{R}\mathcal{P}_{(C,t)}^{r}$ becomes an affine algebraic scheme. Furthermore, each closed
point of $\mathcal{R}\mathcal{P}_{(C,t)}^{r}$ corresponds to a Jordan equivalence class of a representation (cf. [Section 4,
[IISI] $]$ , [Proposition 6.1, [Sim2]] $)$ .

Let us set

(24) $\mathcal{A}_{r}^{(n)}:=\{a=(a_{j}^{(i)})_{0\leq j\leq r-1}^{1\leq i\leq n}\in C^{nr}|a_{0}^{(1)}a_{0}^{(2)}\cdots a_{0}^{(n)}=(-1)^{rn}\}$ .
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For each $a=(a_{j}^{(i)})$ $\in A_{r}^{(n)}$ and $i,$ $1\leq i\leq n$ , we set $a^{(i)}=(a_{0}^{(i)}, \cdots, a_{r-1}^{(i)})$ and define

(25) $\chi_{a^{(i)}}(s)=s^{r}+a_{r-1}^{(i)}s^{r-1}+\cdots+a_{0}^{(i)}$ .

Moreover we define a morphism

(26) $\phi_{(C,t)}^{r}:\mathcal{R}\mathcal{P}_{(C,t)}^{r}arrow A_{r}^{(n)}$

by the relation

(27) $\det(sI_{r}-\rho(\gamma_{i}))=\chi_{a^{(i)}}(s)$

where $[\rho]\in \mathcal{R}\mathcal{P}_{(C,t)}^{r}$ and $\gamma_{i}$ is a counterclockwise loop around $t_{i}$ .
For $a=(a_{j}^{(i)})\in \mathcal{A}_{r}^{(n)}$ , we denote by $\mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ the fiber of $\phi_{(C,t)}^{r}$ over $a$ , that is,

(28) $\mathcal{R}\mathcal{P}_{(C,t),a}^{r}=\{[\rho]\in \mathcal{R}\mathcal{P}_{(C,t)}^{r}|\det(sI_{r}-\rho(\gamma_{i}))=\chi_{a^{(i)}}(s), 1\leq i\leq n\}$ .
For any covering $T’arrow T$ , we can define a relative moduli space $\mathcal{R}\mathcal{P}_{n,T’}^{r}=$ LI $(c,t)\in\tau^{\mathcal{R}\mathcal{P}_{(C,t)}^{r}}$

of representations with the natural morphism

(29) $\mathcal{R}\mathcal{P}_{n,T’}^{r}arrow T’$ .
As in Section 4, [IISI], there exists a finite covering $T’arrow T$ with the morphism

(30) $\phi_{n}^{r}:\mathcal{R}\mathcal{P}_{n,T’}^{r}arrow T’\cross \mathcal{A}_{r}^{(n)}$ ,

such that
$(\phi_{n}^{r})^{-1}((C,t), a)=\mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ .

4.2. Riemann-Hilbert correspondences.
Next we define the Riemann-Hilbert correspondence from the moduli space of $\alpha$-stable par-

abolic connections to the moduli space of the representations.
Let us fix positive integers $r,$ $d,$ $\alpha=(\alpha_{j}^{(i)})$ as in (14), and $(C, t)\in T’=\mathcal{M}_{g,n}’$ . For simplicity,

we set $\mathcal{M}_{((C,t),\nu)}^{\alpha}=M_{(C,t)}^{\alpha}(\nu, r, n, d)$ (cf. (17)).
We define a morphism

(31) rh : $\mathcal{N}_{r}^{(n)}(d)arrow \mathcal{A}_{r}^{(n)}$ , rh $(\nu)=a$

by the relation

(32) $\prod_{j=0}^{r-1}(s-\exp(-2\pi\sqrt{-1}\iota \text{ノ_{}j}^{(i)}))=s^{r}+a_{r-1}^{(i)}s^{r-1}+\cdots+a_{0}^{(i)}$.

For each member $(E, \nabla, \{l_{j}^{(i)}\})\in M_{(C,t),\nu}^{\alpha}$ , the solution subsheaf of $E^{an}$

(33) $ker(\nabla^{an}|_{C\backslash D(t)})\subset E^{an}$

becomes a local system on $C\backslash D(t)$ and corresponds to a representation

(34) $\rho:\pi_{1}(C\backslash \{t\}, *)arrow GL_{r}(C)$ .
Since the eigenvalues of the residue matrix of $\nabla^{an}$ at $t_{i}$ are $\nu_{j}^{(i)},$ $0\leq j\leq r-1$ , considering the
local fundamental solutions of $\nabla^{an}=0$ near $t_{i}$ , the monodromy matrix of $\rho(\gamma_{i})$ has eigenvalues
$\exp(-2\pi\sqrt{-1}\nu_{j}^{(i)}),$ $0\leq j\leq r-1$ . Hence under the relation (32), or $a=$ rh $(\nu)$ , one can define a
morphism

(35) $RH$ $(C,t),\nu$ : $\mathcal{M}_{((C,t),\nu)}^{\alpha}arrow \mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ .
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Replacing $T=\mathcal{M}_{g,n}’$ by a certain finite \’etale covering $u:T’arrow T$ and varying $((C, t), \nu)\in$

$T’\cross \mathcal{N}_{r}^{(n)}(d)$ we can define a morphism

(36) RH : $\mathcal{M}_{(C,t)/T}^{\alpha},(r, n, d)arrow \mathcal{R}\mathcal{P}_{n,T’}^{r}$

which makes the diagram

$\mathcal{M}_{(C,\tilde{t})/T’}^{\alpha}(r, n, d)arrow^{RH}$ $\mathcal{R}\mathcal{P}_{n,T’}^{r}$

(37) $\varphi_{r,n,d}\downarrow$ $\downarrow\phi_{n}^{f}$

$T’\cross \mathcal{N}_{r}^{(n)}(d)$ $arrow^{Id\cross rh}T’\cross A_{r}^{(n)}$

commute. The following result is proved in [In]. (See also [IISI]).

Theorem 4.1. Assume that $\alpha$ is so generic that $\alpha-stable\Leftrightarrow\alpha$ -semistable. Moreover we assume
that $r\geq 2,$ $rn-2r-2>0$ if $g=0,$ $n\geq 2$ if $g=1$ and $n\geq 1$ if $g\geq 2$ . Then the morphism

(38) RH : $\mathcal{M}_{(C,\tilde{t})/T}^{\alpha},(r, n, d)arrow \mathcal{R}\mathcal{P}_{n,T}^{r},$ $\cross_{A_{r}^{(n)}}\mathcal{N}_{r}^{(n)}(d)$

induced by (36) is $a$ proper surjective bimeromorphic analytic morphism. In particular, for each
$((C, t), \nu)\in T’\cross \mathcal{N}_{r}^{(n)}(d)$ , the restricted morphism

(39) RH$((C,t),\nu)$ : $\mathcal{M}_{((C,t),\nu)}^{\alpha}(r, n, d)arrow \mathcal{R}\mathcal{P}_{(C,t),a}^{r}$

gives an analytic resolution of singularities of $\mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ where $a=rh(\nu)$ .

Remark 4.2. Take $\nu\in \mathcal{N}_{r}^{(n)}(d)$ such that $rh(\nu)=a$ . A representation $\rho$ such that $[\rho]\in$

$\mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ is said to be resonant if

(40) $\dim(ker(\rho(\gamma_{i})-\exp(-2\pi\sqrt{-1}\nu_{j}^{(i)})))\geq 2$ for some $i,j$ .

The singular locus of $\mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ is given by the set

(41) $(\mathcal{R}\mathcal{P}_{(C,t),a}^{r})^{sing}:=\{[\rho]\in \mathcal{R}\mathcal{P}_{(C,t),a}^{r}|\rho isreducibleorresonant\}\cdot$

Moreover we denote the smooth part of $\mathcal{R}\mathcal{P}_{(C,t),a}^{r}$ by

(42) $(\mathcal{R}\mathcal{P}_{(C,t),a}^{r})^{\#}=\mathcal{R}\mathcal{P}_{(C,t),a}^{r}\backslash (\mathcal{R}\mathcal{P}_{(C,t),a}^{r})$

sing

Theorem 4.1 implies that the restriction

(43) RH
$((C,t),\nu)|(\Lambda 4_{(C,t),\nu}^{\alpha})^{\#}$

: $(\mathcal{M}_{(C,t),\nu}^{\alpha})^{\#}arrow^{\simeq}(\mathcal{R}\mathcal{P}_{(C,t),a}^{r})$

tt

is an analytic isomorphism, where

$(\mathcal{M}_{(C,t),\nu}^{\alpha})^{\#}=RH_{((C,t),\nu)}^{-1}((\mathcal{R}\mathcal{P}_{(C,t),a}^{r})^{\#})$ .

4.3. Isomonodromic Flows and their Pailev\’e property.
Let us fix $\nu\in \mathcal{N}_{r}^{(n)}(d)$ and set a $=$ rh $(\nu)\in A_{r}^{(n)}$ . Then restricting RH to over the base

$T’\cross\{\nu\}$ we obtain the following diagram.

$M_{(C,\overline{t})/T’}^{\alpha}(r, n, d)_{\nu}arrow^{RH_{\nu}}\mathcal{R}\mathcal{P}_{n,T’,a}^{r}$

(44) $\varphi_{r,n,d}\downarrow$ $\downarrow\phi_{n}^{f}$

$T’\cross\{\nu\}$ $arrow^{Id\cross rh}T’\cross\{a\}$
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Isomonodmmic fiows on the phase space $\Lambda 4_{(C,\overline{t})/T}^{\alpha},(r, n, d)_{\nu}$ is defined by the pullback of the
locally constant flows on the right hand side of (44) by $RH_{\nu}$ . The property of RH$\nu$ proved in
Theorem 4.1 gives the following theorem, which shows that for isomonodromic flows arising from
linear connections on curves with at most logarithmic singularities have the Painlev\’e property
([IISI], [In]).

Theorem 4.3. The isomonodromic flows associated to the (linear) stable pambolic connections
on $\mathcal{A}4_{(C,\tilde{t})/T}^{\alpha},(r, n, d)_{\nu}$ satisfies Painleve pmperty.

Note that there are works on Painlev\’e property for isomonodromic flows by Miwa [Miw]
and Malgrange [Mall], [Ma12]. However their treatments of the phase spaces are not sufficient
for rigorous proofs. We may point out that if one does not consider parabolic structures and
stability condition, one cannot have a smooth family of moduli spaces, in particular for the case
of resonant local exponents.

When $C=P^{1},$ $T=\{(0,1, t, \infty)\}=P^{1}\backslash \{0,1, \infty\}$ (hence $n=4$), $r=2$ , and SL-case, the
family of moduli spaces of stable parabolic connections $M^{\alpha}(2,4, -1)arrow T\cross \mathcal{N}_{2}^{(4)}(-1)^{sl}$gives
an semi universal family of the open parts of Okamoto-Painleve pairs (cf. [IIS2], [IISA]). (In
fact, a family of moduli spaces of associated stable parabolic $\phi$-connection gives semi universal
family of Okamoto-Painleve pairs). Moreover the set of all isomonodromic flows are equivalent
to Painlev\’e equations of type $P_{VI}$ [IIS2]. Thus we obatin a rigorous proof of the following

Corollary 4.4. Painleve equations of types $P_{VI}$ satisfy Painleve property.

5. 10 FAMILIES OF LINEAR RANK 2 CONNECTIONS ON $P^{1}$ WITH SINGULARITIES

We have the sufficient geometric scheme to prove the Painlev\’e property of isomonodromic
flows corresponding to linear connections with regular singularities like Painlev\’e equations of
type $P_{VI}$ . In order to include other classical Painlev\’e equations (order two differential equations)
in Table 1 into this scheme, one needs to consider the linear connections with irregular and
regular singularities.

We will restrict our consideration to the rank 2 sl-connections on $P^{1}$ . Then we will have
10 families of moduli spaces of linear connections on rank 2 bundles of degree $0$ over $P^{1}$ with
singularities satisfying the following two conditions.

(1) The moduli space of connections with fixed formal types has dimension two.
(2) The moduli space has a natural one dimensional time parameter which generalized

Riemann-Hilbert correspondence forgets like locations of regular singular points.

The families satisfying these two conditions can be classified by the Katz invariant $r(s)$ at 4
points $s\in\{0,1, t, \infty\}$ . We have 10 families of moduli spaces of connections over $P^{1}$ as in
Table 3. Note that the parameters in the space $\mathcal{N}$ are essentially given by Eigen values of
formal monodromies at each singular point. For detail, see [PSa]. In [PSa], we also give an
explicit family of connections which correspond to points in a Zariski open set of moduli space
of connections, and corresponding isomonodromic equations.

Let us review former related works. In [JMU], Jimbo, Miwa and Ueno developed a theory
of monodromy preserving deformation on linear connections on $P^{1}$ with irregular singularities
at most lever one. Then in [JM], Jimbo, Miwa treated six explicit isomonodromic families
of connections of rank 2 with Katz invariants $(0,0,0,0),$ $(0,0,1),$ $(1, -, 1),$ $(0, -, 2),$ $(0, -, 3)$ ,
(-, -, 5/2) and derived Painlev\’e equations of six types $P_{J},$ $J=I,$ $\cdots,$ $VI$ . Flaschka, Newell
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TABLE 3

[FN] treated the case $(0, -, 3/2)$ , and derived the Painlev\’e equation $P_{IIFN}$ which is equivalent
to the original $P_{II}$ . Ohyama and Okumura [OO] extend the result in $[?]$ and then they also
obtained 10 families with degeneration scheme from Painlev\’e VI. We note that three other cases
$(0,0,1/2),$ $(1/2, -, 1),$ $(1/2, -, 1/2)$ correspond to each equations of type degenerate Painlev\’e $P_{V}$ ,

$P_{III}^{\tilde{D}_{7}},$ $P_{III}^{\tilde{D}_{8}}$ (for detail see e.g., [OO], [OKSO], [PSa]).

5.1. The moduli spaces of generalized monodromy and 10 families of affine cubic
surfaces. As in Table 3, we have 10 families of the moduli spaces of linear rank 2 connection
with singularities with fixed type of Katz invariants. Locally at each singularity, the analytic
isomorphism class of singularities are given by Stokes data and formal monodromy. Local
topological monodromy around a singularity can be determined by Stokes data and formal
monodromy, and with these data and data of links which connect the spaces of formal solutions
at two different singular points determine the generalized monodromy data. The moduli space
$\mathcal{R}$ of these generalized monodromy data can be constructed by a categorical quotients as in the
case of regular singularities. Moreover we $ha$ve the moduli space $\mathcal{A}$ of formal monodromy at each
singular point, and then we have a natural morphism $\mathcal{R}arrow A$ between two affine varieties. For
the type of Katz invariant (1, 1, 1, 1), the moduli space $\mathcal{R}$ is calculated by Fricke-Klein [FK65],
who gives a family of affine cubic surfaces (cf. [Iwl, Iw2]). In other cases, in [PSa), we calculate
the moduli spaces $\mathcal{R}$ and obtain the following families of affine cubic surfaces in e\‘ach of 10 types.

(0,0,0,0). $P_{VI}$ . $\mathfrak{X}d+-A_{\Delta}z+\frac{A}{z}L+\frac{A_{t}}{z-t}$ , all $tr(A_{*})=0$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-s_{1}x_{1}-s_{2}x_{2}-s_{3}x_{3}+s_{4}=0$ , (Ricke-Klein cubic [FK65])
$s_{i}=a_{i}a_{4}+a_{j}a_{k}$ , $(i,j, k)=a$ cyclic permutation of (1, 2, 3),
$s_{4}=a_{1}a_{2}a_{3}a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}-4$ with $a_{1},$ $a_{2},$ $a_{3},$ $a_{4}\in \mathbb{C}$ .

(0,0,1). $R$ . $\mathfrak{X}d+\frac{A_{0}}{z}+\frac{A}{z}L+t/2\cdot(\begin{array}{ll}1 00 -1\end{array})$ , all $tr(A_{*})=0$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}-(s_{1}+s_{2}s_{3})x_{1}-(s_{2}+s_{1}s_{3})x_{2}-s_{3}x_{3}+s_{3}^{2}+s_{1}s_{2}s_{3}+1=0$ with $s_{1},$ $s_{2}\in \mathbb{C},$ $s_{3}\in \mathbb{C}^{*}$ .
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(0,0,1/2). $\deg P_{V}=P_{III}^{\tilde{D}_{6}}$ . $\frac{d}{dz}+\frac{A_{0}}{z}+\frac{A_{1}}{z-1}+(\begin{array}{l}0tq00\end{array})$ , all $tr(A_{*})=0$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+s_{0}x_{1}+s_{1}x_{2}+1=0$ with $s_{0},$ $s_{1}\in \mathbb{C}$ .

(1,-,1). $P_{III}^{\overline{D}_{6}}$ . $z_{\mathfrak{X}}^{d}+(\begin{array}{ll}1 00 -1\end{array})z^{-1}+A_{0}+A_{1}z$ , all $tr(A_{*})=0$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+(1+\alpha\beta)x_{1}+(\alpha+\beta)x_{2}+\alpha\beta=0$ with $\alpha,$
$\beta\in \mathbb{C}^{*}$ .

(1/2,-,1). $P_{III}^{\tilde{D}_{7}}$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}+x_{2}^{2}+\alpha x_{1}+x_{2}=0$ with $\alpha\in \mathbb{C}^{*}$ .

(1/2,-,1/2). $P_{III}^{\tilde{D}_{8}}$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}-x_{2}^{2}-1=0$ .

(0,-,2). $P_{IV}$ .

$z_{\mathfrak{X}}^{d}+(\begin{array}{ll}0 100 \end{array})z^{-1}+A_{0}+A_{1}z$ , all $tr(A_{*})=0$ .

$z_{\mathfrak{X}}^{d}+(\begin{array}{l}0100\end{array})z^{-1}+(\begin{array}{l}a-te1-a\end{array})+(\begin{array}{lll}0 0 -e^{-1} 0\end{array})z$ .

$z_{\mathfrak{X}}^{d}+A_{0}+A_{1}z+(\begin{array}{ll}1 00 -1\end{array})z^{2}$ .

$x_{1}x_{2}x_{3}+x_{1}^{2}-(s_{2}^{2}+s_{1}s_{2})x_{1}-s_{2}^{2}x_{2}-s_{2}^{2}x_{3}+s_{2}^{2}+s_{1}s_{2}^{3}$ with $s_{1}\in \mathbb{C},$ $s_{2}\in \mathbb{C}^{*}$ .

(0,-,3/2). $P_{IIFN}=P_{II}$ .

$x_{1}x_{2}x_{3}+x_{1}-x_{2}+x_{3}+s=0$ , with $s\in \mathbb{C}$ .

$(-,-,3)$ . $P_{II}$ .

$z_{\mathfrak{X}}^{d}+(\begin{array}{ll}a c-b -a\end{array})+(\begin{array}{ll}0 2t+b1 0\end{array})z+(\begin{array}{ll}0 10 0\end{array})z^{2}$

$\frac{d}{dz}+A_{0}+A_{1}z+(\begin{array}{ll}1 00 -1\end{array})z^{2}$ , all $tr(A_{*})=0$ .

$x_{1}x_{2}x_{3}-x_{1}-\alpha x_{2}-x_{3}+\alpha+1=0$ with $\alpha\in \mathbb{C}^{*}$ .

$(-,-,5/2)$ . $P_{I}$ . $\frac{d}{dz}+(_{-d-a}^{a2t+d^{2}})+(\begin{array}{l}d010\end{array})z+(\begin{array}{ll}0 10 0\end{array})z^{2}$ .

$x_{1}x_{2}x_{3}+x_{1}+x_{2}+1=0$ .
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