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1. INTRODUCTION
In this extended abstract, we will survey the results in [8] by the authors. We note that

this extended abstract contains no original results.
Since the twisted Alexander polynomial was introduced in the $90’ s[11,14,9]$ , it has

been successfully applied to many questions in knot theory and low dimensional topology.
We refer the reader to the survey paper by Friedl and Vidussi [6] for more about the
twisted Alexander polynomial.

One of the most remarkable applications of the twisted Alexander polynomials is to
detect fiberedness of a knot: Friedl and Vidussi [5] showed that the twisted Alexander
polynomials associated with finite representations detect fiberedness of a knot, and fur-
thermore, fiberedness of 3-manifolds.

In [8] the authors considered another approach for detecting fiberedness of a knot:
they used the $SL(2, \mathbb{C})$ -character variety of a knot group and the twisted Alexander
polynomial associated with it. We note that the idea of using the $SL(2, \mathbb{C})$ -character
variety for 3-manifold questions originates from Culler and Shallen [2]. For a knot, each
coefficient of the twisted Alexander polynomial defines a complex valued function on the
$SL(2, \mathbb{C})$-character variety of the knot group, and if the top coefficient function has value
1 for a character, then the character is called monic. It is known that every nonabelian
$SL(2, \mathbb{C})$-character of a fibered knot is monic [7], and the main result in [8] is about thc
question asking if the converse holds. More precisely, in [8] the authors showed that for a
nonfibered 2-bridge knot, there exists an irreducible curve component in the nonabelian
$SL(2, \mathbb{C})$-character variety of the knot containing only a finite number of monic characters.

Although it is already known that the (classical) Alexander polynomial detects if a
2-bridge knot (and more generally an alternating knot) is fibered, the above result of the
authors can be considered as a suggestion of a new approach for studying relationships
between fiberedness of knots and twisted Alexander polynomials.

In Section 2, we review the character variety and the twisted Alexander polynomial of
a 2-bridge knot, and we discuss the main results in [8] in Section 3.

2. CHARACTER VARIETIES AND TWISTED ALEXANDER POLYNOMIALS

2.1. character variety of a 2-bridge knot. Let $K=K(\alpha, \beta)$ be a 2-bridge knot where
$\alpha$ and $\beta$ are coprime integers $with-\alpha<\beta<\alpha$ . Two 2-bridge knots $K(\alpha, \beta)$ and $K(\alpha’, \beta’)$

are isotopic if and only if $\alpha=\alpha’$ and $\beta\equiv\beta’$ or $\beta\beta’\equiv 1mod \alpha$ . It is well-known that the
knot group $G(K)$ of $K$ has a presentation

$G(K)=\langle a,$ $b|wa=bw\rangle$ , $w=a^{\epsilon_{1}}b^{\epsilon}2\ldots a^{\epsilon_{\alpha-2}}b^{\epsilon_{\alpha-1}}$
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where $\epsilon_{i}=(-1)^{[\frac{\beta}{\alpha}i]}$ and $[a]$ denotes the greatest integer less than or equal to $a\in \mathbb{R}$ .
Let $a$ and $b$ be the generators of $G$ which represent the meridian up to conjugation. Let
$\rho:G(K)arrow SL(2.\mathbb{C})$ be a nonabelian representation of $G(K)$ . Then for the matrices

$C=(\begin{array}{ll}s 10 s^{-1}\end{array})$ and $D=(\begin{array}{lll}s 02- y s^{-1}\end{array})$ , we may assume that $\rho(a)=C$ and $\rho(b)=D$ by

taking conjugation if necessary. In fact, we have the following proposition due to Riley.

Proposition 2.1. [13, Theorem 1] The assignment $\rho(a)=C,$ $\rho(b)=D$ defines a non-
abelian representation of $G(K)$ if and only if the pair $(s, y)$ satisfies the equation

$w^{11}+(s^{-1}-s)w^{12}=0$ ,

where $W=\rho(w)=(w^{ij})$ . Conversely, every nonabelian representation of $G(K)$ is conju-
gate to a representation satisfying the above equation.

Definition 2.2. The Riley polynomial of a 2-bridge knot $K$ is the above polynomial
$\phi(s, y)=w^{11}+(s^{-1}-s)w^{12}\in \mathbb{Z}[s^{\pm 1}, y]$ .

For a finitely generated group $G$ , We define $R(G)=Hom(G, SL(2, \mathbb{C}))$ . Then the
$SL(2, \mathbb{C})$ -chamcter variety of $G$ is defined to be the algebro-geometric quotient of $R(G)$

by the conjugate action, and we denote it by $X(G)$ . For a representation $\rho\in R(G)$ , the
chamcter of $\rho$ is a map $\chi_{\rho}:Garrow \mathbb{C}$ defined by $\chi_{\rho}(G)=$ tr $(\rho(\gamma))$ for $\gamma\in G$ . Then it is
known that there is a canonical identification $X(G)=\{\chi_{\rho}|\rho\in R(G)\}$ .

Let $R^{nab}(G)$ be the set of $\rho\in R(G)$ which is nonabelian. For the map $t:R(G)arrow X(G)$

given by $t(\rho)=\chi_{\rho}$ , we define $X^{nab}(G)$ to be the image of $R^{nab}(G)$ under $t$ . For a knot
$K$ , we write $R(K)$ and $X(K)$ for $R(G(K))$ and $X(G(K))$ , respectively, and similarly
$R^{nab}(K)$ and $X^{nab}(K)$ for $R^{nab}(G(K))$ and $X^{nab}(G(K))$ , respectively.

Let $K=K(\alpha, \beta)$ as above. For each $\gamma\in G(K)$ , we define $t_{\gamma}:R(K)arrow \mathbb{C}$ by
$t_{\gamma}(\rho)=$ tr $(\rho(\gamma)))$ . Then $X^{nab}(K)$ is identified with the image of $R^{nab}(K)$ under the
map $(t_{a}, t_{ab^{-1}}):R(K)arrow \mathbb{C}^{2}$ (see [2, Proposition 1.4.1] and [12, Senction 2]). Since
$(t_{a},t_{ab^{-1}})=(s+s^{-1}, y)$ , if $\phi$ is considered as a polynomial in $x=s+s^{-1}$ and $y$ , then
$X^{nab}(K)$ is identified with $\{(x, y)\in \mathbb{C}^{2}|\phi(x, y)=0\}$ .

2.2. twisted Alexander polynomials. For a knot group $G(K)$ , we fix a Wirtinger
persentation $G(K)=\langle\gamma_{1},$

$\ldots,$
$\gamma_{k}$ , $r_{1},$

$\ldots,$
$r_{k-1}\rangle$ . Then following Wada [14], for a given

representation $\rho:G(K)arrow GL(2, \mathbb{C})$ , one can define the twisted Alexander polynomial
$\triangle_{K,\rho}(t)\in \mathbb{C}(t)$ which is well-defined up to multiplication by $\epsilon t^{2i}(\epsilon\in \mathbb{C}^{*}, i\in \mathbb{Z})$. In the
case that $\rho$ is a nonabelian special linear representation $\rho:G(K)arrow SL(2, \mathbb{C}),$ $\Delta_{K,\rho}(t)\in$

$\mathbb{C}[t^{\pm 1}]$ [ $10$ , Theorem 3.1] and it is well-defined up to multiplication by $t^{2i}(i\in \mathbb{Z})$ . We
refer the reader to [14] for a precise definition of the twisted Alexander polynomial. We
note that if $\rho$ and $\eta$ are conjugate $SL(2, \mathbb{C})$ -representations, then $\Delta_{K,\rho}(t)=\triangle_{K,\eta}(t)$ .

Since when we pick a nonabelian representation $\rho:G(K)arrow SL(2, \mathbb{C})$ we obtain $\triangle_{K,\rho}(t)$

which is associated with $\rho$ , each coefficient of $\triangle_{K,\rho}(t)$ can be considered as a $\mathbb{C}$-valued func-
tion on $R^{nab}(K)$ . Furthermore, each coefficient defines a $\mathbb{C}$-valued function on $X^{nab}(K)$ :
if $\rho$ and $\eta:G(K)arrow SL(2, \mathbb{C})$ are nonabelian representations with $\chi_{\rho}=\chi_{\eta}$ such that $\rho$

is irreducible, then $\rho$ is conjugate to $\eta$ (see [2, Proposition 1.5.2]), and hence $\triangle_{K,\rho}(t)=$

$\Delta_{K,\eta}(t)$ . And if $\rho$ and $\eta$ are reducible nonabelain, then they are determined by $\Delta_{K}(t)$

and hence $\Delta_{K,\rho}(t)=\Delta_{K,\eta}(t)$ (see the proof of [10, Theorem 3.1]). Therefore, we can
define the twisted Alexander polynomial associated with $\chi\in X^{nab}(K)$ to be $\triangle_{K,\rho}(t)$ where
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$\chi=\chi_{\rho}$ and we denote it by $\triangle_{K,\chi}(t)$ . We also say that a nonabelian representation
$\rho:G(K)arrow SL(2, \mathbb{C})$ (resp. a nonabelian character $\chi$ ) is monic if $\triangle_{K,\rho}(t)$ (resp. $\triangle_{K,\chi}(t)$ )
is a monic polynomial. We note that for a 2-bridge knot $K$ , each coefficient of $\triangle_{K,\rho}(t)$

and $\triangle_{K,\chi}(t)$ can be considered as a function of $s$ and $y$ or a function of $x$ and $y$ where
$x=s+s^{-1}$ .

3. FINITENESS OF MONIC CHARACTERS

The following theorems are main results in [8]. We do not give the proofs of these
theorems here and the reader is referred to [8] for the proofs. We also note that in [8]
one can find more finiteness results and examples. The first theorem states that the
twisted Alexander polynomials associated with all nonabelian $SL(2, \mathbb{C})$-representations
detect fiberedness of a 2-bridge knot;

Theorem 3.1. [8, Theorem 4.1] A 2-bridge knot $K$ is fibered if and only if $\triangle_{K,\rho}(t)$ is
monic for every nonabelian representation $\rho:G(K)arrow SL(2, \mathbb{C})$ .

Basically the proof of Theorem 3.1 uses the existence of a reducible nonabelian repre-
sentation of $G(K)$ , which is due to Burde [1] and de Rham [3].

Since the (classical) Alexander polynomial detects fiberedness of a 2-bridge knot (and
more generally an alternating knot), one might consider that Theorem 3.1 is not so helpful.
But using Theorem 3.1 we obtain the following finiteness theorem, which seems more
interesting.

Theorem 3.2. [8, Theorem 4.2] For a nonfibered 2-bridge knot $K$ , there exists an ir-
reducible curve component in $X^{nab}(K)$ which contains only a finite number of monic
chamcters.

As the (classical) Alexander polynomial gives the genus of a 2-bridge knot (and more
generally an alternating knot), we also obtain the following finiteness theorem regarding
the knot genus and twisted Alexander polynomials:

Theorem 3.3. [8, Theorem 4.3] For a 2-bridge knot $K$ of genus $g$ , there exists an ir-
reducible curve component $X_{1}$ in $X^{nab}(K)$ such that $\deg(\triangle_{K,\chi}(t))=4g-2$ for all but
finitely many $\chi\in X_{1}$ .

Recently Dunfield, Friedl and Jackson [4] showed that for a hyperbolic knot $K$ with at
most 16 crossings and alift $\rho_{0}$ of the discrete faithful representation $\rho:G(K)arrow PSL(2, \mathbb{C})$

associated with $K$ , the twisted Alexander polynomial $\triangle_{K,\rho_{0}}(t)$ detects fiberedness of the
knot $K$ . Moreover, it is known that the for a hyperbolic knot $K$ , there is a canonical
component $X_{0}(K)$ in $X(K)$ that is a curve containing $\rho_{0}$ , and for any knot $K,$ $X(K)$

contains a curve component. Therefore we suggest the following conjecture:

Conjecture 3.4. [8, Conjecture 6.4] For a nonfibered knot $K$ , there exists a curve com-
ponent $X_{1}(K)$ in $X^{nab}(K)$ so that $\{\chi\in X_{1}(K)|\triangle_{K,\chi}(t)$ is monic $\}$ is a finite set.
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