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1. INTRODUCTION
The purpose of this note is to explain some of the ideas in [4] which gives an answer to

a question on certain word problems on 2-bridge link groups raised in [10]. The key tool
used in the proof is small cancellation theory, applied to two-generator and one-relatior
presentations of 2-bridge link groups. We note that it has been proved by Weinbaum [16]
and Appel and Schupp [2] that the word and conjugacy problems for prime alternating
link groups are solvable, by using small cancellation theory (see also [3] and references in
it). Moreover, it was also shown by Sela [14] and Pr\’eaux [11] that the word and conjugacy
problems for any link group are solvable. A characteristic feature of [4] is that we give a
complete answer to a special (but also natural) word problem for the groups of 2-bridge
links, which form a special (but also important) family of prime alternating links. In the
sequels [5, 6, 7] of [4], we give a complete answer to certain natural conjugacy problems,
and the solutions will be used in [8] to establish a variation of McShane‘s identity for
2-bridge link groups, which had been conjectured by [13].

2. MAIN RESULTS

Consider the discrete group, $H$ , of isometries of the Euclidean plane $\mathbb{R}^{2}$ generated by
the $\pi$-rotations around the points in the lattice $\mathbb{Z}^{2}$ . Set $(S^{2}, P)$ $:=(\mathbb{R}^{2}, \mathbb{Z}^{2})/H$ and call
it the Conway sphere. Then $S^{2}$ is homeomorphic to the 2-sphere, and $P$ consists of four
points in $S^{2}$ . We also call $S^{2}$ the Conway sphere. Let $S$ $:=S^{2}-P$ be the complementary
4-times punctured sphere. For each $r\in\hat{\mathbb{Q}}$ $:=\mathbb{Q}\cup\{\infty\}$ , let $\alpha_{r}$ be the simple loop in $S$

obtained as the projection of a line in $\mathbb{R}^{2}-\mathbb{Z}^{2}$ of slope $r$ . Then $\alpha_{r}$ is essential in $S$ ,
i.e., it does not bound a disk in $S$ and is not homotopic to a loop around a puncture.
Conversely, any essential simple loop in $S$ is isotopic to $\alpha_{r}$ for a unique $r\in\hat{\mathbb{Q}}$ . Then $r$ is
called the slope of the simple loop. Similarly, any simple arc $\delta$ in $S^{2}$ joining two different
points in $P$ such that $\delta\cap P=\partial\delta$ is isotopic to the image of a line in $\mathbb{R}^{2}$ of some slope
$r\in \mathbb{Q}$ which intersects $\mathbb{Z}^{2}$ . We call $r$ the slope of $\delta$ .

A trivial tangle is a pair $(B^{3}, t)$ , where $B^{3}$ is a 3-ball and $t$ is a union of two arcs properly
embedded in $B^{3}$ which is parallel to a union of two mutually disjoint arcs in $\partial B^{3}$ . Let $\tau$ be
the simple unknotted arc in $B^{3}$ joining the two components of $t$ as illustrated in Figure 1.
We call it the core tunnel of the trivial tangle. Pick a base point $x_{0}$ in int $\tau$ , and let $(\mu_{1}, \mu_{2})$

be the generating pair of the fundamental group $\pi_{1}(B^{3}-t, x_{0})$ each of which is represented
by a based loop consisting of a small peripheral simple loop around a component of $t$ and
a subarc of $\tau$ joining the circle to $x_{0}$ . For any base point $x\in B^{3}-t$ , the generating
pair of $\pi_{1}(B^{3}-t, x)$ corresponding to the generating pair $(\mu_{1}, \mu_{2})$ of $\pi_{1}(B^{3}-t, x_{0})$ via a
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FIGURE 1. A trivial tangle

path joining $x$ to $x_{0}$ is denoted by the same symbol. The pair $(\mu_{1}, \mu_{2})$ is unique up to
(i) reversal of the order, (ii) replacement of one of the members with its inverse, and (iii)
simultaneous conjugation. We call the equivalence class of $(\mu_{1}, \mu_{2})$ the meridian pair of
the fundamental group $\pi_{1}(B^{3}-t)$ .

By a rational tangle, we mean a trivial tangle $(B^{3}, t)$ which is endowed with a homeo-
morphism from $\partial(B^{3}, t)$ to $(S^{2}, P)$ . Through the homeomorphism we identify the bound-
ary of a rational tangle with the Conway sphere. Thus the slope of an essential simple
loop in $\partial B^{3}-t$ is defined. We define the slope of a rational tangle to be the slope of
an essential loop on $\partial B^{3}-t$ which bounds a disk in $B^{3}$ separating the components of $t$ .
(Such a loop is unique up to isotopy on $\partial B^{3}-t$ and is called a meridian of the rational
tangle.) We denote a rational tangle of slope $r$ by $(B^{3}, t(r))$ . By van Kampen’s theorem,
the fundamental group $\pi_{1}(B^{3}-t(r))$ is identified with the quotient $\pi_{1}(S)/\langle\langle\alpha_{r}\rangle\rangle$ , where

$\langle\langle\alpha_{r}\rangle\rangle$ denotes the normal closure.
For each $r\in\hat{\mathbb{Q}}$ , the 2-bridge link $K(r)$ of slope $r$ is defined to be the sum of the rational

tangles of slopes $\infty$ and $r$ , namely, $(S^{3}, K(r))$ is obtained from $(B^{3}, t(\infty))$ and $(B^{3}, t(r))$

by identifying their boundaries through the identity map on the Conway sphere $(S^{2}, P)$ .
(Recall that the boundaries of rational tangles are identified with the Conway sphere.)
$K(r)$ has one or two components according as the denominator of $r$ is odd or even. We call
$(B^{3}, t(\infty))$ and $(B^{3}, t(r))$ , respectively, the upper tangle and lower tangle of the 2-bridge
link.

Let $\mathcal{D}$ be the Farey tessellation, whose ideal vertex set is identified with $\hat{\mathbb{Q}}$ . For each
$r\in\hat{\mathbb{Q}}$ , let $\Gamma_{r}$ be the group of automorphisms of $\mathcal{D}$ generated by reflections in the edges of
$\mathcal{D}$ with an endpoint $r$ , and let $\hat{\Gamma}_{r}$ be the group generated by $\Gamma_{r}$ and $\Gamma_{\infty}$ . Then the region,
$R$ , bounded by a pair of Farey edges with an endpoint $\infty$ and a pair of Farey edges with
an endpoint $r$ forms a fundamental domain of the action of $\Gamma_{r}$ on $\mathbb{H}^{2}$ (see Figure 2). Let
$I_{1}$ and $I_{2}$ be the closed intervals in $\hat{\mathbb{R}}$ obtained as the intersection with $\hat{\mathbb{R}}$ of the closure
of $R$. Suppose that $r$ is a rational number with $0<r<1$ . (We may always assume this
except when we treat the trivial knot and the trivia12-component link.) Write

$r= \frac{}{m_{1}+\frac{11}{m_{2}+\cdot..+\frac{1}{m_{k}}}}=:[m_{1}, m_{2}, \ldots, m_{k}]$

,
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where $k\geq 1,$ $(m_{1}, \ldots, m_{k})\in(\mathbb{Z}_{+})^{k}$ , and $m_{k}\geq 2$ . Then the above intervals are given by
$I_{1}=[0, r_{1}]$ and $I_{2}=[r_{2},1]$ , where

$r_{1}=\{\begin{array}{ll}[m_{1}, m_{2}, \ldots, m_{k-1}] if k is odd,[m_{1}, m_{2}, \ldots, m_{k-1}, m_{k}-1] if k is even,\end{array}$

$r_{2}=\{\begin{array}{ll}[m_{1}, m_{2}, \ldots, m_{k-1}, m_{k}-1] if k is odd,[m_{1}, m_{2}, \ldots, m_{k-1}] if k is even.\end{array}$

2$]$

FIGURE 2. A fundamental domain of $\hat{\Gamma}_{r}$ in the Farey tessellation (the
shaded domain) for

$r=5/17= \frac{1}{3+\frac{1}{2+\frac{1}{2}}}=:[3,2,2]$

.

We recall the following fact ([10, Proposition 4.6 and Corollary 4.7] and [4, Lemma 7.1])
which describes the role of $\hat{\Gamma}_{r}$ in the study of 2-bridge link groups.
Proposition 2.1. (1) If two elements $s$ and $s’$ of $\hat{\mathbb{Q}}$ belong to the same orbit $\hat{\Gamma}_{r}$ -orbit,
then the unoriented loops $\alpha_{s}$ and $\alpha_{s’}$ are homotopic in $S^{3}-K(r)$ .

(2) For any $s\in\hat{\mathbb{Q}}$ , there is a unique mtional number $s_{0}\in I_{1}\cup I_{2}\cup\{\infty, r\}$ such that
$s$ is contained in the $\hat{\Gamma}_{r}$ -orbit of $s_{0}$ . In particular, $\alpha_{s}$ is homotopic to $\alpha_{s0}$ in $S^{3}-K(r)$ .
Thus if $s_{0}\in\{\infty, r\}$ then $\alpha_{s}$ is null-homotopic in $S^{3}-K(r)$ .

Thus the following question naturally arises (see [10, Question $9.1(2)]$ ).
Question 2.2. (1) Which essential simple loops on $S$ are null-homotopic in $S^{3}-K(r)$?

(2) For two distinct rational numbers $s,$ $s’\in I_{1}\cup I_{2}$ , when are the unoriented loops $\alpha_{s}$

and $\alpha_{s’}$ homotopic in $S^{3}-K(r)$ ?
A complete answer to Question 2.2(1) is given by [4, Main Theorem 2.3] as follows.

Theorem 2.3. The loop $\alpha_{s}$ is null-homotopic in $S^{3}-K(r)$ if and only if $s$ belongs to
the $\hat{\Gamma}_{r}$ -orbit of $\infty$ or $r$ . In other words, if $s\in I_{1}\cup I_{2}$ then $\alpha_{s}$ is not null-homotopic in
$S^{3}-K(r)$ .

This theorem implies the following theorem [4, Main Theorem 2.4], which gives a partial
answer to [10, Question 9.1(1)].
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Theorem 2.4. There is an upper-meridian-pair-preserving epimorphism from $G(K(s))$

to $G(K(r))$ if and only if $s$ or $s+1$ belongs to the $\hat{\Gamma}_{r}$ -orbit of $r$ or $\infty$ .

The following theorem, established in the series of papers [5, 6, 7], gives a complete
answer to Question 2.2(2).

Theorem 2.5. (1) Suppose $r=1/p$, where $p\geq 2$ is an integer. Then, for any two
distinct $s,$ $s’\in I_{1}\cup I_{2}$ , the unoriented loops $\alpha_{s}$ and $\alpha_{s’}$ are homotopic in $S^{3}-K(r)$ if and
only if $s=q_{1}/p_{1}$ and $s’=q_{2}/p_{2}$ satisfy $q_{1}=q_{2}$ and $q_{1}/(p_{1}+p_{2})=1/p$ , where $(p_{i}, q_{i})$ is a
pair of relatively prime positive integers.

(2) Suppose $r=3/8$ , namely $K(r)$ is the Whitehead link. Then, for any two distinct
$s,$ $s’\in I_{1}\cup I_{2}$ , the $unor\dot{v}ented$ loops $\alpha_{s}$ and $\alpha_{s’}$ are homotopic in $S^{3}-K(r)$ if and only if
the set $\{s, s’\}$ equals either {1/6, 3/10} or {3/4, 5/12}.

(3) Suppose $r\neq 1/p$ and $r\neq 3/8$ . Then, for any two distinct $s,$ $s’\in I_{1}\cup I_{2}$ , the
unori ented loops $\alpha_{s}$ and $\alpha_{s’}$ are never homotopic in $S^{3}-K(r)$ .

These results will be used in [8] to prove the following variation of McShane‘s identity,
which had been conjectured in [13].

Theorem 2.6. Suppose $r=q/p$ satisfies the condition $q\not\equiv\pm 1(mod p)$ , and let $\rho$ be
the holonomy representation of the complete hyperbolic structure of $S^{3}-K(r)$ . Then the
following identity holds:

2 $\sum_{s\in intI_{1}}\frac{1}{1+e^{l_{\rho}(\alpha_{8})}}+2\sum_{s\in intI_{2}}\frac{1}{1+e^{l_{\rho}(\alpha_{S})}}+\sum_{s\in\partial I_{1}\cup\partial I_{2}}\frac{1}{1+e^{l_{\rho}(\alpha_{S})}}=-1$ .

Further the modulus $\lambda(L(r))$ of the cusp torus of the cusped hyperbolic manifold $S^{3}-K(r)$

with respect to a suitable choice of a longitude is given by the following formula:
$\lambda(K(r))=2\sum_{s\in intI_{1}}\frac{1}{1+e^{l_{\rho}(\alpha_{8})}}+\sum_{r\in\partial I_{1}}\frac{1}{1+e^{l_{\rho}(\alpha_{s})}}$ .

In the above theorem, $l_{\rho}(\alpha_{s})$ is an element of $\mathbb{C}/2\pi\sqrt{-1}\mathbb{Z}$ defined as follows. The
$PSL(2, \mathbb{C})$-representation of $\pi_{1}(S)$ induced by $\rho$ extends to a representation, denoted
by the same symbol $\rho$ , of the orbifold fundamental group of the $($ 2, 2, 2, $\infty)$-orbifold,
$\mathcal{O}$ , obtained as the quotient of $S$ by the natural $\mathbb{Z}/(2\mathbb{Z})\oplus \mathbb{Z}/(2\mathbb{Z})$-action (see e.g., [1,
Proposition 2.2.2] $)$ . Each simple loop $\alpha_{s}$ in $S$ doubly covers a simple loop in $\mathcal{O}$ . Let $\sqrt{u_{s}}$

be (a conjugacy class of) an element of $\pi_{1}(\mathcal{O})$ represented by the simple loop. Then $l_{\rho}(\alpha_{s})$

denotes the complex translation length of the hyperbolic isometry $\rho(\sqrt{u_{s}})\in PSL(2,\mathbb{C})\cong$

Isom$(\mathbb{H}^{3})$ .
We also obtain the following theorem concerning the set of end invariants $\mathcal{E}(\rho)$ , defined

by Tan, Wong and Zhang [15], of the $PSL(2, \mathbb{C})$-representation of $\pi_{1}(T)$ induced by the
representation $\rho$ in Theorem 2.6, where $T$ is the once-punctured torus obtained as the
double covering of the orbifold $\mathcal{O}$ .

Theorem 2.7. Let $r=q/p$ be a mtional number. If $q\not\equiv\pm 1(mod p)$ , then let $\rho$ be
the holonomy representation of the complete hyperbolic structure of $S^{3}-K(r)$ . If $q\equiv$

$\pm 1(mod p)$ , then let $\rho$ be the faithful discrete $PSL(2, \mathbb{R})$ -representation of the quotient
of $G(K(r))$ by the infinite cyclic center. In both cases, we continue to denote by the
same symbol $\rho$ the $PSL(2, \mathbb{C})$ -representation of $\pi_{1}(T)$ induced by $\rho$ . Then the set of end
invariants $\mathcal{E}(\rho)$ of $\rho$ is equal to the limit set $\Lambda(\hat{\Gamma}_{r})$ of $\hat{\Gamma}_{r}$ .

112



FIGURE 3. $\pi_{1}(B^{3}-t(\infty), x_{0})=F(a, b)$ , where $a$ and $b$ are represented by
$\mu_{1}$ and $\mu_{2}$ , respectively.

3. PRESENTATIONS OF 2-BRIDGE LINK GROUPS

In this section, we introduce the upper presentation of a 2-bridge link group which we
shall use throughout this paper. By van Kampen’s theorem, the link group $G(K(r))=$
$\pi_{1}(S^{3}-K(r))$ is identified with $\pi_{1}(S)/\langle\langle\alpha_{\infty},$ $\alpha_{r}\rangle\rangle$ . We call the image in the link group of
the meridian pair of the fundamental group $\pi_{1}(B^{3}-t(\infty))$ (resp. $\pi_{1}(B^{3}-t(r))$ the upper
meridian pair (resp. lower meridian pair). The link group is regarded as the quotient of
the rank 2 free group, $\pi_{1}$ $(B^{3}-t(oo))\cong\pi_{1}(S)/\langle\langle\alpha_{\infty}\rangle\rangle$ , by the normal closure of $\alpha_{r}$ . This
gives a one-relator presentation of the link group.

To find the presentation of $G(K(r))$ explicitly, let $a$ and $b$ , respectively, be the elements
of $\pi_{1}(B^{3}-t(oo), x_{0})$ represented by the oriented loops $\mu_{1}$ and $\mu_{2}$ based on $x_{0}$ as illustrated
in Figure 3. Then $\{a, b\}$ forms the meridian pair of $\pi_{1}(B^{3}-t(\infty))$ , which is identified
with the free group $F(a, b)$ . Note that $\mu_{i}$ intersects the disk, $\delta_{i}$ , in $B^{3}$ bounded by a
component of $t(\infty)$ and the essential arc, $\gamma_{i}$ , on $\partial(B^{3}, t(\infty))=(S^{2}, P)$ of slope 1/0, in
Figure 3. Obtain a word $u_{r}$ in $\{a, b\}$ by reading the intersection of the (suitably oriented)
loop $\alpha_{r}$ with $\gamma_{1}\cup\gamma_{2}$ , where a positive intersection with $\gamma_{1}$ (resp. $\gamma_{2}$ ) corresponds to $a$

(resp. $b$). Then the word $u_{r}$ represents the free homotopy class of $\alpha_{r}$ . It then follows that
$G(K(r))=\pi_{1}(S^{3}-K(r))\cong\pi_{1}(B^{3}-t(oo))/\langle\langle\alpha_{r}\rangle\rangle$

$\cong F(a, b)/\langle\langle u_{r}\rangle\rangle\cong\langle a,$ $b|u_{r}\rangle$ .

If $r\neq\infty$ , then $\alpha_{r}$ intersects $\gamma_{1}$ and $\gamma_{2}$ alternately, and hence $a$ and $b$ appear in $(u_{r})$

alternately.
By using the universal abelian covering $\mathbb{R}^{2}-\mathbb{Z}^{2}arrow S$, we can write down the word $u_{r}$

explicitly. Note that the inverse image of $\gamma_{1}$ (resp. $\gamma_{2}$ ) in $\mathbb{R}^{2}-\mathbb{Z}^{2}$ is the union of the
single arrowed (resp. double arrowed) vertical edges in Figure 4. Let $L(r)$ be the line in
$\mathbb{R}^{2}$ of slope $r$ passing through the origin, and let $L^{+}(r)$ be the line obtained by translating
$L(r)$ by the vector $(0, \eta)$ for sufficiently small positive real number $\eta$ . Then $L^{+}(r)$ lies in
$\mathbb{R}^{2}-\mathbb{Z}^{2}$ and projects to the simple loop $\alpha_{r}$ . Pick a base point, $z$ , from the intersection of
$L^{+}(r)$ with the second quadrant, and consider the sub-line-segment of $L^{+}(r)$ bounded by
$z$ and $z+(2p, 2q)$ . Then it forms a fundamental domain of the covering $L^{+}(r)arrow\alpha_{r}$ , and
the word $u_{r}$ is obtained by reading the intersection of the line-segment with the vertical
lattice lines. To be precise, for each integer $0\leq i\leq 2p-1$ , let $P_{i}^{+}$ be the intersection of
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FIGURE 4. The line of slope 5/7 gives $\hat{u}_{5/7}=ba^{-1}bab^{-1}a$ , so the free homo-
topy class of $\alpha_{5/7}$ is represented by the cyclic word $(u_{5/7})=(a\hat{u}_{5/7}b^{-1}\hat{u}_{5/7}^{-1})=$

$(aba^{-1}bab^{-1}ab^{-1}a^{-1}ba^{-1}b^{-1}ab^{-1})$ . Since the inverse image of $\gamma_{1}$ (resp. $\gamma_{2}$ )
in $\mathbb{R}^{2}$ is the union of the single arrowed (resp. double arrowed) vertical
edges, a positive intersection with a single arrowed (resp. double arrowed)
edge corresponds to $a$ (resp. $b$).

the line-segment with the vertical lattice line $x=i$ . We define the letter at $P_{i}^{+}$ to be $a$ or
$b$ according as $P_{i}^{+}$ lies on a vertical edge with a single arrow or double arrow in Figure 4,
namely according as $i$ is even or odd. We define the sign of $P_{i}^{+}$ to be $+1$ or-l according
as the corresponding arrow is upward or downward. Then the letter and the sign of $P_{i}^{+}$ ,
respectively, give the letter and the exponent of the $(i+1)-$th term of the word $u_{r}$ for
each $0\leq i\leq 2p-1$ . This gives the following formula for the word $u_{r}$ (see Figure 4).

$u_{r}=a^{\epsilon_{1}}b^{\epsilon_{2}}\cdots a^{\epsilon_{2p-1}}b^{\epsilon_{2p}}$ ,

where $\epsilon_{i}=(-1)^{\lceil(i-1)q/p\rceil^{*}-1}$ . Here $\lceil t\rceil^{*}$ denotes the smallest integer greater than $t$ .
In order to simplify this formula, let $\hat{u}_{r}$ be the subword of $u_{r}$ corresponding to the set

$\{P_{i}^{+}|1\leq i\leq p-1\}$ . Then $\hat{u}_{r}$ is obtained from the open interval in $L(r)$ bounded by
$(0,0)$ and $(p, q)$ by reading its intersection with the vertical lattice lines, and so we obtain
the following formula.

$\hat{u}_{r}=\{\begin{array}{l}b^{\epsilon 1}a^{\epsilon 2}\cdots b^{\epsilon_{p-2}}a^{\epsilon_{p-1}} if p is odd,b^{\epsilon_{1}}a^{\epsilon 2}\cdots a^{\epsilon_{p-2}}b^{\epsilon_{p-1}} if p is even,\end{array}$

where $\epsilon_{i}=(-1)^{\lfloor iq/p\rfloor}$ . By using the symmetry around $(p, q)$ of $\mathbb{R}^{2}-\mathbb{Z}^{2}$ , we can observe
that the subword of $u_{r}$ corresponding to the set $\{P_{i}^{+}|p+1\leq i\leq 2p-1\}$ is equal to
$\hat{u}_{r}^{-1}$ . Hence we obtain the following formula (see [12, Proposition 1]).

$u_{r}=\{\begin{array}{ll}a\hat{u}_{q/p}b^{(-1)^{q}}\hat{u}_{q/p}^{-1} if p is odd,a\hat{u}_{q/p}a^{-1}\hat{u}_{q/p}^{-1} if p is even,\end{array}$

We now describe a natural decomposition of the word $u_{r}$ , which plays a key role in this
paper. Let $r_{i}=q_{i}/p_{i}(i=1,2)$ be the rational number introduced in Section 2. Consider
the infinite broken line, $B$ , obtained by joining the lattice points

. $(0,0),$ $(p_{2}, q_{2}),$ $(p, q),$ $(p+p_{2}, q+q_{2}),$ $(2p, 2q),$ $\cdots$
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$Can\sigma \mathfrak{n}\dot{\backslash }c\wedge Ad_{\ell C\prime\eta^{\delta si}}t\cdot’\vee\llcorner p\}$ {& $rp1_{\alpha} m$ $u\overline{\sim}$ $Of$
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lva 1 $\overline{\sim}\}\mathcal{V}_{4}|=r_{a}-|$

FIGURE 5. The decomposition of the relator $u_{r}=v_{1}v_{2}v_{3}v_{4}$

which is invariant by the translation $(x, y)\mapsto(x+p, y+q)$ . By slightly modifying $B$

near the lattice points, we obtain a (topological) line, $B^{+}$ , in $\mathbb{R}^{2}-\mathbb{Z}^{2}$ , invariant by the
translation, which is homotopic to the line $L^{+}(r)$ . Pick a point, $z_{0}\in B^{+}$ in the second
quadrant, and consider the sub-path of $B^{+}$ bounded by $z_{0}$ and $z_{4}$ $:=z_{0}+(2p, 2q)$ . Then
the word $u_{r}$ is also obtained by reading the intersection of the sub-path with the vertical
lattice lines. Pick a point $z_{1}\in B^{+}$ whose x-coordinate is $p_{2}+$ (small positive number),
and set $z_{2}$ $:=z_{0}+(p, q)$ and $z_{3}$ $:=z_{1}+(p, q)$ . Let $B_{i}^{+}$ be the sub-path of $B^{+}$ joining $z_{i-1}$

with $z_{i}(i=1,2,3,4)$ . Let $v_{i}$ be the subword of $u_{r}$ corresponding to $B_{i}^{+}$ . Then we have
the decomposition

$u_{r}=v_{1}v_{2}v_{3V_{4}}$ .
The subword $v_{i}$ is non-empty except when $r=1/p(p\in N)$ and $i\in\{1,3\}$ . The importance
of this decomposition is described in the following section.

4. SEQUENCES ASSOCIATED WITH THE SIMPLE LOOP $\alpha_{r}$

In this section, we define a sequence $S(r)$ of slope $r$ and a cyclic sequence $CS(r)$ of slope
$r$ all of which arise from the single word $u_{r}$ representing the simple loop $\alpha_{r}$ , and observe
several important properties of these sequences, so that we can adopt small cancellation
theory in the succeeding sections.

We fix some definitions and notation. Let $X$ be a set. By a word in $X$ , we mean a finite
sequence $x_{1}^{\epsilon_{1}}x_{2}^{\epsilon_{2}}\cdots x_{n}^{\epsilon_{n}}$ where $x_{i}\in X$ and $\epsilon_{i}=\pm 1$ . Here we call $x_{i}^{\epsilon:}$ the i-th letter of the
word. For two words $u,$ $v$ in $X$ , by $u\equiv v$ we denote the visual equality of $u$ and $v$ , meaning
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that if $u=x_{1}^{\epsilon_{1}}\cdots x_{n}^{\epsilon_{n}}$ and $v=y_{1}^{\delta_{1}}\cdots y_{m}^{\delta_{m}}(x_{i}, y_{j}\in X;\epsilon_{i}, \delta_{j}=\pm 1)$ , then $n=m$ and $x_{i}=y_{i}$

and $\epsilon_{i}=\delta_{i}$ for each $i=1,$ $\ldots,$
$n$ . The length of a word $v$ is denoted by $|v|$ . A word $v$ in

$X$ is said to be reduced if $v$ does not contain $xx^{-1}$ or $x^{-1}x$ for any $x\in X$ . A word is said
to be cyclically reduced if all its cyclic permutations are reduced. A cyclic word is defined
to be the set of all cyclic permutations of a cyclically reduced word. By (v) we denote
the cyclic word associated with a cyclically reduced word $v$ . Also by $(u)\equiv(v)$ we mean
the visual equality of two cyclic words $(u)$ and (v). In fact, $(u)\equiv(v)$ if and only if $v$ is
visually a cyclic shift of $u$ .

Definition 4.1. (1) Let $v$ be a nonempty reduced word in $\{a, b\}$ . Decompose $v$ into
$v\equiv v_{1}v_{2}\cdots v_{t}$ ,

where, for each $i=1,$ $\ldots,$ $t-1$ , all letters in $v_{i}$ have positive (resp. negative) exponents,
and all letters in $v_{i+1}$ have negative (resp. positive) exponents. Then the sequence of
positive integers $S(v)$ $:=(|v_{1}|, |v_{2}|, \ldots, |v_{t}|)$ is called the S-sequence of $v$ .

(2) Let (v) be a nonempty reduced cyclic word in $\{a, b\}$ represented by a word $v$ .
Decompose (v) into

$(v)\equiv(v_{1}v_{2}\cdots v_{t})$ ,

where all letters in $v_{i}$ have positive (resp. negative) exponents, and all letters in $v_{i+1}$

have negative (resp. positive) exponents (taking subindices modulo $t$ ). Then the cyclic
sequence of positive integers $CS(v)$ $:=((|v_{1}|, |v_{2}|, \ldots, |v_{t}|))$ is called the cyclic S-sequence
of (v). Here the double parentheses denote that the sequence is considered modulo cyclic
permutations.

Definition 4.2. For a rational number $r$ with $0<r\leq 1$ , let $u_{r}$ be the word in $\{a, b\}$

defined in Section 3. Then the symbol $S(r)$ (resp. $CS(r)$ ) denotes the S-sequence $S(u_{r})$

of $u_{r}$ (resp. cyclic S-sequence $CS(u_{r})$ of $(u_{r})$ ), which is called the S-sequence of slope $r$

(resp. the cyclic S-sequence of slope $r$ ).

In the remainder of this paper unless specified otherwise, we suppose that $r$ is a rational
number with $0<r\leq 1$ , and write $r$ as a continued fraction:

$r=[m_{1}, m_{2}, \ldots, m_{k}]$ ,

where $k\geq 1,$ $(m_{1}, \ldots, m_{k})\in(\mathbb{Z}_{+})^{k}$ and $m_{k}\geq 2$ unless $k=1$ . For brevity, we write $m$ for
$m_{1}$ .

The following proposition plays a key role in the proof of Lemma 5.4 and Theorem 5.2.

Proposition 4.3 ([4, Proposition 4.10]). The sequence $S(r)$ has a decomposition $(S_{1},$ $S_{2}$ ,
$S_{1},$ $S_{2})$ which satisfies the following.

(1) Each $S_{i}$ is symmetri$c$, i. e., the sequence obtained from $S_{i}$ by reversing the order is
equal to $S_{i}$ . (Here, $S_{1}$ is empty if $k=1.$)

(2) Each $S_{i}$ occurs only twice in the cyclic sequence $CS(r)$ .
(3) $S_{1}$ begins and ends with $m+1$ .
(4) $S_{2}$ begins and ends with $m$ .

The above decomposition corresponds to the decomposition $u_{r}=v_{1}v_{2}v_{3}v_{4}$ introduced
in Section 3. To be precise, we have $S_{1}=S(v_{1})=S(v_{3})$ and $S_{2}=S(v_{2})=S(v_{4})$ . The
following proposition plays a key role in the proof of the main theorem.
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Proposition 4.4. Let $S(r)=(S_{1}, S_{2}, S_{1}, S_{2})$ be as in Proposition 4.3. For a mtional
number $s$ with $0<s\leq 1$ , suppose that the cyclic S-sequence $CS(s)$ contains both $S_{1}$ and
$S_{2}$ as a subsequence. Then $s\not\in I_{1}\cup I_{2}$ .

5. SMALL CANCELLATION CONDITIONS FOR 2-BRIDGE LINK GROUPS

Let $F(X)$ be the free group with basis $X$ . A subset $R$ of $F(X)$ is called symmetrized,
if all elements of $R$ are cyclically reduced and, for each $w\in R$ , all cyclic permutations of
$w$ and $w^{-1}$ also belong to $R$ .

Definition 5.1. Suppose that $R$ is a symmetrized subset of $F(X)$ . A nonempty word $b$

is called a piece if there exist distinct $w_{1},$ $w_{2}\in R$ such that $w_{1}\equiv bc_{1}$ and $w_{2}\equiv bc_{2}$ . Small
cancellation conditions $C(p)$ and $T(q)$ , where $p$ and $q$ are integers such that $p\geq 2$ and
$q\geq 3$ , are defined as follows (see [9]).

(1) Condition $C(p)$ : If $w\in R$ is a product of $n$ pieces, then $n\geq p$ .
(2) Condition $T(q)$ : For $w_{1},$ $\ldots,$

$w_{n}\in R$ with no successive elements $w_{i},$ $w_{i+1}$ an inverse
pair $(imod n)$ , if $n<q$ , then at least one of the products $w_{1}w_{2},$ $\ldots,$ $w_{n-1}w_{n},$ $w_{n}w_{1}$

is freely reduced without cancellation.

The following key theorem enables us to apply small cancellation theory to the groups
presentation $\langle a,$ $b|u_{r}\rangle$ of $G(K(r))$ .

Theorem 5.2. Let $r$ be a mtional number such that $0<r<1$ . Recall the presentation
$\langle a,$ $b|u_{r}\rangle$ of $G(K(r))$ given in Section 3, and let $R$ be the symmetrized subset of $F(a, b)$

genemted by the single relator $u_{r}$ . Then $R$ satisfies $C(4)$ and $T(4)$ .

Definition 5.3. For a positive integer $n$ , a non-empty subword $w$ of the cyclic word $(u_{r})$

is called a maximal n-piece if $w$ is a product of $n$ pieces and if any subword $w’$ of $u_{r}$ which
properly contains $w$ as an initial subword is not a product of n-pieces.

Theorem 5.2 actually follows from the following complete characterizations of the max-
imal n-pieces for $n=1,2,3$ . (For simplicity, we describe the result only for generic case.)

Lemma 5.4. Suppose that $r$ is a rational number such that $0<r<1$ and $r\neq 1/p$ for
any integer $p\geq 2$ . Let $v_{ib}^{*}$ be the maximal proper initial subword of $v_{i}$ , i. e., the initial
subword of $v_{i}$ such that $|v_{ib}^{*}|=|v_{i}|-1(i=1,2,3,4)$ . Then the following hold, where
$v_{ib}$ and $v_{ie}$ are nonempty initial and teminal subwords of $v_{i}$ with 1 $v_{ib}|,$ $|v_{ie}|\leq|v_{i}|-1$ ,
respectively.

(1) The following is the list of all maximal l-pieces of $(u_{r})_{f}$ arranged in the order of
the position of the initial letter:

$v_{1b}^{*},$ $v_{1e}v_{2},$ $v_{2}v_{3b}^{*},$ $v_{2e}v_{3b}^{*},$ $v_{3b}^{*},$ $v_{3e}v_{4},$ $v_{4}v_{1b}^{*},$ $v_{4e}v_{1b}^{*}$ .
(2) The following is the list of all maximal 2-pieces of $(u_{r})$ , awanged in the order of

the position of the initial letter:
$v_{1}v_{2},$ $v_{1e}v_{2}v_{3b}^{*},$ $v_{2}v_{3}v_{4},$ $v_{2e}v_{3}v_{4},$ $v_{3}v_{4},$ $v_{3e}v_{4}v_{1b}^{*},$ $v_{4}v_{1}v_{2},$ $v_{4e}v_{1}v_{2}$ .

(3) The following is the list of all maximal 3-pieces of $(u_{r})$ , arranged in the order of
the position of the initial letter:

$v_{1}v_{2}v_{3b}^{*},$ $v_{1e}v_{2}v_{3}v_{4},$ $v_{2}v_{3}v_{4}v_{1b}^{*},$ $v_{2e}v_{3}v_{4}v_{1b}^{*},$ $v_{3}v_{4}v_{1b}^{*},$ $v_{3e}v_{4}v_{1}v_{2},$ $v_{4}v_{1}v_{2}v_{3b}^{*},$ $v_{4e}v_{1}v_{2}v_{3b}^{*}$ .
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Corollary 5.5. (1) A subword $w$ of the cyclic word $(u_{r}^{\pm 1})$ is a piece if and only if $S(w)$

does not contain $S_{1}$ as a subsequence and does not contain $S_{2}$ in its interior, i. e., $S(w)$

does not contain a subsequence $(\ell_{1}, S_{2}, l_{2})$ for some $l_{1},\ell_{2}\in \mathbb{Z}_{+}$ .
(2) For a subword $w$ of the cyclic word $(u_{r}^{\pm 1}),$ $w$ is not a pmduct of two pieces if and

only if $S(w)$ either contains $(S_{1}, S_{2})$ as a proper initial subsequence or contains $(S_{2}, S_{1})$

as a proper terminal subsequence.

6. OUTLINE OF THE PROOF OF THEOREM 2.3

Let $R$ be the symmetrized subset of $F(a, b)$ generated by the single relator $u_{r}$ of the
group presentation $G(K(r))=\langle a,$ $b|u_{r}\rangle$ . Suppose on the contrary that $\alpha_{s}$ is null-homotoic
in $S^{3}-K(r)$ , i.e., $u_{s}=1$ in $G(K(r))$ , for some $s\in I_{1}\cup I_{2}$ . Then there is a van Kampen
diagmm $M$ over $G(K(r))=\langle a,$ $b|R\rangle$ such that the boundary label is $u_{s}$ . Here $M$ is
a simply connected 2-dimensional complex embedded in $\mathbb{R}^{2}$ , together with a function $\phi$

assigning to each oriented edge $e$ of $M$ , as a label, a reduced word $\phi(e)$ in $\{a, b\}$ such that
the following hold.

(1) If $e$ is an oriented edge of $M$ and $e^{\vee}1$ is the oppositely oriented edge, then $\phi(e^{-1})=$

$\phi(e)^{-1}$ .
(2) For any boundary cycle $\delta$ of any face of $M,$ $\phi(\delta)$ is a cyclically reduced word

representing an element of R. (If $\alpha=e_{1},$ $\ldots,$
$e_{n}$ is a path in $M$ , we define $\phi(\alpha)\equiv$

$\phi(e_{1})\cdots\phi(e_{n}).)$

We may assume $M$ is reduced, namely it satisfies the following condition: Let $D_{1}$ and
$D_{2}$ be faces (not necessarily distinct) of $M$ with an edge $e\subseteq\partial D_{1}\cap\partial D_{2}$ , and let $e\delta_{1}$ and
$\delta_{2}e^{-1}$ be boundary cycles of $D_{1}$ and $D_{2}$ , respectively. Set $\phi(\delta_{1})=f_{1}$ and $\phi(\delta_{2})=f_{2}$ .
Then we have $f_{2}\neq f_{1}^{-1}$ .

Moreover, we may assume the following conditions:
(1) $d_{M}(v)\geq 3$ for every vertex $v\in M-\partial M$ .
(2) For every edge $e$ of $\partial M$ , the label $\phi(e)$ is a piece.
(3) For a path $e_{1},$ $\cdots,$ $e_{n}$ in $\partial M$ of length $n\geq 2$ such that the vertex $\overline{e}_{i}\cap\overline{e}_{i+1}$ has degree

2 for $i=1,2,$ $\cdots,$ $n-1,$ $\phi(e_{1})\phi(e_{2})\cdots\phi(e_{n})$ cannot be expressed as a product of
less than $n$ pieces.

Since $R$ satisfies the conditions $C(4)$ and $T(4)$ by Theorem 5.2, $M$ is a [4, 4]-map, i.e.,
(1) $d_{M}(v)\geq 4$ for every vertex $v\in M-\partial M$ .
(2) $d_{M}(D)\geq 4$ for every face $D\in M$ .

Here, $d_{M}(v)$ , the degree of $v$ , denotes the number of oriented edges in $M$ having $v$ as
initial vertex, and $d_{M}(D)$ , the degree of $D$ , denotes the number of oriented edges in a
boundary cycle of $D$ .

Now, for simplicity, assume that $M$ is homeomorphic to a disk. (In general, we need to
consider an extremal disk of $M.$ ) Then by the Curvature Formula of Lyndon and Schupp
(see [9, Corollary V.3.4]), we have

$\sum_{v\in\partial M}(3-d_{M}v))\geq 4$
.

By using this formula, we see that there are three edges $e_{1},$ $e_{2}$ and $e_{3}$ in $\partial M$ such that
$e_{1}\cap e_{2}=\{v_{1}\}$ and $e_{2}\cap e_{3}=\{v_{2}\}$ , where $d_{M}(v_{i})=2$ for each $i=1,2$ . Since $\phi(e_{1})\phi_{(}e_{2})\phi(e_{3})$

is not expressed as a product of two pieces, we see by Corollary 5.5 that the boundary label
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of $M$ contains a subword, $w$ , with $S(w)=(S_{1}, S_{2}, \ell)$ or $(\ell, S_{2}, S_{1})$ . This in turn implies
that the S-sequence of the boundary label contains both $S_{1}$ and $S_{2}$ as subsequences.
Hence, by Proposition 4.4, we have $s\not\in I_{1}\cup I_{2}$ , a contradiction.

7. OUTLINE OF THE PROOF OF THEOREM 2.5

Suppose, for two distinct $s,$ $s’\in I_{1}\cup I_{2}$ , the unoriented loops $\alpha_{s}$ and $\alpha_{s’}$ are homotopic in
$S^{3}-K(r)$ . Then there is a reduced annular R-diagram, such that $u_{s}$ is an outer boundary
label and $u_{s}^{\pm 1}$ is an inner boundary label of $M$ . Again we can see that $M$ is a [4, 4]-map
and hence we have the following curvature formula.

$0 \leq\sum_{v\in\partial M}(3-d_{M}(v))$
.

By using this formula, we obtain the following very strong structure theorem for $M$ , which
plays key roles throughout the series of papers [5, 6, 7].

Theorem 7.1. Figure $6(a)$ illustmtes the only possible type of the outer boundary layer
of $M_{f}$ while Figure $6(b)$ illustmtes the only possible type of whole M. (The number of
faces per layer and the number of layers are vantable.)

In the above theorem, the outer boundary layer of the annular map $M$ is a submap of
$M$ consisting of all faces $D$ such that the intersection of $\partial D$ with the outer boundary of
$M$ contains an edge, together with the edges and vertices contained in $\partial D$ .

(a) (b)

FIGURE 6.

The first paper [5] of the series treates the case when the 2-bridge link is a $($ 2, $p)-$

torus link, the second paper [6], treats the case of 2-bridge links of slope $n/(2n+1)$ and
$(n+1)/(3n+2)$ , where $n\geq 2$ is an arbitrary integer, and the third paper [7] treats
the general case. The two families treated in the second paper play special roles in the
project in the sense that the treatment of these links form a base step of an inductive
proof of the theorem for genera12-bridge links. We note that both a 2-bridge link of slope
$n/(2n+1)$ with $n=2$ and a 2-bridge link of slope $(n+1)/(3n+2)$ with $n=1$ are the
figure-eight knot. It is a bit surprising that the treatment of the figure-eight knot is the
most complicated. This reminds us of the phenomenon in the theory of exceptional Dehn
filling that the figure-eight knot attains the maximal number of exceptional Dehn fillings.
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