
Two applications of Coulomb wave functions
in hydrodynamics

( )流体力学におけるクーロン波動関数の応用 2例

Takahiro Nishiyama
(西山 高弘 )

Department of Applied Science, Yamaguchi University, Ube 755-8611, Japan
e-mail: t-nishi@yamaguchi-u.ac.jp

1 Introduction
The regular Coulomb wave function $F_{L}(\eta, \rho)$ for $L\in N\cup\{0\},$ $\eta\in \mathbb{R}$ and $\rho>0$ is
defined by

$F_{L}(\eta, \rho)=C_{L}(\eta)\rho^{L+1}e_{1}^{-i\rho}F_{1}(L+1-i\eta;2L+2;2i\rho)$

$=(2i)^{-(L+1)}C_{L}(\eta)M_{i\eta,L+1/2}(2i\rho)$ ,

where $1F_{1}$ and $M$ denote Kummer’s and Whittaker‘s regular confluent hypergeometric
functions, respectively, and

$C_{L}( \eta)=\frac{2^{L}|\Gamma(L+1+i\eta)|}{e^{\pi\eta,2}(2L+1)!}=\{\begin{array}{ll}\frac{2^{L}}{(2L+1)!}\sqrt{\frac{2\pi\prod_{k=0}^{L}(k^{2}+\eta^{2})}{\eta(e^{2\pi\eta}-1)}} for \eta\neq 0,\frac{2^{L}L!}{(2L+1)!} for \eta=0,\end{array}$

[1, Chapter 14], [3, Appendix I.A.14]. The value of $F_{L}(\eta, \rho)$ is real because of the
Kummer transformation

$e^{-i\rho_{1}}F_{1}(L+1-i\eta;2L+2;2i\rho)=e^{i\rho_{1}}F_{1}(L+1+i\eta;2L+2;-2i\rho)$

[1, Eq. 13.1.27]. If $\eta$ is a constant, then $w(\rho)=F_{L}(\eta, \rho)$ is a solution to

$\frac{d^{2}w}{d\rho^{2}}+[1-\frac{2\eta}{\rho}-\frac{L(L+1)}{\rho^{2}}]w=0$ .

As another solution to this equation that is independent of $F_{L}(\eta, \rho)$ , the irregular
Coulomb wave function $G_{L}(\eta, \rho)$ is defined by

$G_{L}( \eta, \rho)=\frac{(\pm 2i)^{2L+1}\rho^{L+1}e^{\mp i\rho}}{C_{L}(\eta)(2L+1)!}\Gamma(L+1\mp i\eta)U(L+1\mp i\eta, 2L+2, \pm 2i\rho)\pm iF_{L}(\eta, \rho)$

$= \frac{(\pm 2i)^{L}}{C_{L}(\eta)(2L+1)!}\Gamma(L+1\mp i\eta)W_{\pm i\eta,L+1/2}(\pm 2i\rho)\pm iF_{L}(\eta,\rho)$
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so that $G_{L}( \eta, \rho)\frac{d}{d\rho}F_{L}(\eta, \rho)-F_{L}(\eta,\rho)\frac{d}{dp}G_{L}(\eta,\rho)=1$ . Here $U$ and $W$ denote Kummer’s
and Whittaker $s$ irregular confluent hypergeometric functions, respectively. There are
various formulas for $F_{L}(\eta, \rho)$ and $G_{L}(\eta, \rho)$ in [1]. In particular, the case $L=\eta=0$ is
easy: $F_{0}(0,\rho)=\sin\rho$ and $G_{0}(0,\rho)=\cos\rho$ .

Coulomb wave functions are mainly used in quantum physics, especially in scat-
tering theories (see [8], and rcferences therein, e.g. [7, Chapter III]). In the field of
hydrodynamics, howcver, therc are only a few papers using them. In this article, two
applications of Coulomb wavc functions in hydrodynamics are introduced. One is to
an orthogonal series associated with steady Euler flows (\S 2), and the other is to the
stability problem for pipe Poiseuille flow (\S 3).

2 An orthogonal series associated with steady
Euler flows

When an Euler flow is two-dimensional and in a steady state, then it is described by a
stream function $\psi(x, y)$ as

$\frac{\partial^{2}\psi}{\partial x^{2}}+\frac{\partial^{2}\psi}{\partial y^{2}}=-g(\psi)$

with an arbitrary differentiable function $g$ [$2$ , Section 7.4]. It is clear that each basis
function of the two-dimensional Fourier series satisfies this equation with $g$ linear.
Therefore, the two-dimensional Fourier series can be regarded as a superposition of
steady planar Euler flows.

Similarly, a steady axisymmetric Euler flow is described by a Stokes stream function
$\phi(r, x)$ in the cylindrical coordinate system $(r, \theta, x)$ as

$r \frac{\partial}{\partial r}(\frac{1}{r}\frac{\partial\phi}{\partial r})+\frac{\partial^{2}\phi}{\partial x^{2}}=-r^{2}h(\phi)$

if the $\theta$-component of velocity is equal to zero [2, Section 7.5]. Here $h$ is an arbitrary
differentiable function. If $h$ is linear, then

$r \frac{\partial}{\partial r}(\frac{1}{r}\frac{\partial\phi}{\partial r})+\frac{\partial^{2}\phi}{\partial x^{2}}=-\lambda r^{2}\phi$ (1)

with a constant $\lambda$ . What is an orthogonal series whose basis functions mean steady
axisymmetric Euler flows?

Set $\phi=\Phi(r)e^{2:}\mathfrak{n}\pi x/b(n\in \mathbb{Z}, b>0)$ in (1). Then $\Phi(r)$ should satisfy

$r \frac{d}{dr}(\frac{1}{r}\frac{d\Phi}{dr})-4(\frac{n\pi}{b})^{2}\Phi+\lambda r^{2}\Phi=0$ . (2)

As mentioned by Herrnegger [5] and Maschke [6], it has a solution

$\Phi(r)=R_{t}^{n}(\sqrt{\lambda};r):=F_{0}(\frac{1}{\sqrt{\lambda}}(\frac{n\pi}{b})^{2},$ $\frac{\sqrt{\lambda}r^{2}}{2}I$
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when $\Phi(0)=0$ is imposed. The author [9], [10] pointed out that there exists a set
$\{\lambda_{m,n}\}(m\in N)$ for each fixed $n\in \mathbb{Z}$ and a constant $a>0$ such that $R_{\eta}^{n}(\sqrt{\lambda_{m,n}};a)=0$

and
$( \frac{2n\pi}{ab})^{2}<\lambda_{1,n}<\lambda_{2,n}<\lambda_{3,n}<\cdots$ .

Furthermore, using the Hilbert-Schmidt theory, he deduced that $\{m(\sqrt{\lambda_{mn}};r)\}(m\in$

N$)$ for each fixed $n$ is a complete orthogonal system on $(0, a)$ with the weight function $r$ .
In other words, every function $f(r)$ that satisfies $\int_{0}^{a}[f(r)]^{2}rdr<\infty$ can be represented
in the form

$f(7^{\cdot}) \sim\sum_{m=1}^{\infty}R_{0}^{n}(\sqrt{\lambda_{mn}};r)\frac{\int_{0}^{a}R_{0}^{n}(\sqrt{\lambda_{mn}};t)f(t)tdt}{\int_{0}^{a}[R_{0}^{n}(\sqrt{\lambda_{mn}};t)]^{2}tdt}$ (3)

in the square integrable space with the weight $r$ .
In consequence, thc set $\{\phi_{m,n}(r, x)\}:=\{R_{t^{n}}(\sqrt{\lambda_{mn}};r)e^{2in\pi x/b}\}(m\in N, n\in \mathbb{Z})$ is a

complete orthogonal system with the weight $r$ on $(0, a)\cross(-b/2, b/2)$ such that each
basis expresses a steady axisymmetric Euler flow. It should be noted that the author
[10] derivcd an integral transform whose kernel is a Stokes stream function of a steady
axisymmetric Euler flow by letting $aarrow\infty$ and $barrow\infty$ .

Noting that
$\int_{0}^{a}[R_{t}^{n}(\sqrt{\lambda_{mn}};r)]^{2}rdr=\frac{A_{m,n}B_{m,n}}{2a\sqrt{\lambda_{mn}}}$

is valid for

$A_{m,n}= \frac{d}{dr}m(\sqrt{\lambda_{mn}};r)_{r=a}$ , $B_{m,n}= \frac{\partial}{\partial u}R_{\eta}^{n}(u;a)_{u=\sqrt{\lambda_{mn}}}$

[10, Eq. (4.1)], we can prove the following theorem, which is a more specific result than
(3):

Theorem 1 ([11]). If $\int_{0}^{a}|f(t)|tdt<\infty$ and the total vareation of $f$ is bounded on
$[\alpha_{1}, \alpha_{2}]\subset(0,a)$ , then

$\frac{f(r-0)+f(r+0)}{2}=2a\sum_{m=1}^{\infty}\frac{\sqrt{\lambda_{mn}}}{A_{m,n}B_{m,n}}R_{0}^{n}(\sqrt{\lambda_{mn}};r)\int_{0}^{a}R_{0}^{n}(\sqrt{\lambda_{mn}};t)f(t)tdt$

for all fixed $r\in(\alpha_{1}, \alpha_{2})$ and $n\in \mathbb{Z}$ .

The proof is done by extending $F_{L}(\eta, \rho)$ and $G_{L}(\eta, \rho)(L=0$ or 1 $)$ to complex $\eta$ and
$\rho$ . It is similar to the proof of Watson $f20$ , Sections 18.$21-18.24J$ on the Fourier-Bessel
series, the best-known orthogonal series with the weight function $r$ . Because of the
gamma function, howcver, Coulomb wave functions with complex arguments are more
delicate to treat than Bessel functions.
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3Stability problem for pipe Poiseuille flow
Thc stability problcm for pipe Poiseuille flow has a long history. The analytical study
of its dcpendcnce on the Reynolds number $R$ was started by Sexl [17]. After that,
many researchers investigated behavior of small disturbances to the pipe flow ffom
various theoretical vicwpoints and deduced the linear stability at every $R$ (see [4], and
references therein). It was Pekeris [13] who first applied a confluent hypergeometric
function (i.e. a Coulomb wave function with complex arguments) to the stability anal-
ysis of pipe Poiseuille flow. Sexl & Spielberg [18] followed. In this section, by using the
result of asymptotic analysis of Skovgaard [19], we consider the distribution of complex
phase velocities for small axisymmetric torsional disturbances to pipe Poiseuille flow.

Let $\Omega(r)$ be a function such that $\Omega(r)e^{i\alpha(x-d)}/r$ is a normal mode for axisymmetric
torsional disturbances to the pipe flow which has the velocity $1-r^{2}(0<r<1)$ in the
x-direction in the cylindrical coordinate system $(r, \theta,x)$ . Here the wave-number $\alpha>0$

and the complex phase velocity $c\in \mathbb{C}$ are constants. Pekeris [13] derived the linearized
equation of the same type as (2):

$7^{\cdot}$ $\frac{d}{dr}(\frac{1}{r}\frac{d\Omega}{dr})-\alpha^{2}\Omega-i\alpha R(1-r^{2}-c)\Omega=0$

with the boundary conditions $\Omega(1)=0$ and $| \lim_{rarrow+0}\Omega(r)/r|<\infty$. Setting

$\kappa=\frac{1}{4}[\frac{\sqrt{\alpha R}(1-c)}{e^{i\pi/4}}-\frac{\alpha^{2}e^{i\pi/4}}{\sqrt{\alpha R}}]$ ,

we solve it as

$\Omega(r)\propto F_{0}(\kappa,e^{i\pi/4}r^{2})\propto F_{0}(-i\kappa,$ $- \frac{1}{2}\sqrt{\alpha R}e^{1\pi/4}r^{2})$

$\propto\mu(\alpha, R, c;r):=M_{\kappa,1/2}(\sqrt{\alpha R}e^{-i\pi/4}r^{2})$

with
$\mu(\alpha, R, c;1)=0$ . (4)

This (4) determines the value of $c$ for given $\alpha$ and $R$ . If $R|1-c|arrow\infty$ with $\alpha$ fixed,
then $\kappa$ is asymptotically equal to $k$ defined by

$k= \frac{\sqrt{\alpha R}(1-c)}{4e^{i\pi/4}}=\frac{\sqrt{\alpha R}}{4|z|}e^{-i(\arg z+\pi/4)}$,

where $z=1/(1-c)$ . Therefore, in the limit

$\sqrt{R}|1-c|arrow\infty$ and $R|1-c|arrow\infty$ with $\alpha fixed$ , (5)

we have $|k|arrow\infty$ and $\mu(\alpha, R, c;1)\sim M_{k,1/2}(4kz)$ , to which the result of asymptotic
analysis of Skovgaard [19] is applicable.
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${\rm Im} z$

Figure 1: The sets $D_{1},$ $D_{2}^{\pm}$ and $\ell$ of $z$ , and the corresponding sets of $c=1-1/z$ .

Let us make ready for stating asymptotic forms of $\mu(\alpha, R, c;1)$ . As proved in [13],
every $c(=c_{r}+ic_{\dot{\tau}})$ of (4) satisfies $0<c_{r}<1$ and $c_{i}<0$ . Consequently, $z$ should
belong to one of the three sets

$D_{1}= \{s:-\pi/2<\arg s<-\pi/4, |s-\frac{1}{2}|>\frac{1}{2}, |s|<\infty\}$ ,
$D_{2}= \{s:-\pi/4<\arg s<0, |s-\frac{1}{2}|>\frac{1}{2}, |s|<\infty\}$ ,

$l= \{s:\arg s=-\pi/4, |s-\frac{1}{2}|>\frac{1}{2}, |s|<\infty\}$ .

We define the function $\xi$ by

$\xi(z)=\{\begin{array}{ll}\frac{1}{2}z^{1/2}(z-1)^{1/2}-\frac{1}{2}\ln[z^{1/2}+(z-1)^{1/2}]-i\pi/4 for z\in D_{1},\frac{1}{2}z^{1/2}(z-1)^{1/2}-\frac{1}{2}\ln[z^{1/2}+(z-1)^{1/2}] for z\in D_{2}\cup\ell.\end{array}$

Here, and from now on, multivalued functions should be understood to take their
principal values. Using this $\xi$ , we divide $D_{2}$ into the two sets

$D_{2}^{+}=\{s\in D_{2}:{\rm Im}\xi(s)\geq 0\}$ , $D_{2}^{-}=\{s\in D_{2} : {\rm Im}\xi(s)<0\}$ .

Figure 1 shows the locations of $D_{1},$ $D_{2}^{\pm}$ and $\ell$ on the z-plane and the corresponding
sets on the c-plane. It also shows the point $z=\rho_{0}e^{-i\pi/4}\in l$ with $\rho_{0}\approx 2.1844$ , at
which $\arg\xi(z)=-\pi/2$ holds, and the corresponding point

$c=c_{0}=1-\rho_{0}^{-1}e^{i\pi/4}\approx 0.67629-0.32371i$ . (6)
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Wc now express asymptotic forms of $\mu(\alpha, R,c;1)$ in the limit (5) as follows:

$\mu(\alpha, R, c;1)\sim 2(-\xi)^{1/2}(\frac{z}{z-1})^{4}I_{1}(4k\xi)1$ for $z\in D_{1}$ , (7)

$\mu(\alpha, R,c;1)\sim\frac{2^{2/3}3^{1/6}\xi^{1/6}e^{*\pi(k-2/3)}}{k^{1/3}}(\frac{z}{z-1})^{1/4}Ai((6k)^{2/3}\xi^{2/3}e^{-2\cdot\pi/3})$

for $z\in D_{2}^{-}$ , (8)

$\mu(\alpha, R,c;1)\sim\frac{2^{5/3}3^{1/6}\xi^{1/6}e^{1\pi/6}\sin\pi k}{k^{1/3}}(\frac{z}{z-1})^{1/4}Ai((6k)^{2/3}\xi^{2/3}e^{2i\pi/3})$

for $z\in\ell$ with $|z|>\rho_{0}$ . (9)

Here $I_{1}$ denotes the first-kind modffied Bessel function of the first order, and Ai denotes
the Airy function. The case $z\in D_{2}^{+}$ or $z\in\ell$ with $|z|\leq\rho_{0}$ is omitted because the
asymptotic form has no zero. For details of the derivation of (7)$-(9)$ , see [19], and also
[12].

The zeros of the right hand sides of (7)$-(9)$ approximately determine $c$ of (4) in
the limit (5). Since all zeros of $I_{1}$ and Ai are located on the imaginary axis and thc
negative real axis, respectively, the equality $\arg(k\xi)=-\pi/2$ is necessarily satisfied by
all $z$ that make the right hand side of (7) or (8) vanish. It leads to

$\arg\{z^{1/2}(z-1)^{1/2}-\ln[z^{1/2}+(z-1)^{1/2}]-\frac{i\pi}{2}\}-\arg z+\frac{\pi}{4}=0$ for $z\in D_{1}$ , (10)

$\arg\{z^{1/2}(z-1)^{1/2}-\ln[z^{1/2}+(z-1)^{1/2}]\}-\arg z+\frac{\pi}{4}=0$ for $z\in D_{2}^{-}$ . (11)

Moreover, as another neccssary condition for $\mu(\alpha, R,c;1)$ to vanish approximately, we
add

$|z|>\rho_{0}$ for $z\in\ell$ , (12)

under which the.factor $\sin\pi k$ in (9) has zeros (while Ai in (9) has no zero). By
numerically solving (10) and (11) with respect to $c=1-1/z$ and adding the straight
line segment given by (12), we obtain the Y-shaped contour shown in figure 2, on which
zeros of $\mu(\alpha, R, c;1)$ are approximately located. The three branches of this contour meet
at a point $c=c_{0}$ , alrcady appeared in (6) and figure 1. Figure 2 shows the locations
of $c$ computed by Schmid & Henningson [15, Table 1, $n=0$], $[16, p.506, n=0]$ ,
too. Most of them are on or near the Y-shaped contour. Although some are off the
leftward branch of thc contour, they are not of torsional disturbances but of meridional
disturbances (see [14, Figure 2]). It should be noted that the Y-shaped structure in
figure 2 is independent of $\alpha$ and $R$. Of course, the location of each individual $c$ of (4)
depends on $\alpha$ and $R$ , as investigated in detail in [12]. In particular, about $c_{\tau}\approx 2/3$ on
the downward branch of the contour, the following theorem can be analytically proved:

Theorem 2 ([12]). If $\alpha$ and $R$ are fixed at arbitrary positive numbers, then there exist
sequences of $c$ of (4) such that $c_{i}arrow-$oo. For all these sequences, $c_{7}arrow 2/3$ holds.
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Figure 2: The Y-shaped contour obtained from (10)$-(12)$ , with $c$ computed by Schmid
& Henningson [15], [16] for $R=3000$ $(\bullet$ $)$ and $R=2000(0)$ when $\alpha=1$ .
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