Direct and inverse bifurcation problems for nonlinear Sturm-Liouville problems

Tetsutaro Shibata
Graduate School of Engineering
Hiroshima University

1 Introduction

We consider the nonlinear Sturm-Liouville problem

\begin{align}
-\ddot{u}(t) + f(u(t)) &= \lambda u(t), \quad t \in I := (0,1), \\
\dot{u}(t) &> 0, \quad t \in I, \\
\dot{u}(0) = u(1) &= 0,
\end{align}

where \(\lambda > 0 \) is a positive parameter. \(f(u) \) is assumed to satisfy the conditions (A.1) - (A.2):

(A.1) \(f(u) \) is \(C^1 \) for \(u \geq 0 \) satisfying \(f(u) > 0 \) for \(u > 0 \). Furthermore, \(f(0) = f'(0) = 0 \).

(A.2) \(f(u)/u \) is strictly increasing for \(u \geq 0 \). Moreover, \(f(u)/u \to \infty \) as \(u \to \infty \).

The following are the typical examples of \(f(u) \) which satisfy (A.1) and (A.2).

\begin{align}
(1.4) & \quad f(u) = u^p \quad (u \geq 0), \\
(1.5) & \quad f(u) = u^p + u^m \quad (u \geq 0), \\
(1.6) & \quad f(u) = u^p \left(1 - \frac{1}{1+u^2}\right) \quad (u \geq 0),
\end{align}

where \(p > m > 1 \) are constants.
Before stating our result, let us briefly recall some known facts (cf. [1]).

(a) For each given $\alpha > 0$, there exists a unique solution $(\lambda, u) = (\lambda_\alpha(\alpha), u_\alpha) \in \mathbb{R}_+ \times C^2(\bar{I})$ of (1.1)-(1.3) with $\|u_\alpha\|_q = \alpha$. Here, $\|u_\alpha\|_q$ is the L^q-norm of u_α, and $\lambda_\alpha(\alpha)$ is called L^q-bifurcation curve.

(b) The set $\{(\lambda_\alpha(\alpha), u_\alpha) : \alpha > 0\}$ gives all solutions of (1.1)-(1.3) and is an unbounded curve of class C^1 in $\mathbb{R}_+ \times L^q(I)$ emanating from $(\pi^2, 0)$. Furthermore, $\lambda_\alpha(\alpha)$ is strictly increasing for $\alpha > 0$ and $\lambda_\alpha(\alpha) \to \infty$ as $\alpha \to \infty$.

The objective here is to discuss inverse bifurcation problems for nonlinear Sturm-Liouville problems from an asymptotic point of view.

The direct bifurcation problem, that is, for a given nonlinear term $f(u)$, the problem to investigate the local and global behavior of bifurcation curve has a long history and has been studied by many authors. We refer to [1-17] and the references therein. However, it seems that there exists a few works concerning inverse bifurcation problems. We only refer to [21].

Recently, the following basic result was obtained in [20].

Theorem 1.0 ([20]). Assume that $f_1(u)$ and $f_2(u)$ are unknown to satisfy (A.1) (A.2). Further, assume that the connected components of the set $V := \{u \geq 0 : f_1(u) = f_2(u)\}$ are locally finite. Let $\lambda_2(1, \alpha)$ and $\lambda_2(2, \alpha)$ be the L^2-bifurcation curves of (1.1)-(1.3) associated with the nonlinear term $f(u) = f_1(u)$ and $f(u) = f_2(u)$, respectively. Assume that $\lambda_2(1, \alpha) = \lambda_2(2, \alpha)$ for any $\alpha > 0$. Then $f_1(u) \equiv f_2(u)$ for $u \geq 0$.

Motivated by the result above, we here introduce an asymptotic approach to inverse bifurcation problem for (1.1)-(1.3). To be more precise, we assume that the nonlinear term $f(u)$ is unknown. Then we show that, if the asymptotic formula for the L^q-bifurcation curve $\lambda_q(\alpha)$ as $\alpha \to \infty$ is known precisely, then we are able to characterize the asymptotic property of $f(u)$ for $u \gg 1$. Here, $1 \leq q < \infty$ is a constant and we fix it throughout this paper. We call this idea **asymptotic approach for inverse bifurcation problems**.

As for the asymptotic behavior of $\lambda_q(\alpha)$ and u_α as $\alpha \to \infty$, it is known from [1] that

\[
\frac{u_\alpha(t)}{\|u_\alpha\|_\infty} \to 1
\]
locally uniformly on I as $\alpha \to \infty$. We set $g(u) := f(u)/u$. Then as $\alpha \to \infty$,

(1.8) \[\lambda_q(\alpha) = g(\|u_\alpha\|_\infty) + \xi_\alpha, \]

where $\xi_\alpha = O(1)$ is the remainder term. By (1.7), we see that $\|u_\alpha\|_\infty = \alpha(1 + o(1))$ for $\alpha \gg 1$. By this and (1.8), for $\alpha \gg 1$,

(1.9) \[\lambda_q(\alpha) = g(\alpha) + o(g(\alpha)). \]

Motivated by (1.9), as a direct problem, more precise asymptotic formula for $\lambda_q(\alpha)$ as $\alpha \to \infty$ has been given in [18].

Theorem 1.1 ([18]). Let $f(u) = u^p$, where $p > 1$ is a given constant. Then as $\alpha \to \infty$,

(1.10) \[\lambda_q(\alpha) = \alpha^{p-1} + C_0 \alpha^{(p-1)/2} + C_1 + o(1), \]

where

\[
C_0 = \frac{2(p-1)}{q} C_2, \quad C_1 = \frac{2(p-1)}{q} C_2^2, \quad C_2 = \int_0^1 \frac{1 - s^q}{\sqrt{1 - s^2 - 2(1 - s^{p+1})/(p+1)}} ds.
\]

The formula (1.10) has been obtained first for $q = 2$ in [15] by using the relationship between $\lambda_2(\alpha)$ and the critical value associated with $\lambda_2(\alpha)$.

From a viewpoint of Theorems 1.1, we consider the following inverse problem.

Problem 1. Let $f(u)$ be unknown to satisfy (A.1) and (A.2). Assume that as $\alpha \to \infty$,

(1.11) \[\lambda_q(\alpha) = g(\alpha) + Ag(\alpha)^{1/2} + O(1), \]

where $A > 0$ is a constant. Then can you conclude that $f(u) = u^p$ for some constant $p > 1$?

To state our results, we assume additional conditions (A.3) and (A.4). We put $f(u) := u^p h(u)$.
(A.3) $h(u)$ is a C^1 function for $u > 0$, and there exists a constant $\delta_0 > 0$ such that $h(u) \geq \delta_0$ for $u > 0$. Furthermore, for an arbitrary fixed constant $0 < \epsilon \ll 1$, as $u \rightarrow \infty$,

\begin{align}
\max_{c \leq s \leq 1} \frac{|uh'(us)|}{h(u)} &= O((u^{p-1}h(u))^{-1/2}), \\
\max_{0 \leq s \leq \epsilon} s^p \frac{|uh'(us)|}{h(u)} &= O((u^{p-1}h(u))^{-1/2}).
\end{align}

(A.4) There exists a constant $0 < \delta_1 \ll 1$ such that for $(1 + \delta_1)v > u > v \gg 1$,

\begin{align}
f(u) &= f(v) + f'(v)(u-v) + O(f(v)/v^2)(u-v)^2.
\end{align}

The typical examples of $h(u)$ (i.e. $f(u)$) satisfying (A.3) and (A.4) are:

$h(u) = 1$ \quad ($f(u) = u^p$), \quad $h(u) = 1 + u^{m-p}$ \quad ($f(u) = u^p + u^m$, \quad $1 < m \leq \frac{p+1}{2}$).

The answer to Problem 1 is as follows.

Theorem 1.2. Assume that all conditions in Problem 1, (A.3) and (A.4) are satisfied. Then $f(u) = u^p h(u)$ with $p = 1 + (qA)/(2C_2)$ and $h(u) = D + d(u)$, where C_2 is a constant in Theorem 1.1, A is a constant in (1.11), $D > 0$ is an arbitrary positive constant and $d(u) = O(u^{(1-p)/2})$ for $u \gg 1$.

Remark 1.3. (i) The next inverse bifurcation problem we consider in a near future should be to establish the asymptotic uniqueness of unknown $f(u)$ from the asymptotic behavior of $\lambda_\alpha(\alpha)$ as $\alpha \rightarrow \infty$.

(ii) The condition (A.3) is not technical one. Indeed, if we consider $f(u) = u^5 e^u$ and $q = 2$, then $g(u) = u^4 e^u$ does not satisfy (A.3), and we know from [16] that as $\alpha \rightarrow \infty$

\begin{align}
\lambda_2(\alpha) &= \alpha^4 e^{\alpha} + \frac{\pi}{4} \alpha^3 e^{\alpha/2} + \frac{\pi}{4} u^2 e^{\alpha/2}(1 + o(1)),
\end{align}

which is different from (1.11). Therefore, (1.11) does not hold without (A.3).

2 Sketch of the Proof of Theorem 1.2

In what follows, C denotes various positive constants independent of $\alpha \gg 1$. We write (λ, u_α) for a unique solution pair of (1.1)--(1.3) with $\|u_\alpha\|_q = \alpha$. We begin with the fundamental
tools which play important roles in what follows. It is well known that

\begin{equation}
(2.1) \quad u_\alpha(t) = u_\alpha(1-t), \quad t \in I, \quad \|u_\alpha\|_{\infty} = u_\alpha \left(\frac{1}{2} \right),
\end{equation}

\begin{equation}
(2.2) \quad u'_\alpha(t) > 0, \quad 0 \leq t < \frac{1}{2}.
\end{equation}

Multiply (1.1) by \(u'_\alpha(t) \). Then

\[(u''_\alpha(t) + \lambda u_\alpha(t) - f(u_\alpha(t)))u'_\alpha(t) = 0.\]

This along with (2.1) implies that

\begin{equation}
(2.3) \quad \frac{1}{2}u'_\alpha(t)^2 + \frac{1}{2}\lambda u_\alpha(t)^2 - F(u_\alpha(t)) = \text{constant}
= \frac{1}{2}\lambda \|u_\alpha\|_{\infty}^2 - F(\|u_\alpha\|_{\infty}), \quad \text{(put \(t = 1/2 \))}
\end{equation}

where \(F(u) := \int_0^u f(s)ds \). We set

\begin{equation}
(2.4) \quad L_\alpha(\theta) = \lambda(\|u_\alpha\|_{\infty}^2 - \theta^2) - 2(F(\|u_\alpha\|_{\infty}) - F(\theta)).
\end{equation}

This along with (2.2) and (2.3) implies that for \(0 \leq t \leq 1/2 \)

\begin{equation}
(2.5) \quad u'_\alpha(t) = \sqrt{L_\alpha(u_\alpha(t))}.
\end{equation}

By this and (2.1), we obtain

\begin{equation}
(2.6) \quad \|u_\alpha\|^q_{\infty} - \alpha^q = 2 \int_0^{1/2} \left(\|u_\alpha\|^q_{\infty} - u^q_\alpha(t)u'_\alpha(t) \right)dt = 2 \int_0^{\|u_\alpha\|_{\infty}} \left(\|u_\alpha\|^q_{\infty} - \theta^q \right) \frac{d\theta}{\sqrt{L_\alpha(\theta)}}
= \frac{2\|u_\alpha\|^q_{\infty}}{\sqrt{\lambda}} \int_0^1 \frac{1 - s^q}{\sqrt{B_\alpha(s)}}ds
= \frac{2\|u_\alpha\|^q_{\infty}}{\sqrt{\lambda}} \left\{ \int_0^1 \frac{1 - s^q}{\sqrt{J(s)}}ds + \int_0^1 \left(\frac{1 - s^q}{\sqrt{B_\alpha(s)}} - \frac{1 - s^q}{\sqrt{J(s)}} \right)ds \right\}
= \frac{2\|u_\alpha\|^q_{\infty}}{\sqrt{\lambda}} \left(C_2 + M_\alpha \right),
\end{equation}

where

\begin{equation}
(2.7) \quad J(s) := 1 - s^2 - \frac{2}{p+1}(1 - s^{p+1}),
\end{equation}

\begin{equation}
(2.8) \quad B_\alpha(s) := 1 - s^2 - \frac{2}{\lambda \|u_\alpha\|^2_{\infty}}(F(\|u_\alpha\|_{\infty}) - F(\|u_\alpha\|_{\infty}s)),
\end{equation}

\begin{equation}
(2.9) \quad M_\alpha := \int_0^1 \left(\frac{1 - s^q}{\sqrt{B_\alpha(s)}} \right)ds.
\end{equation}
Lemma 2.1. \(f'(\alpha) \leq C\alpha^{p-1} \) for \(\alpha \gg 1 \).

Lemma 2.1 is proved by direct calculation. So we omit the proof. By (A.3) and Lemma 2.1, for \(\alpha \gg 1 \),

\[
C^{-1}\alpha^{p-1} \leq \lambda \leq C\alpha^{p-1},
\]
\[
C^{-1}\alpha^{p} \leq f(\alpha) \leq C\alpha^{p},
\]
\[
C^{-1}\alpha^{p-1} \leq g(\alpha) \leq C\alpha^{p-1}.
\]

The following Lemma 2.2 plays essential roles to prove Theorem 1.2.

Lemma 2.2. \(M_{\alpha} = O(g(\alpha)^{-1/2}) \) as \(\alpha \rightarrow \infty \).

We tentatively accept this lemma and prove Theorem 1.2. Lemma 2.2 will be proved in Section 3.

Proof of Theorem 1.2. By Lemma 2.2 and Taylor expansion, for \(\alpha \gg 1 \),

\[
\|u_{\alpha}\|_{\infty} = \alpha \left(1 - \frac{2}{q\sqrt{\lambda}}(C_{2} + M_{\alpha})\right)^{-1/q}
\]
\[
= \alpha \left(1 + \frac{2}{q\sqrt{\lambda}}(C_{2} + M_{\alpha}) + \frac{2(q+1)}{q^{2}\lambda}(C_{2} + M_{\alpha})^{2}(1 + o(1))\right).
\]

By this, Lemmas 2.1 and 2.2,

\[
\lambda = \frac{f(\|u_{\alpha}\|_{\infty})}{\|u_{\alpha}\|_{\infty}} + \xi_{\alpha}
\]
\[
= \frac{1}{\alpha} \left(1 - \frac{2}{q\sqrt{\lambda}}(C_{2} + M_{\alpha}) + O(\alpha^{1-p})\right) \left(f(\alpha) + \frac{2\alpha}{q\sqrt{\lambda}} f'(\alpha)(C_{2} + M_{\alpha}) + O(\alpha)\right) + \xi_{\alpha}
\]
\[
= \frac{f(\alpha)}{\alpha} + \frac{2C_{2}}{q\sqrt{\lambda}} \left(f'(\alpha) - \frac{f(\alpha)}{\alpha}\right) + M_{\alpha} \frac{2C_{2}}{q\sqrt{\lambda}} \left(f'(\alpha) - \frac{f(\alpha)}{\alpha}\right) + O(1)
\]
\[
= \frac{f(\alpha)}{\alpha} + \frac{2C_{2}}{q} \left(f'(\alpha) - \frac{f(\alpha)}{\alpha}\right) \left(g(\alpha) + A g(\alpha)^{1/2} + O(1)\right)^{-1/2} + O(1)
\]
\[
= \frac{f(\alpha)}{\alpha} + \frac{2C_{2}}{q\sqrt{g(\alpha)}} \left(f'(\alpha) - \frac{f(\alpha)}{\alpha}\right) + O(1).
\]

This implies that for \(\alpha \gg 1 \)

\[
f'(\alpha) - r \frac{f(\alpha)}{\alpha} = O(\sqrt{g(\alpha)}),
\]
where \(r := 1 + (qA)/(2C_2) \). Then we solve (2.15) directly, and easily obtain that \(r = p \), and for \(\alpha \gg 1 \)

\[
(2.16) \quad f(\alpha) = D\alpha^p + O(\alpha^{(p+1)/2}),
\]

where \(D > 0 \) is an arbitrary constant. Thus the proof is complete. \(\blacksquare \)

3 Proof of Lemma 2.2.

In this section, we prove Lemma 2.2. Let an arbitrary \(0 < \epsilon \ll 1 \) be fixed. For \(0 \leq s \leq 1 \), we put

\[
K_\alpha(s) := J(s) - B_\alpha(s) = \frac{2}{\lambda\|u_\alpha\|_\infty^2} \{F(\|u_\alpha\|_\infty) - F(\|u_\alpha\|_\infty s)\} - \frac{2}{p+1} (1 - s^{p+1}).
\]

Then

\[
M_\alpha = \int_0^1 \frac{(1 - s^q)K_\alpha(s)}{\sqrt{J(s)}\sqrt{B_\alpha(s)}(\sqrt{J(s)} + \sqrt{B_\alpha(s)})} ds
\]

\[
= \int_{1-\epsilon}^1 \frac{(1 - s^q)K_\alpha(s)}{\sqrt{J(s)}\sqrt{B_\alpha(s)}(\sqrt{J(s)} + \sqrt{B_\alpha(s)})} ds + \int_0^\epsilon \frac{(1 - s^q)K_\alpha(s)}{\sqrt{J(s)}\sqrt{B_\alpha(s)}(\sqrt{J(s)} + \sqrt{B_\alpha(s)})} ds
\]

\[
= M_{1,\alpha} + M_{2,\alpha} + M_{3,\alpha}.
\]

Lemma 3.1. For \(\alpha \gg 1 \)

\[
|M_{1,\alpha}| = O(g(\|u_\alpha\|_\infty)^{-1/2}).
\]

Proof. By (3.1),

\[
\frac{K_\alpha'(s)}{2} = -\frac{f(\|u_\alpha\|_\infty s)}{\lambda\|u_\alpha\|_\infty} + s^p.
\]

This implies that

\[
\frac{K_\alpha'(1)}{2} = \frac{\xi_\alpha}{\lambda}.
\]
Since $f(u) = g(u)u$, for $1 - \epsilon \leq s \leq 1$, by Taylor expansion, we obtain

$$\frac{K''(s)}{2} = \frac{f'\left(\|u_\alpha\|_\infty s\right)}{\lambda} + ps^{p-1}$$

(3.6)$$= \frac{g'\left(\|u_\alpha\|_\infty s\right)\|u_\alpha\|_\infty s + g\left(\|u_\alpha\|_\infty s\right)}{g\left(\|u_\alpha\|_\infty\right)} + \xi_\alpha + ps^{p-1}$$

$$= \frac{g'\left(\|u_\alpha\|_\infty s\right)\|u_\alpha\|_\infty s + g\left(\|u_\alpha\|_\infty s\right)}{g\left(\|u_\alpha\|_\infty\right)} \left(1 - \frac{\xi_\alpha}{g\left(\|u_\alpha\|_\infty\right)} (1 + o(1))\right) + ps^{p-1}.$$

We put

(3.7) $$H(s, u) = ps^{p-1} \frac{h(us)}{h(u)} + us^{p} \frac{h'(us)}{h(u)}.$$

For $u \gg 1$,

(3.8) $$g'(u) = (p-1)u^{p-2}h(u) + u^{p-1}h'(u).$$

By this and (3.6), we obtain

(3.9) $$\frac{K''(s_{1})}{2} = -H(s_{1}, \|u_\alpha\|_\infty) \left(1 - \frac{\xi_\alpha}{g\left(\|u_\alpha\|_\infty\right)} (1 + o(1))\right) + ps^{p-1}.$$

$$= ps^{p-1} \left(1 - \frac{h\left(\|u_\alpha\|_\infty s_1\right)}{h\left(\|u_\alpha\|_\infty\right)}\right) - \|u_\alpha\|_\infty s_1 \frac{h'\left(\|u_\alpha\|_\infty s_1\right)}{h\left(\|u_\alpha\|_\infty\right)}$$

$$+ \frac{\xi_\alpha}{g\left(\|u_\alpha\|_\infty\right)} H(s_{1}, \|u_\alpha\|_\infty)(1 + o(1)).$$

By this and mean value theorem, for $1 - \epsilon < s < s_1 < s_2 < 1$, we obtain

(3.10) $$\frac{K''(s_1)}{2} = ps^{p-1} \left(1 - \frac{h\left(\|u_\alpha\|_\infty s_1\right)}{h\left(\|u_\alpha\|_\infty\right)}\right) - \|u_\alpha\|_\infty s_1 \frac{h'\left(\|u_\alpha\|_\infty s_1\right)}{h\left(\|u_\alpha\|_\infty\right)}$$

$$+ \frac{\xi_\alpha}{g\left(\|u_\alpha\|_\infty\right)} H(s_{1}, \|u_\alpha\|_\infty)(1 + o(1))$$

$$= ps^{p-1} \left(\frac{h'\left(\|u_\alpha\|_\infty s_2\right)}{h\left(\|u_\alpha\|_\infty\right)}\right) \|u_\alpha\|_\infty (1 - s_1) - \|u_\alpha\|_\infty s_1 \frac{h'\left(\|u_\alpha\|_\infty s_1\right)}{h\left(\|u_\alpha\|_\infty\right)}$$

$$+ \frac{\xi_\alpha}{g\left(\|u_\alpha\|_\infty\right)} H(s_{1}, \|u_\alpha\|_\infty)(1 + o(1))$$

$$= O(g(\|u_\alpha\|_\infty)^{-1/2})) + O\left(\frac{\xi_\alpha}{g(\|u_\alpha\|_\infty)}\right)$$

$$= O(g(\|u_\alpha\|_\infty)^{-1/2})).$$

Since $K_\alpha(1) = 0$, by (3.5), (3.10) and Taylor expansion, for $1 - \epsilon \leq s \leq 1$,

(3.11) $$\frac{K_\alpha(s)}{2} = \frac{1}{2} \left(K_\alpha(1) + K'_\alpha(1)(s - 1) + \frac{1}{2} \frac{K''(s_1)}{2} (s - 1)^2\right)$$

$$= \frac{\xi_\alpha}{2\lambda} (s - 1) + O(g(\|u_\alpha\|_\infty)^{-1/2}))(s - 1)^2.$$
By this, (3.1) and Taylor expansion, for $1 - \epsilon \leq s \leq 1$,

\begin{align}
J(s) & \geq (p - 1 - \delta_1)(1-s)^2, \\
B_\alpha(s) & = J(s) - K_\alpha(s) \geq \frac{\xi_\alpha}{\lambda} (1-s) + \frac{\delta_1}{2} (1-s)^2.
\end{align}

Then we obtain

\begin{align}
|M_{1,\alpha}| & \leq \int_{1-\epsilon}^{1} \frac{(1-s^\alpha)|K_\alpha(s)|}{J(s)\sqrt{B_\alpha(s)}} ds \\
& \leq C \int_{1-\epsilon}^{1} \left(\frac{\xi_\alpha}{\lambda} + O(g(||u_\alpha||_\infty^{-1/2})) \right) (1-s) + \frac{\delta_1}{2}(1-s)^2 \\
& = C \int_{1-\epsilon}^{1} \frac{1}{\lambda \sqrt{1-s}} ds + O(g(||u_\alpha||_\infty^{-1/2}) \int_{1-\epsilon}^{1} \frac{1-s}{\sqrt{(\delta_1/2)(1-s)^2}} ds \\
& \leq C \left(\frac{\xi_\alpha}{\lambda} + O(g(||u_\alpha||_\infty^{-1/2})) \right) = O(g(||u_\alpha||_\infty^{-1/2}).
\end{align}

Thus the proof is complete.

Lemma 3.2. $M_{2,\alpha} = O(g(||u_\alpha||_\infty^{-1/2})$ as $\alpha \to \infty$.

Proof. Since $f(u) = u^p h(u)$, for $0 \leq s \leq 1 - \epsilon$,

\begin{align}
K_\alpha(s) & = \frac{1}{\lambda ||u_\alpha||_\infty^2} \int_{||u_\alpha||_\infty s}^{||u_\alpha||_\infty} t^p h(t) dt - \frac{1}{p+1} (1-s^{p+1}) \\
& = \frac{1}{(p+1)\lambda ||u_\alpha||_\infty^2} \left\{ \left[t^{p+1}h(t) \right]_{||u_\alpha||_\infty s}^{||u_\alpha||_\infty} - \int_{||u_\alpha||_\infty s}^{||u_\alpha||_\infty} t^{p+1}h'(t) dt \right\} \\
& - \frac{1}{p+1} (1-s^{p+1}).
\end{align}

Since $\xi_\alpha > 0$, for $\epsilon \leq s \leq 1 - \epsilon$,

\begin{align}
\frac{1}{\lambda ||u_\alpha||_\infty^2} \int_{||u_\alpha||_\infty s}^{||u_\alpha||_\infty} t^{p+1}h'(t) dt & \leq \frac{1}{h(||u_\alpha||_\infty)||u_\alpha||_{p+1}^\infty} \int_{||u_\alpha||_\infty}^{||u_\alpha||_\infty} t^{p+1}h'(t) dt \\
& \leq \max_{\epsilon \leq s \leq 1} \frac{||u_\alpha||_\infty h'(||u_\alpha||_\infty s)}{h(||u_\alpha||_\infty)} (1-s) \\
& = O(g(||u_\alpha||_\infty^{-1/2}).
\end{align}

By this and mean value theorem, for $\epsilon \leq s < s_1 < 1 - \epsilon$,

\begin{align}
\left| \frac{K_\alpha(s)}{2} \right| & \leq \frac{1}{(p+1)\lambda ||u_\alpha||_\infty^2} \left\{ ||u_\alpha||_{p+1}^\infty h(||u_\alpha||_\infty) - ||u_\alpha||_{p+1}^\infty s^{p+1} h(||u_\alpha||_\infty s) \right\}
\end{align}
$+O(g(||u_{\alpha}\|_{\infty})^{-1/2}) - \frac{1}{p+1}(1-s^{p+1})$

$\leq \frac{1}{p+1}(1-s^{p+1})\left(\frac{||u_{\alpha}||_{\infty}^{-p-1}h(||u_{\alpha}||_{\infty})}{\lambda} - 1\right) + \frac{||u_{\alpha}||_{\infty}^{-p-1}s^{p+1}}{\lambda(p+1)}(h(||u_{\alpha}||_{\infty}) - h(||u_{\alpha}||_{\infty}s) + O(g(||u_{\alpha}||_{\infty})^{-1/2})$

$\leq \frac{\xi_{\alpha}}{(p+1)\lambda}(1-s^{p+1}) + \frac{||u_{\alpha}||_{\infty}h'(||u_{\alpha}||_{\infty}s_{1})}{h(||u_{\alpha}||_{\infty})} + O(g(||u_{\alpha}||_{\infty})^{-1/2})$

$= O(g(||u_{\alpha}||_{\infty})^{-1/2}).$

Note that for $0 \leq s \leq 1 - \epsilon$,

(3.18) $J(s) \geq \delta_{2} > 0.$

By this and (3.14), for $\epsilon \leq s \leq 1 - \epsilon$ and $\alpha \gg 1$,

(3.19) $B_{\alpha}(s) \geq J(s) - K_{\alpha}(s) \geq \frac{\delta_{2}}{2} > 0.$

Then by this and direct calculation, we obtain

$$|M_{2,\alpha}| \leq C \int^{1-\epsilon}_{\epsilon} |K_{\alpha}(s)|(1-s^{q})ds = O(g(||u_{\alpha}||_{\infty})^{-1/2}).$$

Thus the proof is complete.

Lemma 3.3. $M_{3,\alpha} = O(g(||u_{\alpha}||_{\infty})^{-1/2})$ as $\alpha \to \infty$.

The proof of Lemma 3.3 is similar to that of Lemma 3.2. So we omit the proof. Since $\alpha = ||u_{\alpha}||_{\infty}(1 + o(1))$, Lemma 2.2 follows from Lemmas 3.1–3.3. Thus the proof is complete.

References

[1] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,

elliptic eigenvalue problems on unbounded domains, J. Differential Equations 47 (1983),
327–357.

