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Thls lecture is based on the joint work with Professor Goro Akagi. We
study the asymptotic behavior of solutions for the one-dimensional p-Laplace
parabolic equation

$u_{t}=\triangle_{p}u:=(|u_{x}|^{p-2}u_{x})_{x}$ in $(0,1)\cross(0, \infty)$ ,

$u(0, t)=u(1, t)=0$ in $(0, \infty)$ , (1)

$u(x, 0)=u_{0}(x)$ in $(0,1)$ ,

where $p>2$ and $u_{0}\in W_{0}^{1,p}(0,1)\backslash \{0\}$ .

Definition 1. We call $u(x, t)$ a solution of (1) if $u\in C([0, \infty), W_{0}^{1,p}(0,1))\cap$

$W_{loc}^{1,2}(0, \infty;L^{2}(0,1)),$ $\triangle_{p}u\in L_{loc}^{2}(0, \infty;L^{2}(0,1)),$ $u(x, 0)=u_{0}(x)$ and $u(x, t)$

satisfies the first equation of (1) a.e. $t\in(0, \infty)$ .

We denote the $L^{q}(0,1)$ and $T4_{0}^{r^{1,q}}(0,1)$ norms by

$\Vert u\Vert_{q}:=(\int_{0}^{1}|u(x)|^{q}dx)^{1/q}$ for $u\in L^{o}(0,1)$ ,

$\Vert u\Vert_{1,q}:=(\int_{0}^{1}|u’(x)|^{q}dx)^{1/q}$ for $u\in W_{0}^{1,q}(0,1)$ .

The next theorem can be proved by using Theorem 3.6 of [1].

Theorem A. Problem (1) has a unique solution.

The next theorem is proved in [4, 5].

Theorem B. Any nontrivial solution $u(x, t)$ of (1) decays as $tarrow\infty$ , more
precisely, there exist constants $C_{i}>0$ such that

$C_{1}(t+1)^{-1/(p-2)}\leq\Vert\prime u,(t)\Vert_{2}\leq C_{2}\Vert u(t)\Vert_{1,p}\leq C_{3}(t+1)^{-1/(p-2)}$
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for $t\in[0, \infty)$ .

We investigate the asymptotic behavior of solutions as $tarrow\infty$ . To this
end, we use a change of variable

$v(x, s)=(t+1)^{1/(p-2)}u(x, t)$ , $s=\log(t+1)$ .

Then (1) is reduced.to

$v_{s}=\triangle_{p}v+\alpha v$

$v(0, t)=v(1, t)=0$

$v(x_{\dot{J}}0)=u_{0}(x)$

in $(0,1)\cross(0, \infty)$ ,

in $(0, \infty)$ , (2)

in $(0,1)$ ,

where $\alpha$ $:=1/(p-2)$ . The stationary problem for (2) is written in the
following form:

一 $(|\phi’(x)|^{p-2}\phi’(x))’=\alpha\phi(x)$ , $x\in(0,1)$ ,
(3)

$\phi(0)=\phi(1)=0$ .

The next theorem implies that each stationary solution is characterized
by its nodal number.

Theorem C. For each $k\in N$ , there exists a unique solution $\phi_{k}$ of (3) which
has exactly $k-1$ zeros in $(0,1)$ and $\phi_{k}’(0)>0$ . Moreover, the set of all
nontrivial solutions of (3) consists $of\pm\phi_{k}$ with $k\in$ N.

Proof. This theorem is a known result, but for the reader $s$ convenience we
give a sketch of proof. Observe that if $\phi$ satisfies the first equation of (3), so
is $\lambda^{-p/(p-2)}\phi(\lambda x)$ for any $\lambda>0$ . We consider the first equation of (3) with
the initial condition,

$\phi(0)=0$ , $\phi’(0)=1$ .
This problem has a unique solution, which is denoted by $\phi_{0}(x)$ . Moreover,
$\phi_{0}(x)$ is a periodic solution and it has the first zero $T>0$ . Thus $kT$ with
$k\in \mathbb{Z}$ are all the zeros of $\phi_{0}(x)$ . Then we put

$\phi_{k}(x):=(kT)^{-p/(p-2)}\phi_{0}(kTx)$ with $k\in N$ , (4)

which is the desired solution. Furthermore, it is easy to check that the set of
all nontrivial solutions of (3) consists of $\pm\phi_{k}$ with $k\in$ N. $\square$
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By using Theorem $C$ with the same way as in Berryman and Holland [2],
we can prove the next theorem.

Theorem D. For any nontrivial solution $v(s)$ of (2), there exists a unique
nontrivial stationaw solution $\phi$ ( $i.e.,$ $\phi=\phi_{k}or-\phi_{k}$ with a certain $k\in \mathbb{N}$ )
such that

$\lim_{sarrow\infty}\Vert v(s)-\phi\Vert_{1,p}=0$ .

We give a definition of the stability of stationary solutions.

Definition 2. Let $\phi$ be a nontrivial solution of (3).

(i) $\phi$ is called stable if for any $\epsilon>0$ , there exists a $\delta>0$ such that

$\sup_{0\leq s<\infty}\Vert v(s)-\phi\Vert_{1,p}<\epsilon$ when $\Vert v(0)-\phi\Vert_{1,p}<\delta$ .

(ii) $\phi$ is called asymptotically stable if it is stable and moreover there exists
a $\delta_{0}>0$ such that

$\lim_{sarrow\infty}\Vert v(s)-\phi\Vert_{1,p}=0$ when $\Vert v(0)-\phi\Vert_{1,p}<\delta_{0}$ .

We state our main result.

Theorem 1. The positive solution $\phi_{1}$ and the negative $solution-\phi_{1}$ of (3)
are asymptotically stable $and\pm\phi_{k}$ with $k\geq 2$ are unstable.

To prove Theorem 1, we define the energy

$J(v):= \int_{0}^{1}(\frac{1}{p}|v’(x)|^{p}-\frac{\alpha}{2}v(x)^{2})dx$ for $v\in W_{0}^{1,p}(0,1)$ .

Then $J$ becomes a Lyapunov functional for (2). Indeed, multiplying (2) by
$v_{s}$ and integrating it over $(0,1)$ , we have

$-\Vert v_{s}\Vert_{2}^{2}=(|v_{x}|^{p-2}v_{x}, (v_{x})_{s})-\alpha(v, v_{s})$ .

Here $(u, v)$ denotes the duality pairing of $u$ and $v$ . The above expression is
rewritten as

$\frac{d}{ds}J(v(s))=-\Vert v_{s}||_{2}^{2}\leq 0$ .

Thus, if $v(s)$ is a solution of (2), then $J(v(s))$ is decreasing. Consequently $J$

becomes a Lyapunov functional.
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Lemma 1. Each stationary solution is isolated from each other. Moreover,
we have

$J(\pm\phi_{1})<J(\pm\phi_{2})<J(\pm\phi_{3})<\cdots\nearrow 0$. (5)

Proof. Multiplying the first equation of (3) by $\phi(x)$ and integrating it over
$(0,1)$ , we have

$\int_{0}^{1}|\phi’|^{p}dx=\alpha\int_{0}^{1}\phi^{2}dx$ .

Using this relation with $\alpha=1/(p-2)$ , we get

$J( \phi)=-\frac{1}{2p}\int_{0}^{1}\phi^{2}dx$ ,

provided that $\phi$ is a solution of (3). Substituting (4) into the relation above,
we obtain

$J(\phi_{k})$ $=$ $- \frac{1}{2p}(kT)^{-2p/(p-2)}\int_{0}^{1}\phi_{0}(kTx)^{2}dx$

$=$ $- \frac{1}{2p}(kT)^{-2p/(p-2)}T^{-1}\int_{0}^{T}\phi_{0}(x)^{2}dx$ .

This expression assures (5), which implies that each stationary solution is
isolated from eaCh other 口

Lemma 2. $J$ has a global minimizer and it is equal to either $\phi_{1}or-\phi_{1}$ .

Proof. We use the Sobolev imbedding to get a constant $C>0$ such that

$J(v)= \frac{1}{p}\Vert v’\Vert_{p}^{p}-\frac{\alpha}{2}\Vert v\Vert_{2}^{2}\geq\frac{1}{p}\Vert v’\Vert_{p}^{p}-C\Vert v’\Vert_{p}^{2}$ , (6)

which shows the lower boundedness of $J$ because $p>2$ . In the standard
way, we can prove that $J$ satisfies the Palais-Smale condition. Then $J$ has a
global minimizer (for the proof, refer to [3, Theorem 2.7]). If $\phi$ is a global
minimizer, so is $|\phi|$ , which becomes a critical point of $J$ . Hence $|\phi|$ is a
solution of (3). By the strong maximum principle, $|\phi|>0$ in $(0,1)$ . Thus
$\phi$ is a positive or negative solution. Since a positive solution is unique by
Theorem $C,$ $\phi$ iS equal tO either $\phi_{1}$ Or $-\phi_{1}$ 口
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Lemma 3. For any $\epsilon>0$ , there exists an $a>J(\phi_{1})$ such that

$\{v\in W_{0}^{1,p}(0,1):J(v)\leq a\}\subset B(\phi_{1}, \epsilon)\cup B(-\phi_{1}, \epsilon)$ , (7)

where
$B(\phi_{1}, \epsilon):=\{?.J\in W_{0}^{1,p}(0,1):\Vert v-\phi_{1}\Vert_{1,p}<\epsilon\}$ .

Proof. Recall that $\pm\phi_{1}$ are minimizers of $J$ and the $W_{0}^{1,p}(0,1)$ -norm is de-
fined by $\Vert v\Vert_{1,p}=\Vert v’\Vert_{p}$ . We use contradiction. Suppose that there exist $\epsilon>0$

and a sequence $v_{n}\in W_{0}^{1,p}(0,1)$ such that $J(v_{n})$ converges to $J(\phi_{1})$ but

$\Vert v_{n}-\phi_{1}\Vert_{1,p}\geq\epsilon$ , $\Vert v_{n}+\phi_{1}\Vert_{1,p}\geq\epsilon$ . (8)

By (6), 1 $v_{n}’\Vert_{p}$ is bounded. Hence a subsequence (denoted by $v_{n}$ again) of $v_{n}$

converges to $v_{\infty}$ weakly in $W_{0}^{1,p}(0,1)$ and strongly in $L^{2}(0,1)$ . Since $J(v_{n})$

converges to $J(\phi_{1})$ , we have

$\frac{1}{p}\Vert v_{n}’\Vert_{p}^{p}=J(v_{n})+\frac{\alpha}{2}\Vert v_{n}\Vert_{2}^{2}arrow J(\phi_{1})+\frac{\alpha}{2}\Vert v_{\infty}\Vert_{2}^{2}$

Since $\phi_{1}$ is a global minimizer of $J$ , we get

$J( \phi_{1})\leq J(v_{\infty})=\frac{1}{p}\Vert v_{\infty}’\Vert_{p}^{p}-\frac{\alpha}{2}\Vert v_{\infty}\Vert_{2}^{2}$.

From two inequalities above, it follows that $\lim\sup_{narrow\infty}\Vert v_{n}’\Vert_{p}\leq\Vert v_{\infty}’\Vert_{p}$ .
Moreover, $\lim\inf_{narrow\infty}\Vert v_{n}’\Vert_{p}\geq\Vert v_{\infty}’\Vert_{p}$ because $v_{n}$ weakly converges in $W_{0}^{1,p}(0_{:}1)$ .
Since $W_{0}^{1,p}(0,1)$ is uniformly convex, $v_{n}$ converges strongly in $W_{0}^{1,p}(0,1)$ . Let-
ting $narrow\infty$ in (8), we have

$\Vert v_{\infty}-\phi_{1}\Vert_{1,p}\geq\epsilon$, $\Vert v_{\infty}+\phi_{1}\Vert_{1,p}\geq\epsilon$ .

On the other hand, since $J(v_{\infty})=J(\phi_{1})_{\dot{4}}v_{\infty}$ is equal to $\phi_{1}or-\phi_{1}$ by Lemma
2 This iS a contradiction Thus the proof iS complete 口

To prove instability of $\phi_{k}$ with $k\geq 2$ , we use

Lemma 4. Let $k\geq 2$ . Then for $any\vee F>0$ there exists a $v_{0}\in W_{0}^{1,p}(0,1)$

such that
$\Vert v_{0}-\phi_{k}\Vert_{1,p}<\epsilon$ and $J(v_{0})<J(\phi_{k})$ .

In other words, there is a point $v_{0}$ sufficiently close to $\phi_{k}$ whose energy is
less than that of $\phi_{k}$ .
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Proof. We denote by $\psi(x, (a, b))$ the unique positive solution of

$-(|\psi’(x)|^{p-2}\psi’(x))’=\alpha\psi(x)$ , $\psi(x)>0$ , $x\in(a, b)$ ,
$\psi(a)=\psi(b)=0$ ,

Recall that $\phi_{1}(x)$ is a positive solution of (3). Hence it holds that $\psi(x, (0,1))=$

$\phi_{1}(x)$ and moreover we have the relation

$\psi(x, (a, b))=c^{-p/(p-2)}\phi_{1}(c(x-a))$ , $c:=1/(b-a)$ . (9)

For $\lambda\in(0,2)$ , we define

$\Psi_{\lambda}(x):=\{\begin{array}{ll}\psi(x, (0, \lambda/k)) if x\in[0, \lambda/k],-\psi(x, (\lambda/k, 2/k)) if x\in[\lambda/k, 2/k],\phi_{k}(x) if x\in[2/k, 1].\end{array}$

By using (9) with (4), we can prove that $\Psi_{\lambda}arrow\phi_{k}$ as $\lambdaarrow 1$ and $J(\Psi_{\lambda})<$

$J(\phi_{k})$ if $\lambda\neq 1$ . When $\lambda\neq 1$ is sufficiently close to 1, $v_{0}=\Psi_{\lambda}$ satisfies the
assertion of Lemma 4 口

Proof of Theorem 1. We prove that $\phi_{1}$ is asymptotically stable. Let $\epsilon>$

$0$ . We can assume that $\epsilon$ satisfies

$B(\phi_{1}, \epsilon)\cap B(-\phi_{1}, \epsilon)=\emptyset$ , $\pm\phi_{k}\not\in\overline{B(\phi_{1_{\dot{\text{ノ}}}}\epsilon)}$ $(k\geq 2)$ .

Then by Lemma 3, we determine $a(>J(\phi_{1}))$ which satisfies (7). If $\Vert v(0)-$

$\phi_{1}\Vert_{1,p}$ is small enough, then $J(v(O))$ is sufficiently close to $J(\phi_{1})$ and hence
$J(v(O))<a$ . Thus $J(v(s))\leq J(v(O))\leq a$ . By Lemma 3, we get

$v(s)\in B(\phi_{1}, \epsilon)\cup B(-\phi_{1}, \epsilon)$ for all $s\geq 0$ .

Since $B(\phi_{1}, \epsilon)\cap B(-\phi_{1}, \epsilon)=\emptyset,$ $v(s)$ belongs to $B(\phi_{1}, \epsilon)$ for $s\geq 0$ . Therefore
$\phi_{1}$ is stable. By Theorem $D,$ $v(s)$ has a limit as $sarrow\infty$ . Since $\pm\phi_{k}\not\in\overline{B(\phi_{1},\epsilon)}$

for $k\geq 2,$ $v(s)$ must converge to $\phi_{1}$ . Therefore $\phi_{1}$ is asymptotically stable.
In the same way as above, we can show the asymptotic stability $of-\phi_{1}$ .

Let $k\geq 2$ . We show the instability of $\phi_{k}$ . Let $\epsilon>0$ . Then we choose $v_{0}$

by Lemma 4. Let $?$) $(s)$ be the solution starting from $v(O)=v_{0}$ . Then $v(s)$

converges to a certain stationary point $v_{\infty}$ . But $v_{\infty}\neq\phi_{k}$ because

$J(v_{\infty})= \lim_{sarrow\infty}J(v(s))\leq J(v_{0})<J(\phi_{k})$ .
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Since each stationary point is isolated from each other, we define

$d:= \inf$ { $\Vert u-\phi_{k}\Vert_{1,p}:u$ is any stationary solution except for $\phi_{k}$ }.

Then 1 $v_{\infty}-\phi_{k}\Vert_{1,p}\geq d>0$ . The initial data $v_{0}$ is sufficiently close to $\phi_{k}$

but the solution $v(s)$ is away from $\phi_{k}$ with at least distance $d/2$ for $s$ large
enough. Therefore $\phi_{k}(k\geq 2)$ is unstable. $\square$
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