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Multi-bubble solutions and the geometry of
the domains: a survey

Futoshi Takahashi (FF&A)
Department of Mathematics, Osaka City University (KBRFIIZA « FH)
Sumiyoshi-ku, Osaka, 558-8585, Japan

Abstract. In this paper, we consider several types of semilinear elliptic
equations with concentration phenomena. We will give a concise survey
about the relation between the existence and/or non-existence of solutions
with multiple blow up (or concentration) points and the geometry of the
domain. This survey is based on a recent joint work of the author [13] with
M. Grossi at Universita di Roma “La Sapienza”.
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1. Results.

Let © be a smooth bounded domain in RY, N > 2. In the following, G
will denote the Green function of —A under the Dirichlet boundary condition

—A;G(z,y) =6y(z), z€Q, G(z,y) =0, z €N

with a pole y € €2, and

o~ log [z — y| ™ N =2),
r‘(‘,,S,y)z{z,foglac y?  (N=2)

(N_lz)aNix - y|2_Na (N > 3)

the fundamental solution, where oy is a measure of the unit sphere of R".
Let
R(z) = lim [[(z,y) — G(z,y)]

Y-z

denote the Robin function.
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Among semilinear elliptic problems with concentration phenomena, first,
we consider the Liouwville equation
{—Au = de" in Q,

1.1
u=20 on Of (1.1)

where () is a smooth bounded domain in R? and A > 0 is a parameter.
The maximum principle implies any solution is positive on Q. This kind of
problem with exponential nonlinearity appears in many fields of mathemat-
ics, such as the study of prescribed Gauss curvature equation on a compact
Riemann surface, Chern-Simons gauge theories, the vortex theory for the
turbulent Euler flow, and so on, and it has attracted many authors for more
than decades.

This simple-looking problem is shown to have much richer mathemati-
cal structure than expected before, and the following fundamental fact was
proved by Nagasaki and Suzuki [16] around 1989, which may be considered
as a concrete example of the general principle of concentration-compactness
alternatives by P. L. Lions [18] [19] in two-dimensional critical problems.

Proposition 1 (Nagasaki-Suzuki [16]) Let uy, be a solution sequence of
(1.1) for A\ = A, | 0. Then A, fQ e“*ndr accumulates only on values 8l
for some | € {0} UNU {+o0} (mass quantization). According to these val-
ues, the subsequence of solutions {uy,} behaves as follows:

(CL)’ [fl = 0, then “’U,,\n“Loo(Q) — 0.
(b) If I = +o0, then uy, (z) — +oo (Vz € Q).

(c) Ifl € N, then there exists a set of | distinct points S = {a1,--- ,a;} C
Q, which is called a blow up set, such that ||ux,||ze(x) = O(1) for any

compact sets K C Q\ S, {uy,(x)} has a limit for any z € Q\ S, and
uy,ls — +oo (I-points blow up).

Moreover, in the last case, we have
!
Uy, — 87!'2 G(ya;)) nCE(QA\S) (n— o)
i=1
and each a; € S must satisfy

l
1 = :
§VR(GZ) - E V,,.G(ai, aj) = 0, (Z = 1, 2, s ,l) (12)

j=1,57
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Here, G and R denotes the Green function of —A acting on H3(Q) and the
Robin function, respectively.

For the proof, the authors in [16] used the complex function theory, more
precisely, a representation formula of solutions to (1.1), called the Liouville
integral formula was a key ingredient. For other proofs of Proposition 1 by
using real analysis and PDE theory, see also Brezis-Merle [3] and Ma-Wei
[14].

More generally, we consider the mean field equation:

V{z)e¥ .
—Au = /\T———n V((z))e“dx in Q, (1.3)
u=0 on 0f

where A > 0 and V is a given function in C%(Q). In this case, Ma and Wei
[14] proved the following result.

Proposition 2 (Ma-Wei [14]) Assume V € C?(Q)),infqV > 0. Let {ux} be
a sequence of solutions to (1.8) which is not uniformly bounded from above
for A bounded. Then there erists a subsequence A, and a set of | distinct
points S = {a1, - ,a;} such that A\, — 8nl, | € N, and u,, blows up at
ai, -+ ,a; in S, that is,

V(x)e¥rn
An fa V((w)) e¥ndz 8 ; O
in the sense of measures on Q) asn — 0o. Moreover, blow up points {a1, - ,a;}
must satisfy :
lVR(aZ) - i VxG(ai,aj) — ——1-V ].Og V(a.,,) = 6 (14)
2 J=1,j#1 8

fori=1,2,---,1l.

After the appearance of these results, the existence of blowing-up solu-
tions with multiple blow up points became the next problem to be studied.
On this issue, several affirmative results are now available as follows.



Let [ > 1 be an integer. Assume ' = {z € Q|V(z) > 0}
() = () x -+ x (@) (I times) and A = {(&,---,&) € ()

&; for some i # j}. Now, define the Hamiltonian function

{

F(&,--,&) =) R(&) ZG% Zlogvgl (1.5)

=1 1<; J<z
on ()" \ A. Note that the former necessary conditions (1.2) or (1.4) for
I-distinct points {aj,- -, a;} to be blow up points is nothing more than that
(a1,--+, ) is a critical point of the Hamiltonian F on (') \ A.
We recall some definitions from the critical point theory.

Definition 3 ([17], [8]) Let D C RN and F : D — R is a C* function. A
bounded set K of critical points of F is called a C'-stable critical set of F if
for any u > 0, there exists § > 0 such that if G : D — R is a C! function
with the property that

max (|G(z) — F(z)| +|VG(z) — VF(z)]) < 4,

dist(z,K)<u

then G has at least one critical point x with dist(z, K) < u.

Definition 4 ([7]) Let D C RN and F : D — R be a C* function. We say
that F' links in D at critical level ¢ relative to B and By if the followings
hold: B, By closed subsets of D with B connected, By C B, and if we set

I'={® e C(B,D)[3¥ e C([0,1] x B, D)
5.t 0(0,) = Idg, U(1,-) = ®, U(t, )|, = Ids, (¥t € [0,1])}

and
= inf F
¢ = jaf sup F(2(y)),
then we have sup,cpg, F(y) < ¢ and for any y € 0D with F(y) = c, there
erists a vector 7, tangent to 0D such that VF(y) -1, # 0.

Under the circumstances of Definition 4; it is standard to assure that there
exists a critical point y € D such that F'(y) = c. Therefore the value c is
called a nontrivial critical level of F in D.
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Proposition 5 (Existence of [-blowing up solution) Assume ' = {z €
QV(z) > 0} # ¢. If the Hamiltonian F defined by (1.5) satisfies one of the

following assumptions:

(1) F has a nondegenerate critical point (a1,-- - ,a;) € (')'\ A (Baraket-
Pacard [2]), or

(2) there exists a stable critical set K for F in ()" \ A (Esposito-Grossi-
Pistoia [8]), or

(3) there exists an open set D compactly contained in () \ A where F
has a nontrivial critical level ¢ (del Pino-Kowalczyk-Musso [7])

then there exists a solution sequence {uy} to (1.8) such that uy blows up
ezactly on S = {a1,-- ,ar}.

It is known that a bounded set K of critical points of F is a stable critical
set if K is a set of strict local minimum points of F: F(z) = F(y) for any
z,y € K and for some open neighborhood U of K it holds F(z) < F(y) for
z € K and y € U\ K. Also a strict local maximum set is a stable critical set.
Moreover, if the Brower degree deg(VF, U, 0) # 0 for any € > 0 small, where
U. is an e-neighborhood of K, then K is stable. Furthermore, if @ C R? is
not simply-connected, for example, if it has a small hole, then it is proved
in [7] that such a set D in which F has a nontrivial critical level actually
exists for any | > 1. Therefore in this case, we have a blowing-up solution
sequence to (1.1) or (1.3), whose blow up set S consists of I-distinct points
for any [ € N.

Even on simply-connected domains, we sometimes have the existence of
multi-bubble solutions. To state the next result, we define [-dumbbell shaped
domain for | € N. Prepare [ smooth bounded domains €, -- - , € in R? with
NQ,; = ¢ifi#j. Assume that

Q%c{(z,y) eR?|a;<z<b}, Un{y=0}#¢

for some a; < b; < @41 < biy1,(i=1,---,1—1) and set Qy =Q; U--- UL,
Let
C.={(z,y) eR?||y| < e,a1 <z < by}

and let €, be a simply-connected domain such that Q¢ C Q. C Qo U C,. We
call 2. a I-dumbbell shaped domain.
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Proposition 6 ([8] [-points blow up solution on dumbbell shaped domains)
Let 1 > 2 and V() = 1. Then there exists |-dumbbell shaped domain (in
particular, it is simply connected but not convexr) Q and an l-points set S =
{a1, - ,a;} such that there exists a solutions {uy} to (MFE) satisfying

e

l
)\—'———fn o — 87 ; 5(11-

as A — 8nl on €.

However, on conver domains, there does not exist any blowing up solu-
tions with multiple blow up points. The nonexistence result for the Liouville
equation proved in [13] is the following:

Theorem 7 (Grossi-Takahashi [13]) Assume Q is convez. Let {uy} be a
solution sequence of (1.1) with ||ux||pe(ay — +00 as A — 0. Then we have

)\/ e dr — 87
Q0

as A — 0.
Theorem 7 and a direct application of some results in [11] [12] yields

Corollary 8 (Grossi-Takahashi [13]) Let uy and $2 be as in Theorem 7. Then
the Morse index of uy is exactly 1 for A > 0 sufficiently small. Furthermore,
uy has only one critical point x, which is the global maximum point of uy,
and it holds

(z —zy) - Vup(z) <0, VzeQ\{z}

In particular, the level sets of uy are strict star-shaped with respect to xy. If
OS2 has strictly positive curvature at any point, then the level sets of uy have
strictly positive curvature at any point different from x) for A > 0 sufficiently
small. In particular, the level sets are strictly conver.

Almost the same argument as in Theorem 7 yields the following:

Theorem 9 (Grossi-Takahashi [13]) Assume Q is convez. Let {u)} be a
solution sequence of (1.8) with |[ux||Le(q) not bounded from above while A > 0
bounded. Assume infqV > 0 and R — % logV is a convex function on Q.
Then A accumulates only on 8m. In particular, if V > 0 is a concave function
on §), we have the same conclusion.
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This is a striking contrast with the known existence theorems of multiple-
blowing-up solutions on domains which meet some topological conditions, see
the results of [2], [8], [7] described in Proposition 5.

We may consider a different type of problem in 2-dimension, which is
socalled a large exponent problem:

—Ay = P 2
{ Au= (us)? mQCR? p>1, (1.6)

u=0 ondf.

Here Q is a smooth bounded domain in R? and p > 1 is a large exponent.

In [20] [21], the authors showed that least energy solutions u, to (1.6)
(which may be chosen positive on §2) is bounded from above and below away
from zero in L*® norm sense uniformly for p large. Also, after taking a subse-
quence, p|Vu,|?dz — 8med, in Radon measures, where a € 2 is a minimum
point of the Robin function R [10]. In this sense, least energy solutions to
(1.6) exhibit single point condensation phenomena on any smooth bounded
domain in R2,

Recently, Santra and Wei [23] studied the asymptotic behavior of con-
centrating solutions to (1.6) with multiple concentration points. Under the
assumption

p [ @o)ide = 0W), (p o0 (1.7
Q
they obtained the following result.

Proposition 10 (Santra-Wei [23]) Let u, be a solution sequence to (E,)
satisfying the assumption (1.7). Then there erxists a subsequence p, — 00
such that

o [ () o)rodo — 87vEl, LN
holds. Moreover, "
(1) [|up, llzeo() — V€ as pn — 00,
(2) there exists l-points set S = {a1,--- ,a1} C Q such that

l
DnUp, — 87!"/;2 G(7 CL,,;) in Clzoc(ﬁ \ 'S) (pn — OO)

=1
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(3) a; € S satisfies

l
1 ~
'2-VR(0,,2> - E sz(CLi, aj) = 0, 1= ]., 2, T ,l. (].8)

=1,

Santra and Wei treated the more general problem which includes the
polyharmonic operator with the Dirichlet boundary conditions.

On the existence of concentrating solution sequence with multiple con-
centration points, Esposito, Musso and Pistoia [9] proved the existence of
such sequence to the problem

—Au =uP in Q,
u>0 in €2,
u=20 on 0f)

when € satisfies some topological conditions. In particular, for example, un-
der the assumption that €2 is not simply connected, they proved the existence
of solution sequence {u,} which satisfies

!
p|Vu,|*dz — 8me Z 8., weakly in the sense of measures of O
j=1

as p — oo for some -different concentration points {a;},_; C Q, with {a;}
satisfying the characterization (1.8).

However, the same argument as in Theorem 7 yields the following nonex-
istence result.

Theorem 11 Let Q C R? be a bounded convex domain and let {u,} be a
solution sequence satisfying the assumption (1.7). Then there erists a € (),

for which

lim p [ ((up)s)Pdo = 87VE,  pu, — 8rVEG(,a) in CE(@\ {a}

p—oo

holds true.

Thus the assumption on the domain in [9] is sharp for the construction of
multiple concentrating solution.
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We may consider the higher-dimensional problem:

—Au=uP" inQcCcRN (N >3),
u>0 in{, (1.9)
u=0 on0f

where p = (N + 2)/(N — 2) is the critical Sobolev exponent with respect to
the embedding H(Q) — LP*!(Q), and € > 0 is a parameter. To describe
the result by Bahri, Li and Rey [1] on the blowing-up sequence to (1.9), we
prepare some notations.

For £ = (21, ,2) € Q x --- x Q (I times), we define [ x | matrix

M(f) = (mij)ISi,jgl as
my = R(z:), my = —G(zi,z;5) (i # J)

where R is the Robin function on Q. Let p(Z) denote the least eigenvalue
of M (%), which is known to be simple, and let 7(%) € R’ be the eigenvector
associated with p(Z). It is proved in [1] that all components of 7(Z) may be
chosen to be positive. When p(Z) > 0, the function

Fz(A) = % PAM(Z)A —log Ay --- A

defined for positive vector A = {(Ay, -+, A;)) € (Ry) is strictly convex, so it
has a unique minimum point, which is denoted by A(Z) € (R, )".

Bahri-Li-Rey first proved the following proposition when N > 4. After
several years, Rey [22] proved that the same results as Bahri-Li-Rey’s hold
true even for N = 3.

Proposition 12 (Bahri-Li-Rey [1], Rey [22]) Let N > 3 and {uc}eso0 be a
sequence of solutions to (1.9) which blows up at {ay, - ,a;} CQ ase — 0,
in the sense that

l N l
Vue?dz ~ SM? "6, ul7 =S4,
i=1 i=1

where S is the best constant for the Sobolev inequality on RY. Then

(1) @=(ay, -+ ,a) € Q (interior points)



(2) p(@) >0 (no collision of blow up points occurs)
(3) it holds

—VRaz)Az Z V.Gl(as,a;)AA; =0 (Vi=1,2,---,1)
J=Lj#¢
where
A@) if p(@) > 0,
= YAy, ) =
) {r(fz') io(a) =

As for the existence of multi-peak solutions in higher dimensional case,
Musso and Pistoia [15] constructed solutions to (1.9) which blow up and
concentrate at [-different points {ai,---,a;} in Q, if {a1, -, a;} satisfies,
among other things,

—VR(az Z V.G(ai,a;)MA; =0, (i=1,2,---,0),  (1.10)

J=1,j#i

where A; > 0,(¢ =1,---,1) are some positive constants. We refer to [15] for
the precise notion of solutions which “blow up and concentrate at [-different
points” and the other assumption imposed on the prescribed blow-up points

{al,“' ,at}-

Their method can produce also multispike solutions to the equation

N+2

—Au =uvN-2 +¢€u in €2,
u >0 in Q, (1.11)
u=20 on 0f),

which blow up and concentrate on [-different points satisfying (1.10), when
N > 5. Also they exhibited an example of contractible domains for which
the problem (1.9), or (1.11) has a family of solutions which blow up and
concentrate at [-different points.

However, like Theorem 7 and Theorem 11, we have the nonexistence
results on convex domains.

45



46

Theorem 13 ([13]) Let Q2 be a smooth bounded, convex domain in RN, N >
3. Then any solution sequence {u.} of the problem

Ay = y¥EE in €,
u>0 in €,
u=0 . on OS2

must exhibit the single point blow-up as e — 0, i.e.,

2N

|Vu,[2dz — SN25,, uX? — SN2,
for some a € Q, where S is the best constant of the Sobolev inequality.

Theorem 14 Assume Q C RY, N > 4 is convex. Then forl > 2, there does
not exist a solution sequence {uc} of (1.11), which blows up and concentrate
at [-different points {a, -+ ,a} in Q, those points satisfying (1.10).

2. Outline of Proof.

All nonexistence results in the former section come from the following
Main Theorem.

Main Theorem. Let Q be a smooth bounded domain in RN, N > 2 and let
| > 2 be an integer. Set X' =Q x--- x Q (I times), and A = {(&,--+,&) €
Q| & = & for somei# j}. For given constants A)B > 0 and A =
(A1, ,A), Ay >0, 1 <i<lI, define a function Fp : Q' \ A — R,

l

i=1 iy
1<4,5<

where K € C%(Q) is such that R+ K 1is a convex function on ().
Assume 2 is convex. Then there does not exist any critical point (ay,- - , a;)
of Fo in Q' \ A. That is, there does not exist (aj,- -+ ,a;) € Q' \ A such that

l
A(VR(a;) + VK(a:) A =B > V.G(ai,a;)AA; =0

=1,
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fori=1,2,--- 1.

Main Theorem is proved by a contradiction argument, which uses the follow-
ing two facts:

Theorem 15 (Caffarelli-Friedman [5] (N = 2), Cardaliaguet-Tahraoui [6]
(N > 3)) The Robin function on a domain Q is strictly conver if Q is a
smooth bounded convexr domain.

Lemma 16 Let Q ¢ RV N > 2 be a smooth bounded domain. For any
PecRY anda,beQ,a#b, there holds

asz(x = F)-ve) (aga(jx, a)> (B%(Z b)) o |

= (2 - N)G(a,b) + (P —a)-V,G(a,b) + (P —b) - V,G(b,a),

where v(x) is the unit outer normal at z € 9.

Note that in Lemma 16, we need not to assume the convexity of €2.

Proof. We show a formal calculation here for describing the idea of the
proof. However, the standard approximating procedure for the delta function
as in Brezis and Peletier [4] will yield the rigorous proof. Denote G,(z) =
G(z,a),Gy(z) = G(z,b). For given P € RY, define

w(z) = (x — P) - VG4(x).
Then we have

—Aw(z) = 28,(z) + (x — P) - Véu(x),
—AGy(z) = 0y(2).

Multiplying Gy(z), w(z) to these equations respectively, and subtracting, we
obtain

/Q(AGb(x)) w(z) — (Aw(z)) Gp(z)dx

_ / {264(2)Gy(z) + (z — P) - V6,(2)Gy(z) — p(z)w(z)} dz
Q
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Now, integration by parts gives

LHS = | (z—-P)-v(z) (3(’;“55”)) (acg,lfm) ds,

o

RHS = 2G,(a) — (b)+/( P) - V6,(z)Gy(z)dz

= 2Gb(a + Z/
— 2G,(a) - Z / (2 — R)GH(@)}u(a)dz

= 2Gy(a) — w(b) - Z '5'— {(z: — P)Geo(z)}
= (2 - N)G(a,b) + ( —a) - V;G(a,b) + (P —b) - V.G(b,a).

Gy(z)dz

T=a

This proves Lemma 16. O

Proof of Main Theorem
Essential points of the proof can be seen when the function K is constant,

so we give a proof for this case. We argue by contradiction and assume that
there exists {a1, -+ ,a;} C Q (I > 2) satisfying

l
1
§AVR(ai)Af—B > VaG(ai, a5) il

J=1,5#1

0 (2.1)

P € Q will be chosen later. Multiplying P — a; to (2.1) and summing up,
we obtain

=1

=B Z Z — a, V:L'G(aia aJ)AiAJ

=1 j=1,j#1
=B Z {(P — a;) - V.G(a;j,ar) + (P — ak) - Vo.G(ak, a;)} AjAx.

1<j<k<l
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By Lemma 16, we see that
(P —a;) - VoG(aj,a;) + (P - ai) - V.G(ak, a;)

- /an(w = P)-v(z) (%G—J)) (%y;ak)) dsg + (N —2)G(ay, ar).

The RHS is positive by the convexity of Q2 and the positivity of Green’s
function:

(:c~P)-v(x)>0,a—Cigg—’—9—i—) <0, (z€0Q), G(aj,ar)>0(5#k).
Thus z
) (@i = P)- VR(a;) < 0. (2.2)

Here, we recall the important fact that the Robin function is strictly
convex on a convex domain, see Theorem 15. Thus, all level sets of R is
strictly star-shaped with respect to its unique minimum point P € Q:

(a— P)-VR(a) >0, YaeQ\{P}.

In particular,
l

D _(a: = P)- VR(a:) 2 0. (23)
i=1
A contradiction is obvious from (2.2) and (2.3). a
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