Existence and non-existence of the nonlinear Schrödinger equations for one and high dimensional case

Yohei Sato

Osaka City University Advanced Mathematical Institute, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Smiyoshi-ku, Osaka 558-8585 JAPAN e-mail : y-sato@sci.osaka-cu.ac.jp

0. Introduction

In this report, we will introduce the results of [S] and related results. We consider the following nonlinear Schrödinger equations:

$$-\Delta u + (1+b(x))u = f(u) \quad \text{in } \mathbf{R}^N,$$

$$u \in H^1(\mathbf{R}^N). \tag{*}$$

We mainly considered the one-dimensional case in [S] but, in this report, we consider not only one-dimensional case but also the high-dimensional case. Here, we assume that the potential $b(x) \in C(\mathbf{R}, \mathbf{R})$ satisfies the following assumptions:

- (b.1) $1 + b(x) \ge 0$ for all $x \in \mathbb{R}^N$.
- (b.2) $\lim_{|x|\to\infty} b(x) = 0.$

(b.3) There exist $\beta_0 > 2$ and $C_0 > 0$ such that $b(x) \leq C_0 e^{-\beta_0 |x|}$ for all $x \in \mathbf{R}^N$.

We also assume that the nonlinearity $f(u) \in C(\mathbf{R}, \mathbf{R})$ satisfies the following

- (f.0) $f(u) = |u|^{p-1}u$ for $p \in (1, \frac{N+2}{N-2})$ when $N \ge 3$ and $p \in (1, \infty)$ when N = 2.
- (f.1) There exists $\eta_0 > 0$ such that $\lim_{|u|\to 0} \frac{f(u)}{|u|^{1+\eta_0}} = 0$.
- (f.2) There exists $u_0 > 0$ such that

$$egin{aligned} F(u) &< rac{1}{2}u^2 & ext{ for all } u \in (0, u_0), \ F(u_0) &= rac{1}{2}u_0^2, & f(u_0) > u_0. \end{aligned}$$

(f.3) There exists $\mu_0 > 2$ such that $0 < \mu_0 F(u) \le u f(u)$ for all $u \ne 0$.

To consider the (*), the following equation plays an important roles:

$$-\Delta u + u = f(u) \quad \text{in } \mathbf{R}^N, \quad u \in H^1(\mathbf{R}^N).$$

$$(0.1)$$

From (b.2), the equation $-\Delta u + u = f(u)$ appears as a limit when |x| goes to ∞ in (*). To show the existence of positive solution of (*) in our arguments, the uniqueness (up to translation) of positive solutions of (0.1) is also important. Under the condition (f.0), it is well-known that the uniqueness (up to translation) of the positive solutions of (0.1). When N = 1, it is known that the conditions (f.1) and (f.2) are sufficient conditions for (0.1) to have an unique (up to translation) positive solution:

Remark 0.1. In Section 5 of [**BeL1**], Berestycki-Lions showed that if f(u) is of locally Lipschitz continuous and f(u) = 0, then (f.2) is a necessary and sufficient condition for the existence of a non-trivial solution of (1.0). Moreover, it also was shown that the uniqueness (up to translation) of positive solutions under the (f.2). In Section 2 of [**JT1**], Jeanjean-Tanaka showed that when f(u) is of continuous, (f.1) and (f.2) are sufficient conditions for (0.1) to have an unique positive solution.

The condition (f.3) is so called Ambrosetti-Rabinowitz condition, which guarantees the boundedness of (PS)-sequences for the functional corresponding to the equation (*) and (0.1). To state an our result for one-dimensional case, we also need the following assumption for b(x).

(b.4) When N = 1, there exists $x_0 \in \mathbf{R}$ such that

$$\int_{-\infty}^{\infty} b(x-x_0)e^{2|x|} dx \in [-\infty,2).$$

Our first theorem is the following.

Theorem 0.2. When $N \ge 2$, we assume that (b.1)-(b.3) and (f.0) hold. Then (*) has at least a positive solution. When N = 1, we assume that (b.1)-(b.4) and (f.1)-(f.3) hold. Then (*) has at least a positive solution.

In [S], we give a proof of Theorem 0.2 for the one-dimensional case. To prove the Theorem 0.2, we developed the arguments of [BaL] and [Sp]. We remark that, for high-dimensional case, the proof of Theorem 0.2 almost are parallel to the proof of [BaL]. However, for the proof of the one-dimensional case, we essentially developed the arguments of [BaL] and [Sp]. Bahri-Li [BaL] showed that there exists a positive solution of

$$-\Delta u + u = (1 - b(x))|u|^{p-1}u \quad \text{in } \mathbf{R}^N, \qquad u \in H^1(\mathbf{R}^N), \tag{0.2}$$

where $N \ge 3$, $1 and <math>b(x) \in C(\mathbf{R}, \mathbf{R})$ satisfies (b.2)-(b.3) and

(b.1)' $1 - b(x) \ge 0$ for all $x \in \mathbb{R}^N$.

For one dimensional case, Spradlin [Sp] proved that there exists a positive solution of the equation

-u'' + u = (1 - b(x))f(u) in \mathbf{R} , $u \in H^1(\mathbf{R})$. (0.3)

They also assumed that $b(x) \in C(\mathbf{R}, \mathbf{R})$ satisfies (b.1)' and (b.2)–(b.3) and f(u) satisfies (f.1)–(f.3) and

(f.4) $\frac{f(u)}{u}$ is an increasing function for all u > 0.

When (f.0) or (f.4) holds, we can consider the Nehari manifold and they argued on Nehari manifold in [**BaL**] and [**Sp**]. In our situation, when N = 1, we can not argue on Nehari manifold. This was one of the difficulties which had to overcome in [**S**].

From the above results and Theorem 0.2, it seems that, when N = 1, Theorem 0.2 holds without condition (b.4). However (b.4) is an essential assumption for (*) to have non-trivial solutions. In what follows, we will show a result about the non-existence of nontrivial solutions for (*).

In next our result, we will assume that N = 1 and b(x) satisfies the following condition:

(b.5) There exist $\mu > 0$ and $m_2 \ge m_1 > 0$ such that

 $m_1\mu e^{-\mu|x|} \le b(x) \le m_2\mu e^{-\mu|x|}$ for all $x \in \mathbf{R}$.

Here, we remark that, if (b.5) holds for $\mu > 2$, then b(x) satisfies (b.1)-(b.3) and

$$\frac{2\mu}{\mu-2}m_1 \le \int_{-\infty}^{\infty} b(x)e^{2|x|} \, dx \le \frac{2\mu}{\mu-2}m_2.$$

Thus, when $m_2 < 1$ and μ is very large, the condition (b.4) also holds.

Our second result is the following:

Theorem 0.3. Assume N = 1, (b.5) holds and $f(u) = |u|^{p-1}u$ (p > 1).

- (i) If $m_1 > 1$, there exists $\mu_1 > 0$ such that (*) does not have non-trivial solution for all $\mu \ge \mu_1$.
- (ii) If $m_2 < 1$, there exists $\mu_2 > 0$ such that (*) has at least a non-trivial solution for all $\mu \ge \mu_2$.
- (iii) There exists $\mu_3 > 0$ such that (*) does not have sign-changing solutions for all $\mu \ge \mu_3$.

From Theorem 0.3, we see that Theorem 0.2 does not hold except for condition (b.4). This is a drastically different situation from the high-dimensional cases. This is one of the interesting points in our results.

We remark that the condition (b.4) implies $\int_{-\infty}^{\infty} b(x) dx < 2$ and the assumption of (ii) of Theorem 0.3 also means $\int_{-\infty}^{\infty} b(x) dx < 2$. Thus we expect that the difference from existence and non-existence of non-trivial solutions of (*) depends on the quantity of integrate of b(x).

We can obtain this expectation from another viewpoint, which is a perturbation problem. Setting $b_{\mu}(x) = m\mu e^{-\mu|x|}$, $b_{\mu}(x)$ satisfies (b.5) and, when $\mu \to \infty$, $b_{\mu}(x)$ converges to the delta function $2m\delta_0$ in distribution sense. Thus (*) approaches to the equation

$$-u'' + (1 + 2m\delta_0)u = |u|^{p-1}u \quad \text{in } \mathbf{R}, \quad u \in H^1(\mathbf{R}), \tag{0.4}$$

in distribution sense. Here, if u is a solution of (0.4) in distribution sense, we can see that u is of C^2 -function in $\mathbb{R} \setminus \{0\}$ and continuous in \mathbb{R} and u satisfies

$$u'(+0) - u'(-0) = 2mu(0).$$
(0.5)

Moreover, since u is a homoclinic orbit of -u''+u = f(u) in $(-\infty, 0)$ or $(0, \infty)$, respectively, u satisfies

$$-\frac{1}{2}u'(x)^2 + \frac{1}{2}u(x)^2 - \frac{1}{p+1}|u(x)|^{p+1} = 0 \quad \text{for} \quad x \neq 0.$$
 (0.6)

When $x \to \pm 0$ in (0.6), from (f.1), we find

$$u'(-0) = -u'(+0), \quad |u'(\pm 0)| < |u(0)|.$$
 (0.7)

Thus, from (0.5) and (0.7), it easily see that (0.4) has an unique positive solution when |m| < 1 and (0.4) has no non-trivial solutions when $|m| \ge 1$. Therefore we can regard Theorem 0.3 as results of a perturbation problem of (0.4).

To prove Theorem 0.3, we develop the shooting arguments which used in [BE]. Bianchi and Egnell [BE] argued about the existence and non-existence of radial solutions for

$$-\Delta u = K(|x|)|u|^{\frac{N+2}{N-2}}, \quad u > 0 \quad \text{in } \mathbf{R}^N, \quad u(x) = O(|x|^{2-N}) \quad \text{as } |x| \to \infty.$$
(0.8)

Here $N \ge 3$ and K(|x|) is a radial continuous function. Roughly speaking their approach, by setting u(r) = u(|x|), they reduce (0.8) to an ordinary differential equation and considered solutions of two initial value problems of that ordinary differential equation which have initial conditions $u(0) = \lambda$ and $\lim_{r\to\infty} r^{N-2}u(r) = \lambda$. And, examining whether those solutions have suitable matchings at r = 1, they argued about the existence and non-existence of radial solutions. In [S], to prove Theorem 0.3, we also consider two initial value problems from $\pm \infty$, that is, for $\lambda_1, \lambda_2 > 0$, we consider the following two problems:

$$-u'' + (1 + b(x))u = f(u),$$

$$\lim_{x \to -\infty} e^{-x} u(x) = \lim_{x \to -\infty} e^{-x} u'(x) = \lambda_1,$$
(0.9)

and

$$-u'' + (1 + b(x))u = f(u),$$

$$\lim_{x \to \infty} e^x u(x) = -\lim_{x \to \infty} e^x u(x) = \lambda_2.$$
(0.10)

Then (0.9) and (0.10) have an unique solution respectively and write those solutions as $u_1(x; \lambda_1)$ and $u_2(x; \lambda_2)$ respectively. We set

$$\Gamma_1 = \{ (u_1(0;\lambda_1), u_1'(0;\lambda_1)) \in \mathbf{R}^2 \mid \lambda_1 > 0 \}, \Gamma_2 = \{ (u_2(0;\lambda_2), u_1'(0;\lambda_2)) \in \mathbf{R}^2 \mid \lambda_2 > 0 \}.$$

Then, $\Gamma_1 \cap \Gamma_2 = \emptyset$ is equivalent to the non-existence of solutions for (*). Thus it is important to study shapes of Γ_1 and Γ_2 . In respect to the details of proofs of Theorem 0.3, see [S].

In next sections, we state about the outline of the proof of Theorem 0.2. We will consider the one-dimensional case in Section 1 and treat the high-dimensional case in Section 2.

1. The outline of the proof of Theorem 0.2 for N = 1

In this section, we consider the case N = 1. We will developed a variational approach which was used in [**BaL**] and [**Sp**].

In what follows, since we seek positive solutions of (*), without loss of generalities, we assume f(u) = 0 for u < 0. To prove Theorem 0.2, we seek non-trivial critical points of the functional

$$I(u) = \frac{1}{2} ||u||_{H^1(\mathbf{R})}^2 + \frac{1}{2} \int_{-\infty}^{\infty} b(x) u^2 \, dx - \int_{-\infty}^{\infty} F(u) \, dx \in C^1(H^1(\mathbf{R}), \mathbf{R}),$$

whose critical points are positive solutions of (*). Here we use the following notations:

$$||u||_{H^{1}(\mathbf{R})}^{2} = ||u'||_{L^{2}(\mathbf{R})}^{2} + ||u||_{L^{2}(\mathbf{R})}^{2},$$
$$||u||_{L^{p}(\mathbf{R})}^{p} = \int_{\mathbf{R}} |u|^{p} dx \quad \text{for} \quad p > 1.$$

From (f.1)–(f.2), we can see that I(u) satisfies a mountain pass geometry (See Section 3 in [**JT2**].), that is, I(u) satisfies

- (i) I(0) = 0.
- (ii) There exist $\delta > 0$ and $\rho > 0$ such that $I(u) \ge \delta$ for all $||u||_{H^1(\mathbf{R})} = \rho$.
- (iii) There exists $u_0 \in H^1(\mathbf{R})$ such that $I(u_0) < 0$ and $||u_0||_{H^1(\mathbf{R})} > \rho$.

From the mountain pass geometry (i)–(iii), we can define a standard minimax value c > 0 by

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)),$$
(1.1)

$$\Gamma = \{\gamma(t) \in C([0,1], H^{1}(\mathbf{R})) \mid \gamma(0) = 0, \ I(\gamma(1)) < 0\}.$$

And, by a standard way, we can construct $(PS)_c$ -sequence $(u_n)_{n=1}^{\infty}$, that is, $(u_n)_{n=1}^{\infty}$ satisfies

$$I(u_n) \to c$$
 $(n \to \infty),$
 $I'(u_n) \to 0$ in $H^{-1}(\mathbf{R})$ $(n \to \infty).$

Moreover, since $(u_n)_{n=1}^{\infty}$ is bounded in $H^1(\mathbf{R})$ from (f.3), $(u_n)_{n=1}^{\infty}$ has a subsequence $(u_{n_j})_{j=1}^{\infty}$ which weakly converges to some u_0 in $H^1(\mathbf{R})$. If $(u_{n_j})_{j=1}^{\infty}$ strongly converges to u_0 in $H^1(\mathbf{R})$, c is a non-trivial critical value of I(u) and our proof is completed. However, since the embedding $L^p(\mathbf{R}) \subset H^1(\mathbf{R})$ (p > 1) is not compact, there may not exist a subsequence $(u_{n_j})_{j=1}^{\infty}$ which strongly converges in $H^1(\mathbf{R})$. Therefore, in our situation, we don't know c is a critical value.

In our situation, from the lack of the compactness mentioned the above, we must use the concentration-compactness approach as [**BaL**] and [**Sp**]. In the concentrationcompactness approach, we examine in detail what happens in bounded (PS)-sequence. When we state the concentration-compactness argument for the (PS)-sequences of I(u), the limit problem (0.1) plays an important role. Setting

$$I_0(u) = \frac{1}{2} ||u||_{H^1(\mathbf{R})}^2 - \int_{-\infty}^{\infty} F(u) \, dx \in C^1(H^1(\mathbf{R}), \mathbf{R}),$$

the critical points of $I_0(u)$ correspond to the solutions of limit problem (0.1). The equation (0.1) has an unique positive solution, identifying ones which obtain by translations. Thus let $\omega(x)$ be an unique positive solution of (0.1) with $\max_{x \in \mathbf{R}} \omega(x) = \omega(0)$ and we set $c_0 = I_0(\omega)$. Since I_0 also satisfies the mountain pass geometry (i)-(iii), we see $c_0 > 0$ and c_0 is an unique non-trivial critical value.

For the bounded (PS)-sequences of I(u), we have the following:

Proposition 1.1. Suppose (b.1)-(b.2) and (f.1)-(f.2) hold. If $(u_n)_{n=1}^{\infty}$ is a bounded (PS)-sequence of I(u), then there exist a subsequence $n_j \to \infty$, $k \in \mathbb{N} \cup \{0\}$, k-sequences

 $(x_j^1)_{j=1}^{\infty}, \dots, (x_j^k)_{j=1}^{\infty} \subset \mathbf{R}$, and a critical point u_0 of I(u) such that

$$\begin{split} I(u_{n_j}) &\to I(u_0) + kc_0 \quad (j \to \infty), \\ \left\| \left\| u_{n_j}(x) - u_0(x) - \sum_{\ell=1}^k \omega(x - x_j^\ell) \right\| \right\|_{H^1(\mathbf{R})} \to 0 \qquad (j \to \infty), \\ |x_j^\ell - x_j^{\ell'}| &\to \infty \quad (j \to \infty) \quad (\ell \neq \ell'), \\ |x_j^\ell| \to \infty \quad (j \to \infty) \quad (\ell = 1, 2, \cdots, k). \end{split}$$

Proof. We can easily get Proposition 1.1 from Theorem 5.1 of [**JT1**]. Theorem 5.1 of [**JT1**] required the assumption $\lim_{u\to\infty} f(u)u^{-p} = 0$ (p > 1). However we take off that assumption for one dimensional case by improving Step 2 of Theorem 5.1 of [**JT1**]. In fact we have only to change $\sup_{z\in\mathbf{R}^N} \int_{B_1(z)} |v_n^1|^2 dx \to 0$ in Step2 to $||v_n^1||_{L^{\infty}(\mathbf{R})} \to 0$.

If the minimax value c satisfies $c \in (0, c_0)$, from Proposition 1.1, we see that I(u) has at least a non-trivial critical point. In fact, let $(u_n)_{n=1}^{\infty}$ be a bounded $(PS)_c$ -sequence of I(u), from Proposition 1.1, there exists a subsequence $n_j \to \infty$, $k \in \mathbb{N} \cup \{0\}$ and a critical point u_0 of I(u) such that

$$I(u_{n_j}) \to I(u_0) + kc_0 \quad (j \to \infty).$$

Here, if $u_0 = 0$, we get $I(u_{n_j}) \to kc_0$ as $j \to \infty$. However this contradicts to the fact that $I(u_n) \to c \in (0, c_0)$ as $n \to \infty$. Thus $u_0 \neq 0$ and u_0 is a non-trivial critical point of I(u). From the above argument, we have the following corollary.

Corollary 1.2. Suppose I(u) has no non-trivial critical points and let $(u_n)_{n=1}^{\infty}$ be a (PS)-sequence of I(u). Then, only kc_0 's $(k \in \mathbb{N} \cup \{0\})$ can be limit points of $\{I(u_n) \mid n \in \mathbb{N}\}$.

Remark 1.3. Corollary 1.2 essentially depends on the uniqueness of the positive solution of (0.1).

As mentioned the above, when $c \in (0, c_0)$, I(u) has at least a non-trivial critical point. However, unfortunately, under the condition (b.1)–(b.4), it may be $c = c_0$. Thus we need consider another minimax value. To define another minimax value, we use a path $\gamma_0(t) \in C(\mathbf{R}, H^1(\mathbf{R}))$ which is defined as follows: for small $\epsilon_0 > 0$, we set

$$h(x) = \begin{cases} \omega(x) & x \in [0, \infty], \\ x^4 + u_0 & x \in [-\epsilon_0, 0), \\ \epsilon_0^4 + u_0 & x \in (-\infty, -\epsilon_0), \end{cases}$$
$$\gamma_0(t)(x) = \begin{cases} h(x-t) & x \ge 0, \\ h(-x-t) & x < 0. \end{cases}$$

Here, we remark that u_0 was given in (f.2). This path $\gamma_0(t)$ was introduced in [**JT2**]. Choosing a proper $\epsilon_0 > 0$ sufficiently small, $\gamma_0(t)$ achieves the mountain pass value of $I_0(u)$ and satisfies the followings:

Lemma 1.4. Suppose (f.1)–(f.2) hold. Then $\gamma_0(t)$ satisfies

(*i*) $\gamma_0(0)(x) = \omega(x)$.

(ii) $I_0(\gamma_0(t)) < I_0(\omega) = c_0 \text{ for all } t \neq 0.$

(iii) $\lim_{t \to -\infty} ||\gamma_0(t)||_{H^1(\mathbf{R})} = 0, \lim_{t \to \infty} ||\gamma_0(t)||_{H^1(\mathbf{R})} = \infty.$

Proof. See Section 3 in [JT2].

Remark 1.5. When f(u)/u is a increasing function, we can use a simpler path than $\gamma_0(t)$. In fact, setting $\tilde{\gamma}_0(t) = t\omega : [0, \infty) \to H^1(\mathbf{R})$, we also have

- (i) $\widetilde{\gamma}_0(1)(x) = \omega(x)$.
- (ii) $I_0(\tilde{\gamma}_0(t)) < I_0(\omega) = c_0$ for all $t \neq 1$.
- (iii) $\widetilde{\gamma}_0(0) = 0$, $\lim_{t \to \infty} ||\widetilde{\gamma}_0(t)||_{H^1(\mathbf{R})} = \infty$.

Moreover, if f(u)/u is a increasing function, in what follows, we can also construct a simpler proofs by aruging on Nehari manifold $N = \{u \in H^1(\mathbf{R}) \setminus \{0\} | I'(u)u = 0\}$. (See [Sp].)

Now, for R > 0, we consider a path $\gamma_R \in C(\mathbf{R}^2, H^1(\mathbf{R}))$ which is defined by

$$\gamma_R(s,t)(x) = \max\{\gamma_0(s)(x+R), \ \gamma_0(t)(x-R)\}.$$

In our proof of Theorem 0.2 in [S], the following proposition is a key proposition.

Proposition 1.6. Suppose (b.1)-(b.3) and (f.1)-(f.2) hold. Then, for any L > 0, we have

$$\lim_{R \to \infty} e^{2R} \left\{ \max_{(s,t) \in [-L,L]^2} I(\gamma_R(s,t)) - 2c_0 \right\} \le \frac{\lambda_0^2}{2} \left(\int_{-\infty}^{\infty} b(x) e^{2|x|} \, dx - 2 \right). \tag{1.2}$$

Here $\lambda_0 = \lim_{x \to \pm \infty} \omega(x) e^{|x|}$.

Proof. See [S].

By using a translation, without loss of generalities, we assume $x_0 = 0$ in (b.4). If (b.4) with $x_0 = 0$ holds, from Proposition 1.6, for any L > 0, there exists $R_0 > 0$ such that

$$\max_{(s,t)\in [-L,L]^2} I(\gamma_{R_0}(s,t)) < 2c_0.$$

To prove the Theorem 0.2, we also need a map $m : H^1(\mathbf{R}) \setminus \{0\} \to \mathbf{R}$ which is defined by the following: for any $u \in H^1(\mathbf{R}) \setminus \{0\}$, a function

$$T_u(s) = \int_{-\infty}^{\infty} \tan^{-1}(x-s)|u(x)|^2 dx : \mathbf{R} \to \mathbf{R}$$

is strictly decreasing and $\lim_{s\to\infty} T_u(s) = -||u||_{L^2(\mathbf{R})}^2 < 0$ and $\lim_{s\to-\infty} T_u(s) = ||u||_{L^2(\mathbf{R})}^2 > 0$. Thus, from the theorem of the intermediate value, $T_u(s)$ has an unique s = m(u) such that $T_u(m(u)) = 0$. We also find that m(u) is of continuous by the implicit function theorem to $(u, s) \mapsto T_u(s)$. The map m(u) was introduced in [Sp]. We remark that m(u) is regarded as a kind of center of mass of $|u(x)|^2$ and we can check the followings.

Lemma 1.7. We have

- (i) $m(\gamma_0(t)) = 0$ for all $t \in \mathbf{R}$.
- (ii) $m(\gamma_R(s,t)) > 0$ for all -R < s < t < R.
- (iii) $m(\gamma_R(s,t)) < 0$ for all -R < t < s < R.

Proof. Since $\gamma_0(t)(x)$ is a even function, we have (i). We Note that

$$\gamma_R(s,t)(x) = \begin{cases} \gamma_0(s)(x+R) & \text{for } x \in (-\infty, \frac{s-t}{2}], \\ \gamma_0(t)(x-R) & \text{for } x \in (\frac{s-t}{2}, \infty). \end{cases}$$

Since $\gamma_R(s,s)(x)$ is also a even function, we have

$$m(\gamma_R(s,s)) = 0$$
 for all $s \in \mathbf{R}$,

and we get (ii)-(iii).

In what follows, we will complete the proof of Theorem 0.2 for N = 1.

Proof of Theorem 0.2 for N = 1. First of all, we defined a minimax value $c_1 > 0$ by

$$c_{1} = \inf_{\gamma \in \Gamma_{1}} \max_{t \in [0,1]} I(\gamma(t)),$$

$$\Gamma_{1} = \{\gamma(t) \in C([0,1], H^{1}(\mathbf{R})) \mid \gamma(0) = 0, \ I(\gamma(1)) < 0, \ |m(\gamma(t))| < 1\}.$$

Noting $\Gamma_1 \subset \Gamma$, we have

 $0 < c \leq c_1$.

Since Γ_1 is not invariant by standard deformation flows of I(u), c_1 may not be a critical point of I(u). We will use c_1 to divide the case. We divide the case into the following three cases:

(i)
$$c_1 < c_0$$

(ii)
$$c_1 = c_0$$
.
(iii) $c_1 > c_0$.

Proof of Theorem 0.2 for the case (i). Since the inequality $c_1 < c_0$ implies $0 < c < c_0$, from Corollary 1.2, we can see I(u) has at least a non-trivial critical point.

Proof of Theorem 0.2 for the case (ii). In this case, if $c < c_1 = c_0$, then I(u) has at least a non-trivial critical point from Corollary 1.2. Thus we may consider the case $c = c_1 = c_0$. In this case, for any $\epsilon > 0$, there exists $\gamma_{\epsilon}(t) \in \Gamma_1$ such that

$$c \le \max_{t \in [0,1]} I(\gamma_{\epsilon}(t)) < c + \epsilon.$$

Since $\gamma_{\epsilon} \in \Gamma_1 \subset \Gamma$ and Γ is an invariant set by standard deformation flows of I(u), by a standard Ekland principle, there exists $u_{\epsilon} \in H^1(\mathbf{R})$ such that

$$c \leq I(u_{\epsilon}) \leq \max_{t \in [0,1]} I(\gamma_{\epsilon}(t)) < c + \epsilon,$$

$$||I'(u_{\epsilon})|| < 2\sqrt{\epsilon},$$

$$\inf_{t \in [0,1]} ||u_{\epsilon} - \gamma_{\epsilon}(t)||_{H^{1}(\mathbf{R})} < \epsilon.$$
 (1.3)

Then, from Proposition 1.1, there exist a subsequence $\epsilon_j \to 0, k \in \mathbb{N} \cup \{0\}$, k-sequences $(x_j^1)_{j=1}^{\infty}, \dots, (x_j^k)_{j=1}^{\infty} \subset \mathbb{R}$, and a critical point u_0 of I(u) such that

$$\begin{split} I(u_{\epsilon_j}) &\to I(u_0) + kc_0 \quad (j \to \infty), \tag{1.4} \\ \left\| \left\| u_{\epsilon_j}(x) - u_0(x) - \sum_{\ell=1}^k \omega(x - x_j^\ell) \right\| \right\|_{H^1(\mathbf{R})} \to 0 \qquad (j \to \infty), \end{aligned}$$
$$\begin{aligned} |x_j^\ell - x_j^{\ell'}| &\to \infty \quad (j \to \infty) \quad (\ell \neq \ell'), \\ |x_j^\ell| &\to \infty \quad (j \to \infty) \quad (\ell = 1, 2, \cdots, k). \end{aligned}$$

Now, if $u_0 \neq 0$, our proof is completed. So we suppose $u_0 = 0$. Then, from (1.4), it must be k = 1. Thus, we have

$$\begin{aligned} \left| \left| u_{\epsilon_j}(x) - \omega(x - x_j^1) \right| \right|_{H^1(\mathbf{R})} \to 0 \qquad (j \to \infty). \end{aligned} \tag{1.5}$$
$$|x_j^1| \to \infty \quad (j \to \infty). \end{aligned}$$

On the other hand, we remark that, since $m(\omega) = 0$ and m is of continuous, there exists $\delta > 0$ such that

$$|m(u)| < 1 \quad ext{for all} \quad u \in B_{\delta}(\omega) = \{v \in H^1(\mathbf{R}) \,|\, ||v - \omega||_{H^1(\mathbf{R})} < \delta\}.$$

Thus, from (1.3) and (1.5), for some $\epsilon_0 \in (0, \frac{\delta}{2})$ and $t_0 \in [0, 1]$, we have

$$|m(\gamma_{\epsilon_0}(t_0)) - x_j^1| < 1.$$

This contradicts to $\gamma_{\epsilon_0} \in \Gamma_1$. Therefore $u_0 \neq 0$ and I(u) has at least a non-trivial critical point.

Proof of the Theorem 0.2 for the case (iii). First of all, we set $\delta = \frac{c_1 - c_0}{2} > 0$ and choose $L_0 > 0$ such that

$$\max_{(s,t)\in\overline{D_{2L_0}\setminus D_{L_0}}} I(\gamma_R(s,t)) < c_0 + \delta < c_1 \quad \text{for all} \quad R > 3L_0.$$

$$(1.6)$$

Here we set $D_L = [L, L] \times [L, L] \subset \mathbb{R}^2$. Next, from Proposition 1.6, we can choose $R_0 > 3L_0$ such that

$$\max_{(s,t)\in D_{L_0}} I(\gamma_{R_0}(s,t)) < 2c_0.$$
(1.7)

Here we fix $\gamma_{R_0}(s,t)$ and define the following minimax value:

$$c_{2} = \inf_{\gamma \in \Gamma_{2}} \max_{(s,t) \in D_{2L_{0}}} I(\gamma(s,t)),$$

$$\Gamma_{2} = \{\gamma(s,t) \in C(D_{2L_{0}}, H^{1}(\mathbf{R})) \mid \gamma(s,t) = \gamma_{R_{0}}(s,t) \text{ for all } (s,t) \in D_{2L_{0}} \setminus D_{L_{0}} \}$$

Then we have the following lemma.

Lemma 1.8. We have

$$0 < c_0 < c_1 \le c_2 < 2c_0.$$

We postpone the proof of Lemma 1.8 to end of this section. If Lemma 1.8 is true, then Γ_2 is an invariant set by the deformation flows of I(u). Thus I(u) has a (PS)-sequence $(u_n)_{n=1}^{\infty}$ such that

$$I(u_n) \rightarrow c_2 \in (c_0, 2c_0) \quad (n \rightarrow \infty).$$

From Corollary 1.2, we can see that I(u) must have at least a non-trivial critical point. Combining the proofs of the cases (i)-(iii), we complete a proof of Theorem 0.2.

Finally we show Lemma 1.8.

Proof of Lemma 1.8. The inequality $c_0 < c_1$ is an assumption of the case (iii). From $\gamma_{R_0} \in \Gamma_2$ and (1.6)–(1.7), $c_2 < 2c_0$ is obvious. Thus we show $c_1 \leq c_2$. For any $\gamma(s,t) \in \Gamma_2$, we have

$$m(\gamma(s,t)) > 0 \quad \text{for all} \quad (s,t) \in D_1, \tag{1.8}$$

$$m(\gamma(s,t)) < 0 \quad \text{for all} \quad (s,t) \in D_2. \tag{1.9}$$

$$\{\gamma_1(t) \mid t \in [1/3, 2/3]\} \subset \{\gamma(s, t) \mid (s, t) \in D_{2L_0}\},\$$
$$\max_{t \in [0, 1/3] \cup [2/3, 1]} I(\gamma_1(t)) \le c_0.$$

Thus we see

$$c_{1} \leq \max_{t \in [0,1]} I(\gamma_{1}(t)) \\ \leq \max_{(s,t) \in D_{2L_{0}}} I(\gamma(s,t)).$$
(1.10)

Since $\gamma(s,t) \in \Gamma_2$ is arbitrary, from (1.10), we have

$$c_1 \leq c_2$$
.

Thus we get Lemma 1.8.

Remark 1.9. In our proofs of Theorem 0.2, the path $\gamma_R(s,t)$ played an important role. In particular, the estimate (1.2) was an important. However, we don't know that $\gamma_R(s,t)$ is the best path to show the existence of positive solutions of (*). Using other path, we might be able to get better estimate than (1.2). Instead of $\gamma_R(s,t)$, we can consider another path $\tilde{\gamma}_R \in C(\mathbf{R}^2, H^1(\mathbf{R}))$ which is defined by

$$\widetilde{\gamma}_R(s,t)(x) = \gamma_0(s)(x+R) + \gamma_0(t)(x-R).$$

We remark that $\tilde{\gamma}_R(s,t)$ is a natural path because we can regard $\tilde{\gamma}_R(s,t)$ as one-dimensional version of the path which was used in the proof of the high-dimensional case. (See Proposition 2.2.) Estimating $\tilde{\gamma}_R(s,t)$ by similar way to (1.2), for any L > 0, we have

$$\lim_{R \to \infty} e^{2R} \left\{ \max_{(s,t) \in [-L,L]^2} I(\widetilde{\gamma}_R(s,t)) - 2c_0 \right\} \le \frac{\lambda_0^2}{2} \left(\int_{-\infty}^{\infty} b(x)(e^{2x} + e^{-2x} + 2) \, dx - 4 \right).$$

We see that, if $\int_{-\infty}^{\infty} b(x)(e^{2x}+e^{-2x}+2) dx < 4$ holds, then $\int_{-\infty}^{\infty} b(x)e^{2|x|} dx < 2$ also holds. Thus $\gamma_R(s,t)$ provides a better estimate than $\tilde{\gamma}_R(s,t)$.

2. The outline of the proof of Theorem 0.2 for $N \ge 2$

In this section, we consider the case $N \ge 2$. We remark that, when $N \ge 2$, our proofs almost are parallel to [**BaL**]. We assume $f(u) = u^p$ for $u \ge 0$ and f(u) = 0 for u < 0, where $p \in (1, \frac{N+2}{N-2})$ when $N \ge 3$, $p \in (1, \infty)$ when N = 2. We set

$$I(u) = \frac{1}{2} ||u||_{H^1_b(\mathbf{R}^N)}^2 - ||u_+||_{L^{p+1}(\mathbf{R}^N)}^{p+1} \in C^2(H^1(\mathbf{R}^N), \mathbf{R}),$$

where

$$||u||_{H_b^1(\mathbf{R}^N)}^2 = ||u||_{H^1(\mathbf{R}^N)}^2 + \int_{\mathbf{R}^N} b(x)u^2 \, dx$$

By the standard ways, we reduce I_b to a functional

$$J(v) = \left(\frac{1}{2} - \frac{1}{p+1}\right) \left(\frac{||v||_{H^1_b(\mathbf{R}^N)}}{||v_+||_{L^{p+1}(\mathbf{R}^N)}}\right)^{\frac{2(p+1)}{p-1}}$$

which is defined on

$$\Sigma = \{ v \in H^1(\mathbf{R}^N) \, | \, ||v||_{H^1(\mathbf{R}^N)} = 1, v_+ \neq 0 \}.$$

Then $J \in C^1(\Sigma, \mathbf{R})$ and, for any critical point $v \in \Sigma$ of J(v), $t_v v$ is a non-trivial critical point of I(u) where $t_v = ||v||_{H_b^1(\mathbf{R}^N)}^{\frac{2}{p-1}} ||v_+||_{L^{p+1}(\mathbf{R}^N)}^{-\frac{p+1}{p-1}}$. Thus, in what follows, we seek non-trivial critical points of J(v).

Let $\omega(x)$ be an unique radially symmetric positive solution of (0.1) for $f(u) = u^p$ and we set $c_0 = \frac{1}{2} ||\omega||^2_{H^1(\mathbf{R}^N)} - \frac{1}{p+1} ||\omega||_{H^1(\mathbf{R}^N)} > 0$. For the (PS)-sequences of J(u), we have the following:

Proposition 2.1. Suppose (b.1)-(b.2), (f.0) hold and let $(v_n)_{n=1}^{\infty}$ be a (PS)-sequence of J(u). Then there exist a subsequence $n_j \to \infty$, $k \in \mathbb{N} \cup \{0\}$, k-sequences $(x_j^1)_{j=1}^{\infty}, \dots, (x_j^k)_{j=1}^{\infty} \subset \mathbb{R}^N$, and a critical point u_0 of I(u) such that

$$\begin{split} J(v_{n_j}) &\to I(u_0) + kc_0 \quad (j \to \infty), \\ v_{n_j}(x) &- \frac{u_0(x) - \sum_{\ell=1}^k \omega(x - x_j^\ell)}{\left| \left| u_0(x) - \sum_{\ell=1}^k \omega(x - x_j^\ell) \right| \right|_{H^1(\mathbf{R}^N)}} \to 0 \quad in \quad H^1(\mathbf{R}^N) \qquad (j \to \infty), \\ |x_j^\ell - x_j^{\ell'}| &\to \infty \quad (j \to \infty) \quad (\ell \neq \ell'), \\ |x_j^\ell| \to \infty \quad (j \to \infty) \quad (\ell = 1, 2, \cdots, k). \end{split}$$

Proof. Let $(v_n)_{n=1}^{\infty}$ be a (PS)-sequence of J(v). Then $(t_{v_n}v_n)_{n=1}^{\infty}$ is a (PS)-sequence of I(u). Moreover we remark that the set of the critical points of the functional $\frac{1}{2}||u||_{H^1(\mathbf{R}^N)}^2 - \frac{1}{p+1}||u_+||_{H^1(\mathbf{R}^N)} : H^1(\mathbf{R}^N) \to \mathbf{R}$ is written by $\{\omega(x+\xi) \mid \xi \in \mathbf{R}^N\} \cup \{0\}$ from the uniqueness of positive solutions of (1.0). Thus Proposition 2.1 easily follows applying Theorem 5.1 of $[\mathbf{JT1}]$ to $(t_{v_n}v_n)_{n=1}^{\infty}$.

By the similar arguments of Section 1, we have the following corollary.

Corollary 2.2. Suppose I(u) has no non-trivial critical points and let $(v_n)_{n=1}^{\infty}$ be a (PS)-sequence of J(v). Then, only kc_0 's $(k \in \mathbf{N})$ can be limit points of $\{J(v_n) | n \in \mathbf{N}\}$.

We set

$$c = \inf_{v \in \Sigma} J(v).$$

Then we can easily see that $0 < c \le c_0$. From the boundedness of J(v) from below, we get also more strong corollary.

Corollary 2.3. For any $b \in (-\infty, c_0) \cup (c_0, c_0 + c)$, J(v) satisfies $(PS)_b$ -condition.

Proof. If $(PS)_b$ -condition does not hold for $b \in \mathbf{R}$, then for some $(PS)_b$ -sequence $(v_n)_{n=1}^{\infty}$, it must be $k \neq 0$ in Proposition 2.1. Thus we have

$$\lim_{n \to \infty} J(v_n) = b = kc_0 \quad \text{or} \quad \lim_{n \to \infty} J(v_n) = b \ge c + kc_0.$$

This implies Corollary 2.3.

When $c < c_0$, from Corollary 2.3, c is a critical value of J(v). Thus this case is easy. Thus we consider the case $c = c_0$. When $c = c_0$, we must define another minimax value. To define another minimax value, the following proposition is important.

Proposition 2.4. Suppose $N \ge 2$, (b.1)–(b.3) and (f.0) hold. Then, there exists $R_0 > 0$ such that for any $R \ge R_0$, we have

$$\max_{(\zeta,\xi,t)\in\partial B_{\frac{1}{2}R}\times\partial B_R\times[0,1]} J\left(\frac{t\omega(x-\zeta)+(1-t)\omega(x-\xi)}{||t\omega(x-\zeta)+(1-t)\omega(x-\xi)||_{H^1(\mathbf{R}^N)}}\right) < 2c_0.$$
(2.1)

Here $B_R = \{x \in \mathbf{R}^N \mid |x| \le R\}.$

Proof. To get (2.1), for large R > 0, it sufficient to show

$$\max_{\substack{(\zeta,\xi,s,t)\in\partial B_{\frac{1}{2}R}\times\partial B_R\times\mathbf{R}^2}} I(s\omega(x-\zeta)+t\omega(x-\xi))<2c_0.$$
(2.2)

In many papers [**BaL**], [**A**], [**H1**], [**H2**], the estimates like (2.2) were obtained. In [**A**], [**H1**], [**H2**], they treated more general f(u) including u_+^p . Since we can get (2.2) by similar ways to those calculations, we omit the proof of (2.2).

Remark 2.5. When N = 1, the estimate (2.1) does not hold. (See Proposition 1.6 and [S].) We remark that, for some $C_0 > 0$, $\omega(x)$ satisfies

$$0 < \omega(x) \le C_0 |x|^{-\frac{N-1}{2}} e^{-|x|}$$
 for all $x \in \mathbf{R}^N$. (2.3)

Roughly explaining about the difference from N = 1 and $N \ge 2$, when $N \ge 2$, we can obtain (2.1) by the effect of $|x|^{-\frac{N-1}{2}}$ in (2.3). On the other hand, when N = 1, since the effect of $|x|^{-\frac{N-1}{2}}$ vanishes, (2.1) does not hold.

To prove the Theorem 0.2, we also define a map $m : H^1(\mathbf{R}^N) \setminus \{0\} \to \mathbf{R}^N$ which is an expansion of m defined in Section 1. That is, for any $u \in H^1(\mathbf{R}^N) \setminus \{0\}$, we consider a map

$$T_{u}(\xi) = \left(\int_{\mathbf{R}^{N}} \tan^{-1}(x_{1} - \xi_{1})|u(x)|^{2} dx, \cdots, \int_{\mathbf{R}^{N}} \tan^{-1}(x_{N} - \xi_{N})|u(x)|^{2} dx\right)$$

: $\mathbf{R}^{N} \to \mathbf{R}^{N}$.

Then we can see that $T_u(\xi)$ has an unique $\xi_u \in \mathbf{R}^N$ such that $T_u(\xi_u) = 0$ because

$$DT_{u} = \begin{bmatrix} \int_{\mathbf{R}^{N}} \frac{1}{1 + (x_{1} - \xi_{1})^{2}} |u(x)|^{2} dx & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \int_{\mathbf{R}^{N}} \frac{1}{1 + (x_{N} - \xi_{N})^{2}} |u(x)|^{2} dx \end{bmatrix}$$

Thus for any $u \in H^1(\mathbf{R}^N) \setminus \{0\}$, we define $m(u) = \xi_u$. We also find that m(u) is of continuous by the implicit function theorem to $(u,\xi) \mapsto T_u(\xi)$. Since $\omega(x)$ is a radially symmetric function, from the definition of m(u), we can easily see that

$$m(\omega(x-\xi)) = \xi$$
 for all $\xi \in \mathbf{R}^N$. (2.4)

In what follows, we will complete the proof of Theorem 0.2.

Proof of Theorem 0.2 for $N \ge 2$. We set

$$c = \inf_{v \in \Sigma} J(v).$$

When $c < c_0$, from Corollary 2.3, c is a critical point of J(v) and our proof is completed. Thus we must consider the case $c = c_0$. For $a \in \mathbb{R}^N$ we defined a minimax value $c_a > 0$ by

$$c_a = \inf_{v \in \Sigma_a} J(v),$$

$$\Sigma_a = \{ v \in \Sigma \mid m(v) = a \}.$$

Noting $\Sigma_a \subset \Sigma$ and $c = c_0$, we have

$$0 < c_0 \leq c_a.$$

We will show that I(u) has at least a non-trivial critical point for the following both cases:

(i) For some $a \in \mathbf{R}^N$, $c_0 = c_a$.

(ii) For some $a \in \mathbf{R}^N$, $c_0 < c_a$.

Proof of Theorem 0.2 for the case (i). For any $\epsilon > 0$, there exists $\tilde{v}_{\epsilon} \in \Sigma_a$ such that

$$c_0 \le J(\tilde{v}_{\epsilon}) < c_0 + \epsilon.$$

Since $\tilde{v}_{\epsilon} \in \Sigma_a \subset \Sigma$ and Σ is an invariant set by standard deformation flows of J(v), by a standard Ekland principle, there exists $v_{\epsilon} \in \Sigma$ such that

$$c_{0} \leq J(v_{\epsilon}) \leq J(\tilde{v}_{\epsilon}) < c_{0} + \epsilon,$$

$$||J'(v_{\epsilon})|| < 2\sqrt{\epsilon},$$

$$||v_{\epsilon} - \tilde{v}_{\epsilon}||_{H^{1}(\mathbf{R})} < \epsilon.$$
 (2.5)

Then, from Proposition 2.1, there exist a subsequence $\epsilon_j \to 0, k \in \mathbb{N} \cup \{0\}$, k-sequences $(x_j^1)_{j=1}^{\infty}, \dots, (x_j^k)_{j=1}^{\infty} \subset \mathbb{R}^N$, and a critical point u_0 of I(u) such that

$$J(v_{\epsilon_j}) \to I(u_0) + kc_0 \quad (j \to \infty),$$

$$v_{n_j}(x) - \frac{u_0(x) - \sum_{\ell=1}^k \omega(x - x_j^\ell)}{\left| \left| u_0(x) - \sum_{\ell=1}^k \omega(x - x_j^\ell) \right| \right|_{H^1(\mathbf{R}^N)}} \to 0 \quad \text{in} \quad H^1(\mathbf{R}^N) \qquad (j \to \infty),$$

$$|x_j^\ell - x_j^{\ell'}| \to \infty \quad (j \to \infty) \quad (\ell \neq \ell'),$$

$$|x_j^\ell| \to \infty \quad (j \to \infty) \quad (\ell = 1, 2, \cdots, k).$$

$$(2.6)$$

Now, if $u_0 \neq 0$, our proof is completed. So we suppose $u_0 = 0$. Then, from (2.6), it must be k = 1. Thus, we have

$$\left\| \left\| v_{\epsilon_j}(x) - \frac{\omega(x - x_j^1)}{||\omega||_{H^1(\mathbf{R}^N)}} \right\|_{H^1(\mathbf{R}^N)} \to 0 \qquad (j \to \infty),$$

$$|x_j^1| \to \infty \quad (j \to \infty).$$

$$(2.7)$$

From (2.4), (2.5) and (2.7), we see that

$$|m(\tilde{v}_{\epsilon_j})| \to \infty$$
 as $j \to \infty$.

This contradicts to $m(\tilde{v}_{\epsilon_j}) = a$. Therefore $u_0 \neq 0$ and I(u) has at least a non-trivial critical point.

Proof of the Theorem 0.2 for the case (ii). From Proposition 2.4, we set $\zeta_0 = (\frac{1}{2}R_0, 0, \dots, 0)$ and $\delta = \frac{1}{2}(c_a - c_0) > 0$ and choose a large $R_0 > |a|$ such that

$$\max_{\xi \in \partial B_{R_0}} J(\omega(x-\xi)) < c_0 + \delta < c_a, \tag{2.8}$$

$$\max_{(\xi,t)\in\partial B_{R_0}\times[0,1]} J\left(\frac{t\omega(x-\zeta_0)+(1-t)\omega(x-\xi)}{||t\omega(x-\zeta_0)+(1-t)\omega(x-\xi)||_{H^1(\mathbf{R}^N)}}\right) < 2c_0.$$
(2.9)

Here we define the following minimax value:

$$c_{2} = \inf_{\gamma \in \Gamma} \max_{\xi \in B_{R_{0}}} J(\gamma(\xi)),$$

$$\Gamma = \left\{ \gamma(\xi) \in C(B_{R_{0}}, \Sigma) \mid \gamma(\xi)(x) = \frac{\omega(x+\xi)}{||\omega||_{H^{1}(\mathbf{R}^{N})}} \text{ for all } \xi \in \partial B_{R_{0}} \right\}.$$

Then we have the following lemma.

Lemma 2.6. We have

$$0 < c_0 < c_a \le c_2 < 2c_0$$

We postpone the proof of Lemma 2.6 to end of this section. If Lemma 2.6 is true, then Γ is an invariant set by the deformation flows of J(v). Thus J(v) has a (PS)-sequence $(v_n)_{n=1}^{\infty}$ such that

$$J(v_n) \to c_2 \in (c_0, 2c_0) \quad (n \to \infty).$$

From Corollary 2.3, J(u) satisfies $(PS)_{c_2}$ -conditions. Thus c_2 is a critical value of J(v). That is, I(u) has at least a non-trivial critical point. Combining the proofs of the cases (i)-(ii), we complete a proof of Theorem 0.2.

Finally we show Lemma 2.6.

Proof of Lemma 2.6. The inequality $c_0 < c_a$ is an assumption of the case (ii). From (2.9), $c_2 < 2c_0$ is obvious. Thus we show $c_a \leq c_2$. For any $\gamma \in \Gamma$, from (2.10), we have

$$m(\gamma(\xi))=\xi \quad ext{for all} \quad \xi\in \partial B_{R_0}.$$

Thus we can see

$$\deg(m \circ \gamma, B_{R_0}, a) = 1. \tag{2.10}$$

From (2.10), there exists $\xi_0 \in B_{R_0}$ such that $m(\gamma(\xi_0)) = a$. Therefore, since $\gamma(\xi_0) \in \Sigma_a$, we find that

$$c_{a} \leq \inf_{v \in \Sigma_{a}} J(v)$$

$$\leq J(\gamma(\xi_{0})))$$

$$\leq \max_{\xi \in B_{R_{0}}} I(\gamma(\xi)).$$
(2.11)

Since $\gamma \in \Gamma$ is arbitrary, from (2.11), we have

 $c_a \leq c_2$.

Thus we get Lemma 2.6.

References

- [A] Adachi, A positive solution of a nonhomogeneous elliptic equation in \mathbb{R}^N with G-invariant nonlinearity, Comm. Partial Differential Equations 27 (2002), no. 1-2, 1-22
- [BaL] A. Bahri, Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in R^N. Rev. Mat. Iberoamericana 6, (1990) no. 1-2, 1-15.
- [BeL1] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345
- [BeL2] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82 (1983), no. 4, 347–375.
 - [BE] G. Bianchi, H. Egnell, An ODE Approach to rhe Equation $-\Delta u = K|u|^{\frac{N+2}{N-2}}$, in \mathbb{R}^N . Math. Z. 210 (1992) 137–166.
 - [H1] J. Hirata, A positive solution of a nonlinear elliptic equation in \mathbb{R}^N with G-symmetry, Advances in Diff. Eq. 12 (2007), no. 2, 173–199
 - [H2] J. Hirata, A positive solution of a nonlinear Schrödinger equation with G-symmetry, Nonlinear Anal. 69 (2008), no. 9, 3174–3189
 - [JT1] L. Jeanjean, K. Tanaka, A positive solution for an asymptotically linear elliptic problem on R^N autonomous at infinity. ESAIM Control Optim. Calc. Var. 7 (2002), 597-614
 - [JT2] L. Jeanjean, K. Tanaka, A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud. 3 (2003), no. 4, 445–455.
 - [S] Y. Sato, The existence and non-existence of positive solutions of the nonlinear Schrödinger equations in one dimensional case. preprint, p1-22
 - [Sp] G. Spradlin Interfering solutions of a nonhomogeneous Hamiltonian systems. *Electronic Journal of Differential Equations* **2001**, (2001) no. 47, 1–10.