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0. Introduction

In this report, we will introduce the results of [S] and related results. We consider the

following nonlinear Schrédinger equations:

—Au+ (1+bx))u= f(u) in RV,

ue HYRN). *)

We mainly considered the one-dimensional case in [S] but, in this report, we consider not
only one-dimensional case but also the high-dimensional case. Here, we assume that the
potential b(z) € C(R, R) satisfies the following assumptions:

(b.1) 1+ b(z) >0 for all z € RV.
(b.2) lLm b(z) =0.
|z|—o0

(b.3) There exist B > 2 and Cy > 0 such that b(z) < Coe~?!®l for all z € RN.
We also assume that the nonlinearity f(u) € C(R, R) satisfies the following

(£.0) f(u) = |u|P~'u for p € (1, F+2) when N >3 and p € (1,00) when N =2,

(f.1) There exists i > 0 such that lim, 0 ﬁ&% =0.

(f.2) There exists up > 0 such that

2

F(u) < zu* for all u € (0,up),

DN =
[

F(up) = 5“3, f(uo) > up.

(£.3) There exists puo > 2 such that 0 < poF(u) < uf(u) for all u # 0.
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To consider the (x), the following equation plays an important roles:
—Au+u=f(u) inRY, weHRY). (0.1)

From (b.2), the equation —Au + u = f(u) appears as a limit when || goes to oo in (*).
'To show the existence of positive solution of (*) in our arguments, the uniqueness (up to
translation) of positive solutions of (0.1) is also important. Under the condition (£.0), it is
well-known that the uniqueness (up to translation) of the positive solutions of (0.1). When
N =1, it is known that the conditions (f.1) and (f.2) are sufficient conditions for (0.1) to

have an unique (up to translation) positive solution:

Remark 0.1. In Section 5 of [BeL1], Berestycki-Lions showed that if f(u) is of locally
Lipschitz continuous and f(u) = 0, then (f.2) is a necessary and sufficient condition for the
existence of a non-trivial solution of (1.0). Moreover, it also was shown that the uniqueness
(up to translation) of positive solutions under the (f.2). In Section 2 of [JT1], Jeanjean-
Tanaka showed that when f(u) is of continuous, (f.1) and (f.2) are sufficient conditions for

(0.1) to have an unique positive solution.

The condition (f.3) is so called Ambrosetti-Rabinowitz condition, which guarantees
the boundedness of (PS)-sequences for the functional corresponding to the equation (x)
and (0.1). To state an our result for one-dimensional case, we also need the following

assumption for b(z).
(b.4) When N = 1, there exists zo € R such that

/ b(z — zo)e?!®l dx € [—o0,2).
—oQ

QOur first theorem is the following.

Theorem 0.2. When N > 2, we assume that (b.1)~(b.3) and (£.0) hold. Then (*) has at
least a positive solution. When N = 1, we assume that (b.1)-(b.4) and (f.1)-(£.3) hold.
Then () has at least a positive solution.

In [S], we give a proof of Theorem 0.2 for the one-dimensional case. To prove the
Theorem 0.2, we developed the arguments of [BaL] and [Sp]. We remark that, for high-
dimensional case, the proof of Theorem 0.2 almost are parallel to the proof of [BaL)].
However, for the proof of the one-dimensional case, we essentially developed the arguments
of [BaL] and [Sp]. Bahri-Li [BaL] showed that there exists a positive solution of

—~Au+u=(1-b(x)uP v in RV, u € HY(RY), (0.2)
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where N > 3, 1 < p < 42 and b(z) € C(R, R) satisfies (b.2)-(b.3) and
(b.1)’ 1 —b(z) >0 for all z € RN.
For one dimensional case, Spradlin [Sp| proved that there exists a positive solution of the
equation
—u’" +u=(1-b(z))f(x) in R, u € H'(R). (0.3)
They also assumed that b(z) € C(R,R) satisfies (b.1)’ and (b.2)—(b.3) and f(u) satisfies
(f.1)—(f.3) and
(f.4) I—S:Q is an increasing function for all u > 0.

When (£.0) or (f.4) holds, we can consider the Nehari manifold and they argued on Nehari
manifold in [BaL] and [Sp]. In our situation, when N = 1, we can not argue on Nehari
manifold. This was one of the difficulties which had to overcome in [S].

From the above results and Theorem 0.2, it seems that, when N = 1, Theorem 0.2
holds without condition (b.4). However (b.4) is an essential assumption for () to have
non-trivial solutions. In what follows, we will show a result about the non-existence of
nontrivial solutions for (x).

In next our result, we will assume that N = 1 and b(z) satisfies the following condition:

(b.5) There exist u > 0 and mg > m; > 0 such that
mlue‘“lxl <b(z) < mg;ze"‘IJCI forallz e R.

Here, we remark that, if (b.5) holds for p > 2, then b(z) satisfies (b.1)—(b.3) and

2p
uw—2

17
2m2.

g

my 5/ b(a:)e2|“‘|dx <

Thus, when my < 1 and p is very large, the condition (b.4) also holds.
Our seeond result is the following:

Theorem 0.3. Assume N = 1, (b.5) holds and f(u) = |[u[P~!u (p > 1).
(i) If my > 1, there exists u; > 0 such that () does not have non-trivial solution for all

Bz .
(ii) If my < 1, there exists uy > 0 such that (x) has at least a non-trivial solution for all

B2 2.
(iii) There exists pz > 0 such that (x) does not have sign-changing solutions for all pu > 3.

From Theorem 0.3, we see that Theorem 0.2 does not hold except for condition (b.4).
This is a drastically different situation from the high-dimensional cases. This is one of the

interesting points in our results.
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We remark that the condition (b.4) implies [*°_b(z)dz < 2 and the assumption of
(i) of Theorem 0.3 also means [ b(z)dz < 2. Thus we expect that the difference
from existence and non-existence of non-trivial solutions of (x) depends on the quantity of
integrate of b(z).

We can obtain this expectation from another viewpoint, which is a perturbation prob-
lem. Setting b, (z) = mue~#I#|, b,(z) satisfies (b.5) and, when p — oo, b,(z) converges to

the delta function 2mdy in distribution sense. Thus (*) approaches to the equation
—u’ + (1+42mb)u = [ufP*v in R, ue€HY(R), (0.4)

in distribution sense. Here, if u is a solution of (0.4) in distribution sense, we can see that
u is of C?-function in R \{0} and continuous in R and u satisfies

v/ (+0) — u'(—0) = 2mu(0). (0.5)

Moreover, since v is a homoclinic orbit of —u” +u = f(u) in (—00,0) or (0, o), respectively,

u satisfies

1 1

——;u’(x)z +3ule) = —Su@P =0 for @ #0 (0.6)
When z — +0 in (0.6), from (f.1), we find
v (=0) = —u'(4+0), |u/(£0)] < |u(0)]. (0.7)

Thus, from (0.5) and (0.7), it easily see that (0.4) has an unique positive solution when
m| < 1 and (0.4) has no non-trivial solutions when |m| > 1. Therefore we can regard

Theorem 0.3 as results of a perturbation problem of (0.4).

To prove Theorem 0.3, we develop the shooting arguments which used in [BE]. Bianchi
and Egnell [BE] argued about the existence and non-existence of radial solutions for

—-Au = K(|x])fu|x_}22', >0 in RY, wu(z)=0(z]*"") as|z|— oo (0.8)

Here N > 3 and K(|z|) is a radial continuous function. Roughly speaking their approach,
by setting u(r) = u(|z|), they reduce (0.8) to an ordinary differential equation and con-
sidered solutions of two initial value problems of that ordinary differential equation which
have initial conditions u(0) = X and lim, ;0 7V ~2u(r) = A. And, examining whether
those solutions have suitable matchings at » = 1, they argued about the existence and

non-existence of radial solutions.
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In [S], to prove Theorem 0.3, we also consider two initial value problems from +oo,
that is, for A1, A2 > 0, we consider the following two problems:

W (b= S,

lim_etu(e) = _lim_emu(z) = Ay, 09)
and
—u” + (14 b(z))u = f(u),
(0.10)

: T T x —
mlgr;oe u(z) = zll)rgoe u(z) = Aa.
Then (0.9) and (0.10) have an unique solution respectively and write those solutions as

u1(z; A1) and ua(zx; A2) respectively. We set
T1 = {(w1(0; M1),%1(0; A1) € R? | A1 > 0},
To = {(u2(0; X2),u1(0; X2)) € R? [ A2 > 0O}
Then, I'y N Ty = @ is equivalent to the non-existence of solutions for (). Thus it is

important to study shapes of I'y and I';. In respect to the details of proofs of Theorem
0.3, see [S].

In next sections, we state about the outline of the proof of Theorem 0.2. We will
consider the one-dimensional case in Section 1 and treat the high-dimensional case in

Section 2.

1. The outline of the proof of Theorem 0.2 for N =1

In this section, we consider the case N = 1. We will developed a variational approach
which was used in [BaL] and [Sp].

In what follows, since we seek positive solutions of (), without loss of generalities, we
assume f(u) = 0 for u < 0. To prove Theorem 0.2, we seek non-trivial critical points of

the functional

2

1 1 oo o
Iw) = Gl + 5 [ botdo- [ Fwds e O R)R)
o0 -0
whose critical points are positive solutions of (x). Here we use the following notations:
el gy = 11| Z2my + llullZs gy

||u||’£,,(R)=/ |lulPdz for p>1.
R

From (f.1)-(f.2), we can see that I(u) satisfies a mountain pass geometry (See Section 3 in
[JT2].), that is, I(u) satisfies
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(i) 1(0) = 0.
(ii) There exist 4 > 0 and p > 0 such that I(u) > 6 for all [|u||g1(r) = p-
(iii) There exists ug € H'(R) such that I(up) < 0 and ||uo||m1(r) > p-

From the mountain pass geometry (i)—(iii), we can define a standard minimax value ¢ > 0
by

= inf I(~(t 1.1
¢ = inf max I(x(t)), (1.1)

T = {~(t) € C([0,1], H'(R)) |7(0) = 0, I(v(1)) < O}.

And, by a standard way, we can construct (PS).-sequence (u,)%,, that is, (u,)32, sat-

isfies
I{uy) = ¢ (n — 00),

I'(up) =0 in HYR) (n — 00).

Moreover, since (u,)3%, is bounded in H'(R) from (f.3), (un)32, has a subsequence
(un,;)72; which weakly converges to some ug in H'(R). If (un,)2; strongly converges
to up in H'(R), ¢ is a non-trivial critical value of I(u) and our proof is completed. How-
ever, since the embedding LP(R) C H!(R) (p > 1) is not compact, there may not exist a
subsequence (un;)$2; which strongly converges in H'(R). Therefore, in our situation, we
don’t know c is a critical value.

In our situation, from the lack of the compactness mentioned the above, we must
use the concentration-compactness approach as [BaL] and [Sp]. In the concentration-
compactness approach, we examine in detail what happens in bounded (PS)-sequence.
When we state the concentration-compactness argument for the (PS)-sequences of I(u),

the limit problem (0.1) plays an important role. Setting
1 o0
-0

the critical points of Iy(u) correspond to the solutions of limit problem (0.1). The equation
(0.1) has an unique positive solution, identifying ones which obtain by translations. Thus
let w(z) be an unique positive solution of (0.1) with maxzeg w(z) = w(0) and we set
co = Io{w). Since Iy also satisfies the mountain pass geometry (i)—(iii), we see c¢p > 0 and
co is an unique non-trivial critical value.

For the bounded (PS)-sequences of I(u), we have the following:

Proposition 1.1. Suppose (b.1)-(b.2) and (£.1)—-(£.2) hold. If (u,)3%, is a bounded (PS)-
sequence of I(u), then there exist a subsequence n; — oo, k € NU{0}, k-sequences
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@20, (wf);";l C R, and a critical point ug of I(u) such that

I(un,) — I(uo) + kcy  (j — 00),

-0 (j = ),
H'(R)

k
Un, (T) — uo(z) — Zw(m - xﬁ)
=1

|ar:§ —xf'| —00 (j—300) (£#Y),

lzi] 200 (j o) (€=1,2,---,k).

Proof. We can easily get Proposition 1.1 from Theorem 5.1 of [JT1]. Theorem 5.1 of
[JT1] required the assumption lim,,e f(u)u™ = 0 (p > 1). However we take off that
assumption for one dimensional case by improving Step 2 of Theorem 5.1 of [JT1]. In fact
we have only to change sup,egn~ [, (,) [val* dz = 0 in Step2 to [[vp|lLe(m) — 0. |

If the minimax value c satisfies ¢ € (0, cp), from Proposition 1.1, we see that I(u) has
at least a non-trivial critical point. In fact, let (u,)3%; be a bounded (PS).-sequence of
I(u), from Proposition 1.1, there exists a subsequence n; — oo, k € NU{0} and a critical

point ug of I(u) such that
I(un,) = I(u0) + ke (j = 00).

Here, if uo = 0, we get J(un,;) — kco as j — oco. However this contradicts to the fact that
I{(up) — ¢ € (0,cp) as n — 0o. Thus up # 0 and wug is a non-trivial critical point of I'(u).
From the above argument, we have the following corollary.

Corollary 1.2. Suppose I(u) has no non-trivial critical points and let (un,)3.; be a (PS)-
sequence of I(u). Then, only kcy’s (k € NU{0}) can be limit points of {I(u,)|n € N}.

Remark 1.3. Corollary 1.2 essentially depends on the uniqueness of the positive solution
of (0.1).

As mentioned the above, when ¢ € (0,¢0), I(u) has at least a non-trivial critical
point. However, unfortunately, under the condition (b.1)—(b.4), it may be ¢ = ¢g. Thus
we need consider another minimax value. To define another minimax value, we use a path
v0(t) € C(R, H*(R)) which is defined as follows: for small ¢ > 0, we set

w(z) z € [0, 0],
h(z) = ' +uy € [—eo,0),

eg—f—uO T E (—OO, —'60)a
20(t)(2) = { Zg; f)t) . i gj
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Here, we remark that ug was given in (£.2). This path 7o(¢) was introduced in [JT2].
Choosing a proper € > 0 sufficiently small, 4o(t) achieves the mountain pass value of

Ip(u) and satisfies the followings:

Lemma 1.4. Suppose (f.1)~(f.2) hold. Then ~y(t) satisfies

(i) %(0)(z) = w(z).
(ii) Io(vo(t)) < fo(w) = ¢ for all t # 0.

(#i) hm |lvo(®)llaiw) =0, im [|w(@)]lag) = oo
Proof. See Section 3 in [JT2].

Remark 1.5. When f(u)/u is a increasing function, we can use a simpler path than vo(2).
In fact, setting Jo(t) = tw : [0,00) — H(R), we also have

(1) Y(1)(z) = w(z).

(ii) In(Fo(t)) < Io(w) = ¢ for all t # 1.
(ii1) 50(0) =0, Lim |[Fo ()|l a2 (m) = o0-
Moreover, if f(u)/u is a increasing function, in what follows, we can also construct a
simpler proofs by aruging on Nehari manifold N = {u € H'(R) \ {0} |I'(u)u = 0}. (See
[Sp].)

Now, for R > 0, we consider a path vz € C(R?, H'(R)) which is defined by
Yr(s,t)(z) = max{y(s)(z + R), w(t)(z — R)}.

In our proof of Theorem 0.2 in [S], the following proposition is a key proposition.

Proposition 1.6. Suppose (b.1)-(b.3) and (f.1)—(f.2) hold. Then, for any L > 0, we have

A3 e
. 2R _ < 20 2|z| - } 1.2
dn et mex Tome.0) -2 < F ([ doela-2). 02

Here A\ = limg_, 400 w(x)el®l.
Proof. See [S].
By using a translation, without loss of generalities, we assume zo = 0 in (b.4). If (b.4)

with zg = 0 holds, from Proposition 1.6, for any L > 0, there exists Ry > 0 such that

I t)) < 2cp.
(e85 oy T (R0, 8)) < 2o
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To prove the Theorem 0.2, we also need a map m : H}(R) \ {0} — R which is defined
by the following: for any u € H*(R) \ {0}, a function

Tu(s) = /oo tan"!(z — s)|u(z)|?’dz: R = R
— 00

is strictly decreasing and sll}rgo Tu.(s) = —||u||2L2(R) < 0 and sgr_noo Tu(s) = ||u||ig(R) > 0.

Thus, from the theorem of the intermediate value, T,,(s) has an unique s = m(u) such that

T,(m(u)) = 0. We also find that m(u) is of continuous by the implicit function theorem to

(u,s) — Ty(s). The map m(u) was introduced in [Sp]. We remark that m(u) is regarded

as a kind of center of mass of [u(z)[> and we can check the followings.

Lemma 1.7. We have

(i) m(y(t)) =0 forallt € R.

(ii) m(yr(s,t)) >0 forall —-R < s<t<R.
(iii) m(ygr(s,t)) <0 for all -R <t < s < R.

Proof. Since vo(t)(z) is a even function, we have (i). We Note that

r(o () = { TR o r et

Since vgr(s, s)(z) is also a even function, we have
m(yr(s,s)) =0 forall se€R,
and we get (ii)-(iii). |
In what follows, we will complete the proof of Theorem 0.2 for N = 1.

Proof of Theorem 0.2 for N = 1. First of all, we defined a minimax value ¢; > 0 by

= inf I(x(t)),
o = inf max ((t)

T1={(t) € C([0,1], H'(R)) [ 7(0) = 0, I(¥(1)) <O, |m(y(t))| < 1}.

Noting I'; C T, we have
O0<e <.

Since I'; is not invariant by standard deformatipn flows of I(u), c; may not be a critical
point of I(u). We will use ¢; to divide the case. We divide the case into the following

three cases:

(i) c < Cp.



(ii) ¢1 = cg.

(111) Cc1 > Cp.

Proof of Theorem 0.2 for the case (i). Since the inequality c¢; < co implies 0 < ¢ < ¢o,
from Corollary 1.2, we can see I(u) has at least a non-trivial critical point. i

Proof of Theorem 0.2 for the case (ii). In this case, if ¢ < ¢1 = cg, then I(u) has
at least a non-trivial critical point from Corollary 1.2. Thus we may consider the case
c = c1 = ¢g. In this case, for any e > 0, there exists v(t) € I'; such that

< .
¢< max I(7e(t)) <c+e

Since 7 € T'; C T and T is an invariant set by standard deformation flows of I(u), by a
standard Ekland principle, there exists u, € H(R) such that

¢ < I(ue) < max I(7(t)) < c+k,

te(0,1]
17 (ue)ll < 2V,
inf [|ue —ve(®)||lmr(r) < € (1.3)

telo,1]

Then, from Proposition 1.1, there exist a subsequence ¢; — 0, k € N U{0}, k-sequences

()32, -, (z’;);ﬁl C R, and a critical point ug of I(u) such that

I(u,) = I(uo) + k:co (7 — o0), (1.4)

—0 (7 — o0),
HY(R)
jzé —2f| v 00 (joo0) (E#L),

ue, (z) — uo(zx) — Zw(z—:c

Now, if ug # 0, our proof is completed. So we suppose ug = 0. Then, from (1.4), it must
be £k = 1. Thus, we have

Huej(x) —w(m—m})HHl(R) -0 (j = o0). (1.5)

| > 00 (j— ).

On the other hand, we remark that, since m(w) = 0 and m is of continuous, there exists
6 > 0 such that

Im(u)] <1 forall ue Bs(w)={ve H'R)||v—-wl|lmmw) <3}

61
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Thus, from (1.3) and (1.5), for some ¢ € (0, %) and tp € [0, 1], we have

Im(veo (t0)) — 2] < 1.

This contradicts to 7., € I';. Therefore up # 0 and I(u) has at least a non-trivial critical

point. |

Proof of the Theorem 0.2 for the case (iii). First of all, we set § = 9452 > 0 and

choose Lg > 0 such that

max I{(vr(s,t)) <cog+d <e; forall R>3Ly. (1.6)
(s,t)€D2ry\Dr,
Here we set Dy = [L, L] x[L, L] C R®. Next, from Proposition 1.6, we can choose Ry > 3Ly

such that

2¢,. 1.7
(S;I)lgg%l(m(s,t))< Co (1.7)

Here we fix g, (s, t) and define the following minimax value:

co= inf max I(vy(s,t)),
2 'YGFQ (37t)eD2L0 (’Y( ))

T2 = {7(s,t) € C(Dzr,, H'(R)) |¥(s,t) = VR, (s,1) for all (s,t) € Do, \ Dr,}-
Then we have the following lemma.

Lemma 1.8. We have
O0<cog<eg < < 20.

We postpone the proof of Lemma 1.8 to end of this section. If Lemma 1.8 is true, then
I3 is an invariant set by the deformation flows of I(u). Thus I(u) has a (PS)-sequence
(un )2, such that
I(u,) = c2 € (coy2¢9) (N — 00).

From Corollary 1.2, we can see that [(u) must have at least a non-trivial critical point.
Combining the proofs of the cases (i)-(iii), we complete a proof of Theorem 0.2. |

Finally we show Lemma, 1.8.
Proof of Lemma 1.8. The inequality ¢y < ¢; is an assumption of the case (iii). From
YR, € I'2 and (1.6)—(1.7), c2 < 2¢p is obvious. Thus we show ¢; < ¢;. For any «(s,t) € I's,

we have

m(vy(s,t)) >0 forall (s,t) € D, (1.8)
m(v(s,t)) <0 forall (s,t) € Da. (1.9)
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Here we set Dy = {(s,t) € Dar, \ Dr,|s < t} and Dy = {(s,t) € Dor, \ D1, |s > t}.
From (1.8)—(1.9), a set {(s,t) € Dar, | |m(7(s,t))] < 1} have a connected component which
contains a path joining two points yg,(—2Lg, —2Lo) and g, (2Lo, 2Lg). Thus we construct
a path v,(t) € I'y such that

{'71 (t) It € [1/33 2/3]} - {'7(31 t) | (35 t) € D2Lo}a

< cp.
tel0,1731012/3,1 I(n(?) < e

Thus we see

< i
1 S trell[gﬁ] I(m(t))

< max I{v(st)). (1.10)

" (s,t)€Dar,

Since (s,t) € I’y is arbitrary, from (1.10), we have
C1 S Ca.
Thus we get Lemma, 1.8. |

Remark 1.9. In our proofs of Theorem 0.2, the path vg(s,t) played an important role. In
particular, the estimate (1.2) was an important. However, we don’t know that vgr(s,t) is
the best path to show the existence of positive solutions of (x). Using other path, we might
be able to get better estimate than (1.2). Instead of yg(s,t), we can consider another path
¥r € C(R?%, H'(R)) which is defined by

V(s t)(z) = 10(s)(z + R) + %0(t)(z — R).

We remark that Jg(s, t) is a natural path because we can regard Yg(s,t) as one-dimensional
version of the path which was used in the proof of the high-dimensional case. (See Propo-
sition 2.2.) Estimating (s, t) by similar way to (1.2), for any L > 0, we have

2

A >
i 2R =~ _ < 0 2z —2z dr — 4 ).
Aim e {(s,t)g}%’w, I(7r(s, 1)) 2c0} <3 (/; b(z)(e*® + e % +2)dx

We see that, if [*°_b(z)(€?® +e~2*+2) dz < 4 holds, then [ b(x)e?*! dz < 2 also holds.
Thus vg(s,t) provides a better estimate than Jg(s,t).
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2. The outline of the proof of Theorem 0.2 for N > 2

In this section, we consider the case N > 2. We remark that, when N > 2, our proofs
almost are parallel to [BaL]. We assume f(u) = wP for v > 0 and f(u) = 0 for u < 0,
where p € (1, §£2) when N > 3, p € (1,00) when N = 2. We set

1) = Sllully ey ~ w25 oy € CHH(RY), R),
where

g gy = s oy + [ Bau? do
RN

By the standard ways, we reduce I, to a functional
v (RN
o= (3 1) ol e
2 p+1) \lvillerrmn)

T ={ve H'RY)||lvllgrr) = 1,v4 # 0}.
Then J € C(Z,R) and, for any critical point v € ¥ of J(v), t,v is a non-trivial critical

) 2(pp_+12

which is defined on

point of I(u) where t, = [[v[|}; R,\,)|[v+||m,+1(R,\,) Thus, in what follows, we seek non-
trivial critical points of J(v). ’

Let w(z) be an unique radially symmetric positive solution of (0.1) for f(u) = u? and
we set ¢g = 3|w||%, (RN) ~ pi1||w||H1(R”) > 0. For the (PS)-sequences of J(u), we have
the following:

Proposition 2.1. Suppose (b.1)-(b.2), (f.0) hold and let (v,)3>, be a (PS)-sequence of
J(u). Then there exist a subsequence n; — oo, k € NU{0}, k-sequences (7)1,
(zF)%2, c RY, and a critical point ug of I(u) such that
J(vn,;) = I(uo) + kco (5 — 00),
uo(z) = Yooy wiz — af)
|[uo(e) - Thoy wie - )|

2 —2f| 200 (j—o0) (€£€),

Izf] 200 (joo0) (£=1,2,---,k).
Proof. Let (v,)5%, be a (PS)-sequence of J(v). Then (t,,v,), is a (PS)-sequence of
I (u) Moreover we remark that the set of the critical points of the functional §||u||%, RN) ™
p+1 et || zr gy : HY(RN) — R is written by {w(z+¢) | € € RN }U{0} from the uniqueness
of positive solutions of (1.0). Thus Proposition 2.1 easily follows applying Theorem 5.1 of
[JT1] to (ty,vn)0,- |

-0 in HYRM) (- ),

vn, (T) —

HI(RN

By the similar arguments of Section 1, we have the following corollary.
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Corollary 2.2. Suppose I(u) has no non-trivial critical points and let (v,).; be a (PS)-
sequence of J(v). Then, only kcy’s (k € N) can be limit points of {J(v,)|n € N}.

We set

c= Jgé J(v).

Then we can easily see that 0 < ¢ < ¢y. From the boundedness of J(v) from below, we get

also more strong corollary.

Corollary 2.3. For any b € (—o0,cp) U (co, co + ¢), J(v) satisfies (PS)y-condition.

oo

Proof. If (PS),-condition does not hold for b € R, then for some (PS),-sequence (v,)3%,,
it must be k£ # 0 in Proposition 2.1. Thus we have

lim J(v,) =b=key or lim J(v,)=0b2>c+ kco.
n—r00 n—oo

This implies Corollary 2.3. i

When ¢ < ¢, from Corollary 2.3, ¢ is a critical value of J(v). Thus this case is easy.
Thus we consider the case ¢ = cg. When ¢ = ¢y, we must define another minimax value.

To define another minimax value, the following proposition is important.

Proposition 2.4. Suppose N > 2, (b.1)-(b.3) and (£.0) hold. Then, there exists Ry > 0
such that for any R > Ry, we have

tw(z —¢) + (1 - thw(z — ) ) ) o1
ceocosianpnon” (TG G2 0~ Do) <20 @7
Here Bp = {z € RV ||z| < R}.

Proof. To get (2.1), for large R > 0, it sufficient to show

I - () +tw(z —~§)) < 2¢. 2.2

(5008 e pm g T~ ) F (= &))< 2 22)
In many papers [BaL], [A], [H1], [H2], the estimates like (2.2) were obtained. In [A],
[H1], [H2], they treated more general f(u) including u% . Since we can get (2.2) by similar
ways to those calculations, we omit the proof of (2.2). |

Remark 2.5. When N = 1, the estimate (2.1) does not hold. (See Proposition 1.6 and
[S].) We remark that, for some Cy > 0, w(z) satisfies

N-1

0 < w(z) < Colz|~ "7 e 1=l forall zeRY. (2.3)
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Roughly explaining about the difference from N = 1 and N > 2, when N > 2, we can
obtain (2.1) by the effect of Ialcl"N_z-l in (2.3). On the other hand, when N = 1, since the

effect of le“yz;l vanishes, (2.1) does not hold.
To prove the Theorem 0.2, we also define a map m : H*(R") \ {0} - R”" which is
an expansion of m defined in Section 1. That is, for any u € H*(R") \ {0}, we consider a
map
1(©) = ([ tan @ - )lulo)P oo, [ tan~on - en)iu(o) o)
RN RV .
RN - RVN.

Then we can see that Ty, (£) has an unique &, € R" such that T,,(£,) = 0 because

fRN -1—1(711:—61—)-2—|u(a:)|2 dr - 0
0 T fRN TzNI_-EN—)QIU(IE)IQ dx

Thus for any u € HY(RYN) \ {0}, we define m(u) = &,. We also find that m(u) is of
continuous by the implicit function theorem to (u,&) — T, (). Since w(z) is a radially
symmetric function, from the definition of m(u), we can easily see that

m(w(z - €)) =€ forall £€eRY. (2.4)

In what follows, we will complete the proof of Theorem 0.2.

Proof of Theorem 0.2 for N > 2. We set

c= t}E%J('u)

When ¢ < ¢, from Corollary 2.3, c is a critical point of J(v) and our proof is completed.
Thus we must consider the case ¢ = ¢p. For a € R" we defined a minimax value ¢, > 0 by

Cq = ulenzf‘a J(v),

Y, = {v € X|mv) = a}.
Noting £, C ¥ and ¢ = ¢, we have
0<c¢y <cq.

We will show that I(u) has at least a non-trivial critical point for the following both cases:



(i) For some a € RY, ¢p = c,.
(ii) For some a € R, ¢y < c,.

Proof of Theorem 0.2 for the case (i). For any € > 0, there exists 9. € £, such that
¢y < J(’ﬁe) < cp+e

Since 9. € £, C ¥ and ¥ is an invariant set by standard deformation flows of J(v), by a

standard Ekland principle, there exists v, € X such that

co < J(ve) < J(e) < ¢ + €,
([ (ve)l| < 2Ve,

”’Ue - ﬁ€l|H1(R) < €. (25)

Then, from Proposition 2.1, there exist a subsequence ¢; — 0, ¥ € N U{0}, k-sequences

(asjl-);";l, cee (mf)‘;‘;l C RY, and a critical point ug of I(u) such that

J(ve,) = I(ug) +keo (j — o0), (2.6)

up(z) — gy wlx — z})

Un, () — p -0 in HYRM) (7 — o0),
[wo(@) ~ Ticy i@ =], .

25 —2f| 200 (j00) (L#E),

|m§|—->oo (Jooo) (¢=1,2,---,k).

Now, if ug # 0, our proof is completed. So we suppose ug = 0. Then, from (2.6), it must
be k = 1. Thus, we have

— !
vey () = ~E=%5) 50 (§ - o0), @.7)
||l 2 (mvy H(RN)
|z5] = 00 (§ = 00).
From (2.4), (2.5) and (2.7), we see that
Im(@,)| — oo as j — oo.

This contradicts to m(?,) = a. Therefore ug # 0 and I(u) has at least a non-trivial

critical point. i

67
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Proof of the Theorem 0.2 for the case (ii). From Proposition 2.4, we set (o =
(%RO,O, ---,0) and § = %(ca — ¢p) > 0 and choose a large Ry > |a| such that

J - < 8 < ¢, 2.8
gé%%);o (wxz—-¢§)<cp+d<c, (2.8)
tw(z — o) + (1 — tw(z — &) )
max J < 2cp. 2.9)
(€:)€8Bro x(0,1] (Htw(x = Go) + (1 = tw(z = lla my) (
Here we define the following minimax value:

c2 = #’5 Ereng;co J(v(%)),

r= {ws) € C(Bry, %) 'ws)(x) L Cha
||W||H1(RN)

for all £ € 0Bg, } .

Then we have the following lemma.

Lemma 2.6. We have
0 <y <cq Le2 < 2.

We postpone the proof of Lemma 2.6 to end of this section. If Lemma 2.6 is true,
then I' is an invariant set by the deformation flows of J(v). Thus J(v) has a (PS)-sequence
(vn)S2, such that

J(vn) = c2 € (€0,2¢0) (n — 00).
From Corollary 2.3, J(u) satisfies (PS)c,-conditions. Thus ¢, is a critical value of J (v).
That is, I(u) has at least a non-trivial critical point. Combining the proofs of the cases

(i)-(ii), we complete a proof of Theorem 0.2. |

Finally we show Lemma 2.6.
Proof of Lemma 2.6. The inequality ¢y < ¢, is an assumption of the case (ii). From
(2.9), c2 < 2¢p is obvious. Thus we show ¢, < ¢;. For any v € T, from (2.10), we have

m(y(§)) =€ forall &€ OBpg,.

Thus we can see

deg(m o ~, Bgr,,a) = 1. (2.10)
From (2.10), there exists & € Bg, such that m(v(£y)) = a. Therefore, since y(&) € L,
we find that

Ce < vlenzfa J(v)

< J(7(%)))
< max I(y(§))- (2.11)

Rg
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Since v € T is arbitrary, from (2.11), we have
Cq < Ca.

Thus we get Lemma, 2.6. |
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