
Exact Multiplicity of Rapidly Decaying Solutions for
a Semilinear Elliptic Equation with a Critical

Exponent

東京工業大学大学院理工学研究科 柳田 英二 (Eiji Yanagida)
Department of Mathematics

Tokyo Institute of Technology

1 Introduction
This article is based a joint work with Noriyuki Murai (Tohoku University). We

consider radially symmetric solutions of the equation

$\triangle u+K(|x|)u^{p}=0$ in $\mathbb{R}^{n}$ , (1.1)

where $n>2,$ $p>1$ . $K\geq 0$ and $K\in C^{1}([0, \infty))$ , Any radially symmetric solution
$u=u(r),$ $r=|x|$ , of (1. 1) satisfies

$\{\begin{array}{ll}u_{rr}+\frac{n-1}{r}u_{r}+K(r)u^{p}=0, r>0,u(O)=\alpha>0, u_{r}(0)=0. \end{array}$ (1.2)

We denote by $u(r;\alpha)$ the unique solution of this initial value problem. According to [7],
we can classify the solutions of (1.2) as follows:

$\bullet$ Rapidly decaying solution: $u(r)>0$ for all $r>0$ and $r^{n-2}uarrow\beta\in(0, \infty)$ as
$rarrow\infty$ .

$\bullet$ Slowly decaying solution: $u(r)>0$ for all $r>0$ and $r^{n-2}uarrow\infty$ as $rarrow\infty$ .

$\bullet$ Crossing solution: $u(z)=0$ at some $z\in(0, \infty)$ .
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In what follows, we consider the critical case in the Sobolev sense:

$p= \frac{n+2}{n-2}$ .

We note that the critical case is related to the Yamabe problem in differential geome-
try [9]. In the context of the Yamabe problem, any rapidly decaying solution corresponds
to the complete metirc, while the slowly decaying solution corresponds to the incomplete
metric.

Here we collect known facts about the existence of rapidly decaying solutions of (1.2)
in the case of $p= \frac{n+2}{n-2}$ . First, it is easy to show that if $K\equiv 1$ , then

$u= \varphi(r;\alpha):=\alpha\{1+\frac{\alpha^{4/(n-2)}}{n(n-2)}r^{2}\}^{-(n-2)/2}$

satisfies (1.2). We note that the solution satisfies

$r^{n-2}\varphi(r;\alpha)arrow\{n(n-2)\}^{(n-2)/n}\alpha^{-1}$ $(rarrow\infty)$ ,

so that $u=\varphi(r;\alpha)$ is a rapidly decaying solution for any $\alpha\in(0, \infty)$ . Ding-Ni [3] proved
that if $K(r)$ is monotone and nonconstant, then there is no rapidly decaying solution.
More precisely, they proved the following.

$\bullet$ If $K(r)$ is non-constant and non-increasing in $r$ , then $u(r;\alpha)$ is a slowly decaying
solution for all $\alpha>0$ .

$\bullet$ If $K(r)$ is non-constant and non-decreasing in $r$ , then $u(r;\alpha)$ is a crossing solution
for all $\alpha>0$ .

When $K(r)$ is not monotone, Bianchi-Egnell [1] showed the existence of a rapidly de-
caying solution by assuming that $K$ satisfies $K(O)\leq K(\infty)$ and some other asymptotic
conditions at $r=0$ and $r=\infty$ . Also, Sasahara-Tanaka [8] studied the case where
$K(0)=K(\infty)$ and $K$ has a minimum, and proved that there exists at least one rapidly
decaying solution. See also Yanagida-Yotsutani [11] for a sufficient condition on the
existence of a rapidly decaying solution.

Concerning the uniqueness, Yanagida-Yotsutani [10] proved that if $K(r)$ is non-
constant, non-decreasing in $(0, a)$ , non-increasing in $r\in(a, \infty)$ , and $K(O)=K(\infty)$ ,
then there exists a unique rapidly decaying solution. In fact, there exists a unique
$\alpha^{*}\in(0, \infty)$ such that

$\bullet$ $u(r;\alpha)$ is a slowly decaying solution for every $\alpha\in(0, \alpha^{*})$ .
$\bullet$ $u(r;\alpha^{*})$ is a rapidly decaying solution.

$\bullet$ $u(r;\alpha)$ is a slowly decaying solution for every $\alpha\in(\alpha^{*}, \infty)$ .
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On the other hand, concerning the multiple existence of rapidly decaying solutions, it
was shown numerically by Morishita-Yanagida-Yotsutani [6] that for some $K$ , there may
exist multiple rapidly decaying solutions. Kabeya [4] obtained a condition on $K$ such
that there exist at least two rapidly decaying solutions. Finally, Chen-Lin [2] considered
the case $n\geq 7$ and found that for some $K$ , there exists infinitely many rapidly decaying
solutions.

The aim of this article is to obtain a condition on $K$ for the exact multiplicity of
rapidly decaying solutions of (1.2). The following theorem is our main result.

Theorem 1. Let $n>2$ and $p= \frac{n+2}{n-2}$ . Assume that

(i) $K(r)=1+\epsilon k(r)$ , where $k(r)\equiv 0$ for $r\in[0, a]$ and $k(r)\equiv$ Const. for $r\in[b, \infty]$

with some $0<a<b<\infty$ , and $\epsilon>0$ is a pammeter, and

(ii) the function
$g( \alpha):=\int_{0^{r^{n}\varphi(r;\alpha)^{\frac{2n}{n-2}k_{r}(r)dr}}}^{\infty}$

has exactly $m$ simple zeros in ($0$ , oo).

If $\epsilon>0$ is sufficiently small, then the problem (1.2) has exactly $m$ mpidly decaying
solutions.

We also have the following result.

Theorem 2. Let $n>2$ and $p= \frac{n+2}{n-2}$ . Then for any $m\in N$ , there exists $K=K_{m}(r)$

such that the problem (1.2) has exactly $m$ rapidly decaying solutions.

2 Preliminaries
In this section we describe some preliminary results about the problem (1.2). Here-

after we always assume that $n>2$ and $p= \frac{n+2}{n-2}$ .
First we introduce the Pohozaev identity, which is obtained by direct computations

and (1.2).

Lemma 1. Define
$P[r;u]:= \frac{1}{2}r^{n-1}u_{r}(ru_{r}+(n-2)u)+\frac{n-2}{2n}r^{n}K(r)u^{p+1}$ .

Then
$\frac{d}{dr}P[r;u]\equiv\frac{n-2}{2}r^{n}K_{r}(r)u^{p+1}$ .

85



In particular, this identity implies that if $K(r)\equiv Const$ . for $r\in[b, \infty)$ , then $P[r;u]$

is also constant for $r\in[b, \infty)$ .

The following characterization of solutions of (1.2) is proved by Kawano-Yanagida-
Yotsutani [5].

Lemma 2. Suppose that $K(r)\equiv Const$ . for $r\in[b, \infty)$ .

(i) If $P[b;u]>0$ , then $u(r;\alpha)$ is a crossing solution.

(ii) If $P[b;u]=0$ , then $u(r;\alpha)$ is a mpidly decaying solution.

(iii) If $P[b;u]<0$ , then $u(r;\alpha)$ is a slowly decaying solution.

Using this lemma, we will identify the type of $u(r;\alpha)$ for small $\alpha>0$ , large $\alpha$ and
intermediate $\alpha$ as follows.

Lemma 3.
$\frac{u(r;\alpha)}{\alpha}arrow 1$ and $\frac{u_{r}(r;\alpha)}{\alpha}arrow 0$ $(\alphaarrow 0)$

unifomly in $r\in[0, b]$ .

Proof. Setting $v(r)=\alpha^{-1}u(r;\alpha)$ , we have

$\{\begin{array}{ll}v_{rr}+\frac{n-1}{r}v_{r}+\alpha^{p-1}K(r)v^{p}=0, r>0,v(0)=1>0, v_{f}(0)=0 \end{array}$

Hence $v=\alpha^{-1}uarrow 1$ and $v_{r}=\alpha^{-1}u_{r}arrow 0$ as $\alphaarrow 0$ uniformly in $r\in[0, b]$ . $\blacksquare$

Lemma 4.
$\frac{P[b;u]}{\alpha^{p+1}}arrow\frac{n-2}{2}\int_{0}^{b}r^{n}K_{r}(r)dr$ $(\alphaarrow 0)$ .

Proof. By the Pohozev identity and Lemma 3, we have

$\frac{P[b;u]}{\alpha^{p+1}}=\frac{n-2}{2}\int_{0}^{b}r^{n}K_{r}(r)\{\frac{u(r;\alpha)}{\alpha}\}^{p+1}dr$

$arrow\frac{n-2}{2}\int_{0}^{b}r^{n}K_{r}(r)dr$ $(\alphaarrow 0)$

Thus for small $\alpha,$ $P[b;u]$ has the same sign as $\int_{0}^{b}r^{n}K_{r}(r)dr$ . $\blacksquare$
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Lemma 5. Suppose that $K(r)\equiv 1$ for $r\in[0, a]$ . Then

$\alpha u(r;\alpha)arrow C_{0}(n)r^{2-n}$ and $\alpha u_{r}(r;\alpha)arrow-(n-2)C_{0}(n)r^{2-n}$

as $\alphaarrow\infty$ uniformly in $[a, b]$ , where $C_{0}(n):=\{n(n-2)\}^{(n-2)/2}>0$ .
Proof. Setting $w(r)=\alpha u(r;\alpha)$ , we have for $r\in[0, a]$

$w(r)= \alpha\varphi(r;\alpha)=\alpha^{2}\{1+\frac{\alpha^{4/(n-2)}}{n(n-2)}r^{2}\}^{-(n-2)/2}$

$= \{\alpha^{-4/(n-2)}+\frac{1}{n(n-2)}r^{2}\}^{-(n-2)/2}$

$arrow C_{0}(n)r^{2-n}$ $(\alphaarrow\infty)$

uniformly $r\in[\delta, a]$ . Similarly

$w_{r}(r)= \alpha\varphi_{r}(r;\alpha)=-\frac{1}{n}\alpha^{2n/(n-2)}r\{1+\frac{\alpha^{4/(n-2)}}{n(n-2)}r^{2}\}^{-n/2}$

$arrow-(n-2)C_{0}(n)r^{1-n}$ $(\alphaarrow\infty)$

uniformly in $r\in[\delta, a]$ . On the other hand, from (1.2) we see thatw satisfies

$\{\begin{array}{ll}w_{rr}+\frac{n-1}{r}w_{r}+\alpha^{-4/(n-2)}K(r)w^{p}=0, r>0,w(a)arrow C_{0}(n), w_{r}(a)arrow C_{0}(n)a^{2-n} (\alphaarrow\infty).\end{array}$

This implies that $warrow C_{0}(n)r^{2-n}$ uniformly in $r\in[a, b]$ as $\alphaarrow\infty$ . $\blacksquare$

As a consequence of this lemma, we have

Lemma 6.

$\alpha^{p+1}P[b;u]arrow\frac{n-2}{2}C_{0}(n)^{p+1}\int_{0}^{a}r^{-n}K_{r}(r)dr$ as $\alphaarrow\infty$ .

Proof.

$\alpha^{p+I}P[b;u]=\frac{n-2}{2}\int_{0}^{b}r^{n}K_{r}(r)\{\alpha u(r;\alpha)\}^{p+1}dr$

$arrow\frac{n-2}{2}ab_{r^{n}K_{r}(r)\{C_{0}(n)r^{2-n}\}^{p+1}dr}$ $(\alphaarrow\infty)$

$= \frac{n-2}{2}C_{0}(n)^{p+1}\int_{0}^{b}r^{-n}K_{r}(r)dr$.

Thus for large $\alpha$ . $P[b;u]$ has the same sign as $\int_{0}^{b}r^{-n}K_{r}(r)dr$ . $\blacksquare$

We write $K$ as $K(r)=1+\epsilon k(r)$ .
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Lemma 7. Let $0<\alpha_{1}<\alpha_{2}<\infty$ be fixed. Then

$u(r;\alpha)arrow\varphi(r;\alpha)$ and $u_{r}(r;\alpha)arrow\varphi_{r}(r;\alpha)$

as $\epsilonarrow 0$ unifomly in $(r, \alpha)\in[0, b]\cross[\alpha_{1}, \alpha_{2}]$ .

Proof. Since

$\{\begin{array}{ll}u_{rr}+\frac{n-1}{r}u_{r}+\{1+\epsilon k(r)\}u^{p}=0, r>0,u(O)=\alpha>0, u’(O)=0, \end{array}$

the proof is clear. $\blacksquare$

As a consequence of this lemma, we have

Lemma 8.
$\frac{P[b:u]}{\epsilon}arrow\frac{n-2}{2}\int_{0}^{b}r^{n}k_{r}(r)\varphi(r;\alpha)^{p+1}dr$.

as $\epsilonarrow 0$ .

Proof. By the Pohozaev idenitity, we have

$P[b:u]= \frac{n-2}{2}\int_{0}^{b}r^{n}\epsilon k_{r}(r)u(r;\alpha)^{p+1}dr$ .

Since $u(r;\alpha)arrow\varphi(r;\alpha)$ as $\epsilonarrow 0$ , we obtain the conclusion. Thus for intermediate $\alpha$

and small $\epsilon>0,$ $P[b;u]$ has the same sign as $\int_{0}^{b}r^{n}k_{r}(r)\varphi(r;\alpha)^{p+1}dr$ . $\blacksquare$

3 Outline of proofs

Proof of Theorem 1.
Step 1: For small $\alpha\in(0, \alpha_{1})$ , we can identify the type of $u(r;\alpha)$ by examining the sign
of

$\int_{0}^{b}r^{n}k_{r}(r)dr$ (the same sign as $g(O)$ .

Step 2: For large $\alpha\in(\alpha_{2}, \infty)$ , we can identify the type of $u(r;\alpha)$ by examining the sign
of

$\int_{0}^{a}r^{-n}k_{r}(r)dr$ (the same sign as $g(\infty)$ ).
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Step 3: Fix $0<\alpha_{1}<\alpha_{2}<\infty$ as above. If we take $\epsilon>0$ sufficiently small, then we can
identify the type of solutions for $\alpha\in(\alpha_{1}, \alpha_{2})$ by examining the sign of

$g( \alpha):=\int_{0}^{\infty}r^{n}\varphi(r;\alpha)^{p+1}k_{r}(r)dr$

From these considerations and the simplicity of zeros of $g(\alpha)$ , we can count the exact
number of rapidly decaying solutions by counting the number of zeros of $g(\alpha)$ .

In fact, if $\epsilon>0$ is sufficiently small, then the number of rapidly decaying solutions
is the same as the number of zeros of $g(\alpha)$ . $\blacksquare$

Proof of Theorem 2.
If we rewrite $g(\alpha)$ as

$g( \alpha):=-\int_{0}^{\infty}\{r^{n}\varphi(r;\alpha)^{p+1}\}_{r}k(r)dr$ ,

we can handle the case where $K(r)=1+\epsilon k(r)$ is piece-wise constant (or $K_{r}=\epsilon k_{r}(r)$

is a superposition of the delta functions). Then for every $m\in N$ , we may control the
locations of discontinuous points and gaps to find a piece-wise constant $K(r)=1+\epsilon k(r)$

such that $g(\alpha)$ has exactly $m$ simple zeros.
In the last step, we approximate the piece-wise function by a smooth function. Then

the number of zeros does not change because the zeros are simple. $\blacksquare$
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