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$Abstra\alpha-A$ set $ot$ linearly constrained permutation matrices
are proposed for constructing a class of pemutation codes.
Making use of linear comuaints imposed on the permutation
matrices, we can fomulate a minimum Eudidian distance
decoding problem for the proposed dass or permutation codes
as a linaer $P^{m}ffmmng$ (LP) problem. The main $fae\mathfrak{w}re$ of $h\ddagger s$

novel class of permutation codes, cded $lPi\ell e\ovalbox{\tt\small REJECT} bk$ pemutation
$eod\ell s$, is this LP decodabilky. It is demonstrated that the LP
$d\propto oding$ performance of the proposed dass of permutation codes
is characterized by the vertices of the code polytope $ot$ an LP
decodable pemutation coda In addition, based on a probsbmrc
method, several theoretical $m18$ for $random!y$ consffaind
permutation codes are derived.

II. PREL[MINARIES

A. Notatton and defnition
In the present paper, matrices are represented by capital

letters, and vectors are assumed to be column vectors. Let $X$

be an $nxn$ real mabix. The notation $X\geq 0$ means that every
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element in $X$ is non-negative. The notation vec(X) represents
a $vec\iota 0\dot{n}zation$ of $X$ given by

vec(X) 2 $(X_{1,1}\cdots X_{1.\mathfrak{n}}X_{2,1}\cdots X_{2,n},X_{s,\iota}\cdots X_{n,n})^{T}$ .
The vector 1 is an all-one vector, the length of which

$is$ determined by the context. The nom $||\cdot||$ denotes the
Euclidean norm given by $||x||=\Delta(x^{T}x)^{1/2}$. The trace function
trace(X) retums the sum of the diagonal elements of $X$ .
$\Pi e$ sets $\mathbb{R}$ and $Za\infty$ the sets of real numbers and integers,
respectively. The set $[\alpha,\beta]$ denotes the set of consecutive
integers from $a\in Z$ to $\beta\in$ Z.

The symbol $\underline{\triangleleft}$ is defined by

$(\begin{array}{l}a_{1}|a_{m}\end{array})\underline{\triangleleft}(\begin{array}{l}b_{1}|b_{m}\end{array})\Leftrightarrow\forall i\in|1,m],a_{i}\underline{\triangleleft}_{i}b_{i}$ ,

$where\underline{\triangleleft}_{i}$ is either $=$ or $\leq$ . For simplicity, the notation $\triangleleft=$

$(\underline{\triangleleft}_{1}, \ldots, \underline{\triangleleft}_{m})^{\prime r}$ is used to $define\underline{\triangleleft}$
$(e.g., \underline{\triangleleft}=(\leq, =, \leq)^{\overline{T}})$.

The following definition gives a class of $ma\alpha ices$ that is
crucial to the arguments presented herein.

Defnition 1 (knnutation $mat\dot{m}$): An $nxn$ binary real
rnatnx $X=\Delta(X_{\ell_{\dot{l}}})_{i.j\epsilon[1,n|}\in\{0,1\}^{n}$““ is called a pemu.
tation matrix if and only if

$\forall i,j\in[1,n|,\sum_{j’\in[1.n|}X_{i,j’}=1,\sum_{i’\in|1,n|}X_{i’d}=1$
. (1)

The set of $nxn$ permutation matrices is denoted by $\Pi_{*}$ . ロ
It is also known that an $nxn$ binary matrix is a permutation
$ma\alpha ix$ if and $on!y$ if the Hammuing weights of every $\infty lum$

and every row are exactly 1. The cardinality of $n_{n}$ is $n!$ .
Removing the binary constraint $\hslash om$ the deflnition of the

permutation manic$\infty$ . we obtain the deflnition of doubly
stochastic matrices.

Defnition 2 (Doubly swchastic matrix): An $nxn$ non-
negative real matrix $X=\Delta(X_{i.j})_{td\epsilon[1,n|}$ is called a doubly
stochasttc mtrix if and only if (1) holds. $0$

The following $4i\infty tem$ for a doubly stochastic $m\dot{\alpha}$ in-
dicates that the set of doubly stochastic matrioes is a $conv\propto$

polytope.
Theorem 1 (Birkhoff-von Neumann theorem $[l7Jfl8J)$:

Every doubly stochastic $R\dot{\alpha}$ is a convex combination of
permutation mamces.

The set of $nxn$ doubly stochastic $ma\alpha i\infty s$ is a polytope
called the Birkhoffpotytope $B_{n}[17]$ . The Birkhoff-von Neu-
mann theorem implies that any vertex (i.c, exreme point) of
the Birkhoff polytope $is$ a $\mu$mutarion $m\cdot-ix$.
B. $LP$ decoding for pemutatton vectors

Assume that $s\in R^{\mathfrak{n}}$, which is $ref\propto Id$ to as the inttial
vector, is givcnl. The set of images of $s$ by left action of
$X\in\Pi_{r}$ is refened to as the pemutation vectors of $s$, which
are given by $A(s)^{\Delta}=\{Xs|X\in E\}$ .

$\downarrow\cdot n_{1}*elem\infty \mathfrak{g}$ in . are not necmartly diVunct.

We next consider the simation whereby a vector of A(s)
is $rw\min\triangleleft$ to a receiver over an AWGN channel. In such
a case, it is desirable to use an ML decoding algorithm to
estimate the transmitted vector. The ML decoding rule can
be daecribed as $\hat{x}=\arg\min_{l\in A(\epsilon)}||y-x||^{2}$ , where $y$ is a
received word.

The following theorem states that the ML decoding for $\Lambda(s)$

can be fomuIated as the following $IP$ problem.
Theorem 2 ($LP$ decodin9 and $ML$ cemficate property):

Assume that a vector in $A(s)$ is transmitted over an AWGN
channel and that $y\in \mathbb{R}^{n}$ is received at the receiver side. Let
$X$‘ be the solution of the following LP $\mu oblem$ :

maximize $trace(C^{T}X)$

subject to
$X\in \mathbb{R}^{nxn},X1=1,1^{T}X=1^{T}$ , $X\geq 0$, (2)

where $C=\Delta ys^{T}$ . If $X^{\cdot}$ is integral, then $\hat{x}=X^{*}s$ holds.
$Pm\phi$: The linear constraints in the above LP problem

imply that $X$ is consffained to be a doubly stochastic manix.
One the other hand, the $m$, decoding rule can be rewritten

as follows:
$\hat{x}$ $=$ $\arg_{\Leftrightarrow\epsilon A(\cdot)}m\dot{m}||y-x||^{2}$

$=$ $( \arg\max y^{T}Xs)sx\epsilon n_{*}=(\arg\max_{\epsilon xn_{*}}trace(C^{T}X))\epsilon$.
Note that

$trace(C^{r}X)=\sum_{t=1j}^{n}\sum_{\approx 1}^{n}C_{i,j}X_{ti}$ . (3)

Since the vni$\varpi$ of the Birkhoff polytope form a permutation
matrix, the $m$ decoding can be formulated as an integer LP
(LP) problem:

maximize $traoe(C^{T}X)$

subject to $X\in B_{\hslash}$ , $X$ is an integral matirx.

By oemoving the integral consaaint (X is an integral mamx).
we obtain the LP problem (2). If the solution of this LP
problem is integral, it must coincide with the solution of the
above LP problem. $\blacksquare$

$m$ . LENEARLY CONSTRAINED PERMUTATION MATRICES
AND LP DECODABLE PBRMUTATION CODES

It is natural to consider an extension of the LP decoding
$\mu esentd$ in the previous section. Additional linear $ConSuaintS$

imposed on $n_{nN^{Q}}du\infty$ a restricted set of $\Lambda(s)$ . A decoding
problem of such a set can be formulated as an LP problem,
as in the case of the $m$ decoding of $A(s)$ .
A. $D\phi ni\dot{no}ns$

The following definition for linearly $ConSrai\mathfrak{n}ed\mu rmuta-$

tions gives an LP decodable subset of $A(s)$.
Definition 3(linearly constrained permtation matrix):

Let $m$ and $n$ be positive integers. Assume that
$A\in Z^{mxn^{*}},$ $b\in Z^{\pi*}$
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and $\underline{\triangleleft}$ are given. A set of linearly constrained pemutation
matrices is deflned by $\Pi(A, b,\underline{\triangleleft})=\Delta\{X\in\Pi_{n}|Avec(X)\underline{\triangleleft}$

$b\}$ .
Note that $A$ $vec(X)\underline{\triangleleft}bfomal!y$ represents

$maddi\dot{o}onal\square$

equalities and inequalities. These additional consffaints pro-
vide a restriction on permutation matrices.

From the linearEy constrained permutation matrices, LP
decodable permutation codes are naturally defined as follows.

Definition 4($LP$ decodable pemutation code): Assume
the same set up as in Deflnition 3. Suppose also that $s\in \mathbb{R}^{n}$

is given. The set of vectors $A(A, b,\underline{\triangleleft}, s)$ given by

$\Lambda(A,b, \underline{\triangleleft},s)^{\Delta}=\{Xs\in \mathbb{R}^{n}|X\in\Pi(A,b, \underline{\triangleleft})\}$ (4)

is referred to as an LP decodable permutation code. $0$

The following example shows a case in which an additional
linear constraint imposes a $resmc\dot{u}on$ on permulation matrices.

Example 1: Consider the set of linearly constrained per-
$muta\dot{u}0\mathfrak{n}$ matrices that consists of 4 $x4$ permutation matrices
satisfying the linear $co\mathfrak{n}soeai\mathfrak{n}t$ trace$(X)=0$. This constraint
implies that the diagonal elements of the permutation mamces
are constrained to be zero. This means thai such permutation
$ma\alpha ices$ correspond to permutations without fixed points,
which are referred to as derangements. For $n=4$. there exist
nine derangement $pemuta!ion$ matrices. In this case, the triple
$(A,b,\underline{\triangleleft})$ is defined by

$A=$ vec$(t)$ , $b=0$, $\underline{\triangleleft}=(=)$ ,

where $t$ is the $4x4$ identity matrix. Multiplying these matrices
by the initial vector $s=$ $(0,1,2,3)^{T}$ from the left. we
immediately obtain the members of $\Lambda(A,b, \underline{\triangleleft}, (0,1,2,3)^{T})$ :

$(1, 0,3,2)^{T}$ $($ 1, 2, $3,0)^{r}$ $($ 1, 3, $0,2)^{T}$

$(2, 0,3,1)^{\tau}$
’

$($2, 3, $0,1)^{T’}$
$($2, 3, $1,0)^{T}$

’

(5)
$(3, 0,1,2)^{T}$ , $(S,2,0,1)^{r’}$, $($3, 2, $1,0)^{T}$ . a

1
$\square$

B. $LP$ decoding for $LP$ decodabte pemutation codes
The LP decoding of $\Lambda(A,b,\underline{\triangleleft}, s)$ is a namral extension

of the LP decoding for $A(s)$ . Assume that a vector in
$\Lambda(A,b,\underline{\triangleleft},s)$ is transmitted over an AWGN channel and $|$

$y\in \mathbb{R}^{\iota}$ is given. The procedure for the $IP$ decoding of
$\Lambda(A,b,\underline{\triangleleft}, \epsilon)$ is given as follows. 4

$i$

$\frac{LP4e\infty d1ngforanLPumab1enem\iota|taSoncode}{1)so1ve!hefo11owingLPp^{IobIemand1etXae}}$

thel
solution. 1

maximize trace$(C^{T}X)$
1

a
subject to $X$ $\in$ $\mathbb{R}^{nXB}$ , 1

$X$ $\geq$ $0,$ $X1=1,1^{T}X=1^{T}$ , a
$A$ $vec(X)$ $\underline{\triangleleft}$ $b$, (6)

where $C=ys^{T}$. $7t$

2$)$ Output $Xs$ if $X$ is integral. Otherwise, declare a
decoding failure.

$t$

C. Remarks
Several remarks should be made regarding the LP decoding

for $\Lambda(A,b,\underline{\triangleleft},s)$ .
The feasible set of (6) is a subset of the feasible set of (2).

All of the $ma\sigma ices$ in $\Pi(A,b, \underline{\triangleleft})$ are feasible and permutation
matrices that do not belong to $\Pi(A,b, \underline{\triangleleft})$ are infeasible. This
implies that all of the integral points of the feasible set (6)
coincide with $\Pi(A,b,\underline{\triangleleft})$.

The LP problem (6) is a relaxed problem of ffie ML
decoding problem over AWGN channels:

minimize $||y-x||^{2}$ subject to $x\in\Lambda(A,b,\underline{\triangleleft},s)$. (7)

This can be easily shown, as in the case (2). As a consequence
of the above properties on $i$ntegral points and on the relaxation,
it can be concluded that the LP decoding for $\Lambda(A,b,\underline{\triangleleft},s)$ also
has the $M$,-certificate property. Namely, if the output of LP
decoding is not decoding failure (i.e., $X^{\cdot}$ is integral), then
the output is $exact!y$ the same as the solution of the minimum
distance decoding problem (7).

The feasible set of the LP probl$em(6)$ is the intersection of
the Birkhoff polytope and a (possibly unbounded) convex set
defined by the additional constraints. The intersection becomes
a polytope, which is called a code polytope. The decoding
performance of LP decoding is closely related to the code
polytope given by the following deflnition.

$D\phi ni\dot{n}on5$ (Code polytope): The polytope $\mathcal{P}(A,b,\underline{\triangleleft})$ de-
fined by

$’\rho(A,b,\underline{\triangleleft})=\Delta B_{n}\cap\{X\in \mathbb{R}^{nxn}|Avec(X)\underline{\triangleleft}b\}$ (8)

is called the code polytope for II$(A,b,\underline{\triangleleft})$ , where $B_{n}$ is the
Birkhoff polytope corresponding to $\Pi_{n}$ . $\square$

In an LP decoding process. these fractional vertices becomes
a possible candidate of an LP solution. Thus, these fractional
vertices can be considered to be pseudo pemutation matrices,
which degrade the decoding performance of the LP decoding.

IV. ANALYSIS FOR LP DBCODING PERFORMANCE

In this section, an upper bound on decoding error probability
for LP decoding $is$ presented.

A. Upper bound on $LP$ decoding error probability
An advantage of the LP fomulation of a decoding algorithm

is its simplicity for detailed decoding performance analysis.
The geometrical properties of a code polytope aoe closely re-
lated to its decodIng performance for the LP decoding. We can
evaluate the block error probability of the proposed scheme
with reasonable accuracy if we have sufficient information on
a set of vertices of a code polytope. $n\iota e$ bound presented $i\mathfrak{n}$

th$is$ section has a close relationship to the pseudo codeword
analysis on LDPC codes [3].

In this section, a set of parameters $A,$ $b,$ $\underline{\triangleleft},s$ aoe assumed
to be given. Let $V$ be the set of $ve\mathbb{R}!ices$ of the code polytope
$\mathcal{P}(A,b,\underline{\triangleleft},s)$ . In genera!, $V$ contains ffactional vertices.

The following lemma provides a bridge between a code
polytope and the corresponding decoding error probability.
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Lemma 1 (Upper bound on block $emr$ rate for $lPD$)$.\cdot$

Assume that a codeword $Xs$ is $\alpha a[ smittd$ to a $r\infty iv\sigma$ via an
AWGN channel, where $X\in\Pi(A, b, \underline{\triangleleft})$ . The additive white
Gaussian noise with mean $0$ and variance $\sigma^{2}$ is assumed.
The receiver uses the LP decoding algorithm presented in
the previous section. In this case, the block elror probability
$P_{tP}(X)$ is upper bounded by

$P_{LP}(X) \leq\sum_{\tilde{x}\epsilon V\backslash \{X\}}Q(\frac{||Xs||^{2}-(\tilde{X}s)^{T}Xs}{\sigma||\tilde{X}s-Xs||})$ , (9)

where the Q-function is the tail probability of the $n\alpha md$

Gaussian distribution.
Exaniyple 2: We have performed the following $\infty mpuoer$

experiment using the following two codes:
1 $)$ LP decodable rrmutation code corresponding to the de-

$1$

rangements of length 5. The additional linear constraint 1

is trace(X) $=0$. A ffansniard word $(1,0,4,2,3)^{r}$ is
assumed. The code polytope has 44 $v\propto ti\infty$ . which $a\infty$

all integral $Ve\mathfrak{n}iCeS$ .
2$)$ $IPd\infty odable$ permutation code of length 5 correspond-

ing to an additional linear constraint $X_{1,1}+X_{6,6}=1$ .
A transmitted word $(0,4,3,2,1)^{T}$ is assumed. The code
polytope has 330 verticcs. The set of vertices contains
36 integral vertices and 294 fractional vertioes.

An AWGN channel with noise vaniance $\sigma^{2}$ is assumed. The
signal-to-noise ratio is deflned by $SNR=10\log_{10}(1/\sigma^{2})$ .
The LP decoding described in the previous section was used
for decoding.

Figure 1 shows the upper bounds and simulation results
on the block emr probability of these $\mu rmu[a\alpha on$ codes.
It is readily observed that the upper bounds presented in
this section exhibit reasonable agreement with the simulation
results.

Although both codes have sinilar cardinalities $(u$ and
36), the demngement code provides much betler block error
probabilities than those of the code with the constnint $X_{1,1}+$

$X_{5,6}=1$ . This is because the existence of fractional $v\propto 0c\infty$

(i.e., 294 ffactional verticcs) aeverely degrades the decoding
performance of the code with the $\infty$nsnint $X_{1.1}+X_{5.5}=1$ ,
as compaled with the derangement code. $\square$
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