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Abstract—A set of linearly constrained permutation matrices
are proposed for constructing a class of permutation codes.
Making use of linear constraints imposed on the permutation
matrices, we can formulate 2 minimum Euclidian distance
decoding problem for the proposed class of permutation codes
as a linear programming (LP) problem. The main feature of this
novel class of permutation codes, called LP decodable permutation
codes, is this LP decodability. It is demonstrated that the LP
decoding performance of the proposed class of permutation codes
is characterized by the vertices of the code polytope of an LP
decodable permutation code. In addition, based on a probabilistic
method, several theoretical results for randomly constrained
permutation codes are derived.

I. INTRODUCTION

The origin of permutation codes dates back to the 1960s.
Siepian [11] proposed a class of simple permutation codes,
which is referred to as permutation modulation, and efficient
soft decoding aigorithmns for these codes. This research has
been extended and investigated by a number of researchers.
Karlof [12] and Ingemarsson [13] investigated the optimization
of the initial vector of the permutation modulation. Berger et
al. [14] discussed applications of permutation codes to source
coding problems.

There is another thread of researches on a class of per-
mutation codes of length n whose codewords contain exactly
n-distinct symbols, ie., any codeword can be obtained by
applying a permutation to an initial vector, e.g., (0,1,...,n—
1).
Some fundamental properties of such permutation codes
were discussed by Blake et al. [1]. Vinck {9] proposed appli-
cations of permutation codes for power-line communication,
which inspired subsequent research on permutation codes.
‘Wadayama and Vinck [10] presented a multi-level construction
of permutation codes with a large minimum distance. A
number of constructions for permutation codes have been
developed, including the construction given in [2] [4].

Recently, rank modulation codes for flash memory proposed
by Jiang et al. [6] [7] generated renewed interest in permuta-
tion codes. For example, for fiash memory coding, Klgve et al.
presented a new construction for permutation codes based on
the Chebyshev distance [8], which is an appropriate distance
measure for flash memory coding. Barg and Mazumdar [15]

also investigated fundamental bounds on permutation codes in
terms of the Kendall tau distance.

In the present paper, a new class of permutation codes
referred to as LP decodable permutation codes is introduced.
An LP decodable permutation code is obtained by applying
permutation matrices that satisfy certain linear constraints on
an n-dimensional real initial vector.

Permutation matrices are vertices of the Birkhoff polytope
[17], which is the set of doubly stochastic matrices. Thus, a set
of linearly constrained permutation matrices can be expressed
by a set of linear equalities and linear inequalities. This
property leads to the main feature of this class of permutation
codes: the LP decodable property. For this class of codes, a
decoding problem can be formulated as a linear programming
(LP) problem. This means that we can exploit efficient LP
solvers to decode LP decodable permutation codes. Further-
more, for a combination of this class of codes and its LP
decoding, the maximum likelihood (ML) certificate property
can be proved, as in the case of the LP decoding for LDPC
codes [5]. This is due to the fact that the LP problem given
in the present paper is a relaxed problem of an ML decoding
problem.

In general, a fundamental polytope [16) [S] used for LP
decoding of LDPC codes contaings a number of fractional
vertices, which are a major source of sub-optimality of LP
decoding. The constraints corresponding to an LDPC matrix
are defined based on Fj-arithmetics. On the other hand, an
LP decoder works on the real number field. This domain
mismatch produces many undesirable fractional vertices on the
fundamental polytope. One motivation of the present study is
to establish a coding scheme without this mismatch. In other
words, the LP decodable permutation codes are defined on the
real number field and are decoded using an LP solver working
on the real number field.

II. PRELIMINARIES

A. Notation and definition

In the present paper, matrices are represented by capital
letters, and vectors are assumed to be column vectors. Let X
be an n x n real matrix. The notation X > 0 means that every



element in X is non-negative. The notation vec(X) represents
a vectorization of X given by

vec(X) é (X;l'] .. 'Xl'n Xz_l oo -Xz,,., X3,1 (R Xn,n)T .

The vector 1 is an all-one vector, the length of which
is determined by the context. The norm || - || denotes the
Euclidean norm given by ||z]| £ (zTz)2. The trace function
trace(X) returns the sum of the diagonal elements of X.
The sets R and Z are the sets of real numbers and integers,
respectively. The set [, 3] denotes the set of consecutive
integers froma€Z to f € Z.

The symbol < is defined by

a1 bl
: g : &Vie [l,m],a‘ <, b¢,
Cm bm

where J; is either = or <. For simplicity, the notation 4 =
(1., Sm)7 is used to define < (e.g., 9 = (<, =,<)T).

The following definition gives a class of matrices that is
crucial to the arguments presented herein.

Definition 1 (Pgnnutatian matrix): An n x n binary real
matrix X é (X(_,').'.jell,,‘] € {0,1}""" is called a2 permu-
tation matrix if and only if

VijelLnl, Y Xip=1 Y Xey=1. ()
j'€(1n] €[1,n]

The set of n x n permutation matrices is denoted by II,.
It is also known that an n x n binary matrix is 2 permutation
matrix if and only if the Hamming weights of every column
and every row are exactly 1. The cardinality of II, is n!.

Removing the binary constraint from the definition of the
permutation matrices, we obtain the definition of doubly
stochastic matrices.

Definition 2 (Doubly stochastic matrix): An n x n non-
negative real matrix X 2 (Xi;);sej1,n) I8 called a doubly
stochastic matrix if and only if (1) holds. O

The following theorem for a doubly stochastic matrix in-
dicates that the set of doubly stochastic matrices is a convex
polytope.

Theorem 1 (Birkhoff-von Neumann theorem [17] [18] ):
Every doubly stochastic matrix is a convex combination of
permutation matrices.

The set of » x n doubly stochastic matrices is a polytope
called the Birkhoff polytope B, [17}. The Birkhoff-von Neu-
mann theorem implies that any vertex (i.c., extreme point) of
the Birkhoff polytope is a permutation matrix.

B. LP decoding for permutation vectors

Assume that s € R®, which is referred to as the initial
vector, is given'. The set of images of s by left action of
X € I, is referred to as the permutation vectors of s, which

are given by A(s) £ {Xs| X € IL,.}.

!The elements in s are not necessarily distinct.
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We next consider the situation whereby a vector of A(s)
is transmitted to a receiver over an AWGN channel. In such
a case, it is desirable to use an ML decoding algorithm to
estimate the transmitted vector. The ML decoding rule can
be described as & = argminzeas) lly — lI%, where y is 2
received word.

The following theorem states that the ML decoding for A(s)
can be formulated as the following LP problem.

Theorem 2 (LP decoding and ML certificate property):
Assume that a vector in A(8) is transmitted over an AWGN
channel and that y € R® is received at the receiver side. Let
X" be the solution of the following LP problem:

maximize trace(CT X)
subject to

X eR™"™ X1 =1, 1TX = 1T1 X220, )

where C £ ysT. If X* is integral, then = X*s holds.
Proof: The linear constraints in the above LP problem

imply that X is constrained to be a doubly stochastic matrix.

One the other hand, the ML decoding rule can be rewritten
as follows:

; T

arg_min, ly - =l
= T = T
= (arg)xrxéalﬁy Xs)s = (arg}t{léﬁitrace(c X))s.

z

Note that

trace(CT X)= i i Ci,j Xij 3)

i=1 j=1
Since the vertices of the Birkhoff polytope form a permutation
matrix, the ML decoding can be formulated as an integer LP

(ILP) problem:
maximize trace(CT X)
subject to X € By, X is an integral matirx.

By removing the integral constraint (X is an integral matrix),
we obtain the LP problem (2). If the solution of this LP
problem is integral, it must coincide with the solution of the
above ILP problem. »

III. LINEARLY CONSTRAINED PERMUTATION MATRICES
AND LP DECODABLE PERMUTATION CODES

It is natural to consider an extension of the LP decoding
presented in the previous section. Additional linear constraints
imposed on II,, produce a restricted set of A(s). A decoding
problem of such a set can be formulated as an LP problem,
as in the case of the ML decoding of A(s).

A. Definitions

The following definition for linearly constrained permuta-
tions gives an LP decodable subset of A(s).

Definition 3 (linearly constrained permutation matrix):
Let m and n be positive integers. Assume that

AezZ™ pezm



and 9 are given. A set of linearly constrained permutation
matrices is defined by II(A, b, <) S {Xell,| Avec(X) g
b}.

Note that A vec(X) < b formally represents m additiong
equalities and inequalities. These additional constraints pro-
vide a restriction on permutation matrices.

From the linearly constrained permutation matrices, LP
decodable permutation codes are naturally defined as follows.
Definition 4 (LP decodable permutation code): Assume
the same set up as in Definition 3. Suppose also that s € R*

is given. The set of vectors A(4,b, Q, s) given by

A(A,b,9,5) £ {Xs e R™ | X € T1(A,b, 9)}

is referred to as an LP decodable permutation code.
The following example shows a case in which an additional
linear constraint imposes a restriction on permutation matrices.
Example 1: Consider the set of linearly constrained per-
mutation matrices that consists of 4 x 4 permutation matrices
satisfying the linear constraint trace(X) = 0. This constraint
implies that the diagonal elements of the permutation matrices
are constrained to be zero. This means that such permutation
matrices correspond to permutations without fixed points,
which are referred to as derangements. For n = 4, there exist
nine derangement permutation matrices. In this case, the triple
(A, b, Q) is defined by
A=vec(l), b=0,
where I is the 4x 4 identity matrix. Multiplying these matrices
by the initial vector s = (0,1,2,3)T from the left, we
immediately obtain the members of A(4,5, <, (0,1,2,3)T):
(1,0,3,2)7, (1,2,3,0)%, (1,3,0,2)7,
(2,0,3,1)T, (2,3,0,1)7, (2,3,1,0)7,
(3,0,1,2)T, (3,2,0,1)7, (3,2,1,0)T.

@

d4= (=)a

5)

(]
B. LP decoding for LP decodable permutation codes

The LP decoding of A(A4,b,9,s) is a natural extension

of the LP decoding for A(s). Assume that a vector in
A(A,b,9,5s) is transmitted over an AWGN channel and
y € R" is given. The procedure for the LP decoding of
A(A, b, Q, 8) is given as follows.

LP decoding for an LP decodable permutation code
1) Solve the following LP problem, and let X* be the
solution.

maximize trace(C7 X)

subject to X € R"*7",
X 2 0,X1=1,1"x=17,
Avec(X) 4 b, ©)
where C = ys7,
2) Output X*s if X* is integral. Otherwise, declare a
decoding failure.
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C. Remarks

Several remarks should be made regarding the LP decoding
for A(A,b,Q,s).

The feasible set of (6) is a subset of the feasible set of (2).
All of the matrices in II{A, b, 9) are feasible and permutation
matrices that do not belong to II(A,b, Q) are infeasible. This
implies that all of the integral points of the feasible set (6)
coincide with I1(A4, 5, Q).

The LP problem (6) is a relaxed problem of the ML
decoding problem over AWGN channels:

Q)

This can be easily shown, as in the case (2). As a consequence
of the above properties on integral points and on the relaxation,
it can be concluded that the LP decoding for A(A4, b, 9, s) also
has the ML-certificate property. Namely, if the output of LP
decoding is not decoding failure (i.e., X* is integral), then
the output is exactly the same as the solution of the minimum
distance decoding problem (7).

The feasible set of the LP problem (6) is the intersection of
the Birkhoff polytope and a (possibly unbounded) convex set
defined by the additional constraints, The intersection becomes
a polytope, which is called a code polytope. The decoding
performance of LP decoding is closely related to the code
polytope given by the following definition.

Definition 5 (Code polytope): The polytope P(A,b, Q) de-
fined by

P(A,5,9) £ B,n{X e R™*" | A vec(X)<b} (@)

is called the code polytope for II(A,b, <), where B, is the
Birkhoff polytope corresponding to II,,. O

In an LP decoding process, these fractional vertices becomes
a possible candidate of an LP solution. Thus, these fractional
vertices can be considered to be pseudo permutation matrices,
which degrade the decoding performance of the LP decoding.

minimize [y ~ z||? subject to z € A(4,5, 9, s).

IV. ANALYSIS FOR LP DECODING PERFORMANCE

In this section, an upper bound on decoding error probability
for LP decoding is presented.

A. Upper bound on LP decoding error probability

An advantage of the LP formulation of a decoding algorithm
is its simplicity for detailed decoding performance analysis.
The geometrical properties of a code polytope are closely re-
lated to its decoding performance for the LP decoding. We can
evaluate the block error probability of the proposed scheme
with reasonable accuracy if we have sufficient information on
a set of vertices of a code polytope. The bound presented in
this section has a close relationship to the pseudo codeword
analysis on LDPC codes [3].

In this section, a set of parameters A, b, 9, 8 are assumed
to be given. Let V' be the set of vertices of the code polytope
P(A, b, g, s). In general, V' contains fractional vertices.

The following lemma provides a bridge between a code
polytope and the corresponding decoding error probability.



Lemma 1 (Upper bound on block error rate for LPD):
Assume that a codeword X s is transmitted to a receiver via an
AWGN channel, where X € II(A, b, Q). The additive white
Gaussian noise with mean O and variance o2 is assumed.
The receiver uses the LP decoding algorithm presented in
the previous section. In this case, the block error probability
Prp(X) is upper bounded by

2 _(¥s)\T
PLp(X)< ) Q(”X-’”_ (Xs) Xs)’ o
Rev\{X} ollXs — Xsl|

where the Q-function is the tail probability of the normal
Gaussian distribution.

Example 2: We have performed the following computer
experiment using the following two codes:

1) LP decodable permutation code corresponding to the de-
rangements of length 5. The additional linear constraint
is trace(X) = 0. A transmitted word (1,0,4,2,3)7 is
assumed. The code polytope has 44 vertices, which are
all integral vertices.

2) LP decodable permutation code of length 5 correspond-
ing to an additional linear constraint X ; + X55 = 1.
A transmitted word (0,4, 3,2,1)7 is assumed. The code
polytope has 330 vertices. The set of vertices contains
36 integral vertices and 294 fractional vertices.

An AWGN channel with noise variance o2 is assumed. The
signal-to-noise ratio is defined by SNR = 10log,, (1/0?) .
The LP decoding described in the previous section was used
for decoding.

Figure 1 shows the upper bounds and simulation results
on the block error probability of these permutation codes.
It is readily observed that the upper bounds presented in
this section exhibit reasonable agreement with the simulation
results.

Although both codes have similar cardinalities (44 and
36), the derangement code provides much better block error
probabilities than those of the code with the constraint X ; +
Xs,5 = 1. This is because the existence of fractional vertices
(i.e., 294 fractional vertices) severely degrades the decoding
performance of the code with the constraint X; 1 + X5 5 = 1,
as compared with the derangement code. g
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