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Abstract

1 Introduction
This paper introduces new tools for the analysis of data flows over networks. We focus on
(linear) network coding [2, 15], an important class of problems with numerous applications to
error correction, optimal throughput, network security, and distribution [3]. Network coding
is one of a host of problems in data analysis and management that require an understanding of
local-to-global transitions. The novel tools we present in this paper are based on sheaf theory
[1,4, 8, 10].

Sheaf theory was invented in the mid $1940s$ as a branch of algebraic topology to organize 10-
cal strtlct$\iota$ires on topological spaces [10, Introduction]. Via its successes in several complex vari-
ables and algebraic geometry, sheaves are now indispensable in modem mathematics. How-
ever, despite its prowess in dealing with local-to-global transitions, sheaf theory has rarely if
ever formd concrete applications to problems in science or engineering. The few exceptions in
the literature (e.g., [5, 14]) have dealt with applications to logic/semantics in Computer Science
and use categorical properties of sheaves to organize local data.

This paper introduces the following principal ideas:

1. SHEAVES are an excellent tooI for organizing network information flows;

2. SHEAF COHOMOLOGY yields global characterizations of networks with coding;

3. EXACT SEQUENCES allow for easy manipulation and computation of the above.
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Thuis note is part of a larger program to introduce sheaf cohomology as a means to organize data
over networks: the recent complementary work of Robinson is the effect of these investigations
to organize data over quanttlm graphs [12] and logic circuits [13].

The paper is orgamzed as follows. In Section 2, we overview the fumdamentals of sheaf the-
ory, including sheaf cohomology and basic operations. This section introduces the NETWORK
CODING SHEAF (NC sheaf for short). We then demonstrate the information-theoretical mean-
ing of NC sheaf cohomology. In Section 3, NC sheaf cohomology is applied to certain practical
problems: maxflow bormds, global extendability, network robustness, and data merging. The
techniques of this section are standard long exact sequences in homological algebra.

2 Sheaf Formulation of Network Codings

2.1 Definition of Sheaves

The reader may consult [1, 4, 8, 10] for general discussions on sheaf theory. Let X be a topolog-
ical space (e.g., network, as a l-d cell complex) and $R$ be a commutative ring.

Definition 1 (Presheaf). A PRESHEAF $F$ on X consists of the following data:

1. an R-modtde $F(U)$ for each open subset $u\subset X$ ,

2. an R-linear map Pvu: $F(U)arrow F(V)$ for each pair $V\subset U\subset$ X.

These data satisfy the following conditions:

$Puu=IDu)Pwv^{\circ}$ Pvu $=p_{WU}$ for $w\subset v\subset u$ ,

where $IDu$ is the identity map on $F(U)$ .

An element $\sigma\in F(U)$ is called a SECTION of $F$ on $U$ , and $m:R$-linear map Pvu is called a
RESTRICTION map. We often write $\sigma|$ instead of Pvu $(\sigma)$ , and call it the restriction of $\sigma$ to V.

Definition 2 (Sheaf). A presheaf $F$ on X is called a SHEAF if it satisfies the following two condi-
tions:

1. For any open set $U\subset X$, any open covering $U=\bigcup_{i\in I}U_{i}$, and any section $\sigma\in F(U)$ ,
$\sigma|u_{i}=0$ for all $i\in I$ implies $\sigma=0$ .

2. For any open set $U\subset X$, any open coverin$gU=\bigcup_{i\in I}U_{i}$, any family $\sigma_{i}\in F(U_{i})$ satisfying
$\sigma_{i}|u_{i}$ nu, $=\sigma)|u_{\mathfrak{i}}nu_{;}$ for all pairs $(i, \mathfrak{j})$ , there exists $\sigma\in F(U)$ such that $\sigma|u_{\mathfrak{i}}=\sigma_{i}$ for all $i\in$ I.

Each R-module $F(U)$ is best regarded as”local data’ on U. From the conditions in Definition
2, a sheaf $F$ allows one to glue a set of local data together into global data uniquely. This hmts
at its utility.
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2.2 Network Coding Sheaves

We recall the problem setting of network coding [2, 11, 15]. Let $1c$ be an R-module, or simply
a (finite) field. Let $G=(V, \mathcal{E})$ be a directed graph (not necessarily acyclic), where V and $\mathcal{E}$ are
finite sets of nodes and directed edges, respectively A directed edge $e\in \mathcal{E}$ from $v\in V$ to $w\in V$

is denoted by $e=|vw|$ $($ HEAD $(e)$ $:=\mathcal{W},$ $TAIL(e);=v)$ . All graphs in this paper are viewed as
topological spaces with the usual locally Euclidean cellular topology.

We assume that there exists a subset $S=\{s_{1)}\cdots, s_{\alpha}\}\subset\backslash 7$ of nodes called SOURCES which
transmit, as information, elements in $k^{n_{s_{1}}},$ $\mathfrak{n}_{s_{\mathfrak{i}}}\in \mathbb{N}$, for each $s_{i}\in$ S. We also assume that
there exists a subset $R=\{1^{\cdot}1, \cdots , r_{\beta}\}\subset V$ of nodes called RECEIVERS. Each receiver requires
information from some sources and this assignment is determined by @ : $Rarrow 2^{S}$ in the sense
that a receiver $1_{i}$ requires all transmitted information from $S(r_{i})\in 2^{S}$ .

Let cap: $\mathcal{E}arrow \mathbb{N}$ be a CAPACITY frmction which assigns for each edge $e\in \mathcal{E}$ its information
capacity cap $(e)$ . The set of the incoming (outgoing, resp.) edges in the sense of edge directions
at a node $v\in V$ is denoted by In(v) (Out(v), resp. $\rangle$ . A LOCAL CODING MAP, $\phi_{wv}$ determines a
data assignment of the incoming data at $v$ into an outgoing edge $e$ with HEAD$(e)=w$ given by

$\phi_{wv};k^{\gamma\iota_{v}}\oplus I\langle\iota_{v}arrow k^{cap(e)}$ , where
$1_{v}= \sum_{e\in In(v)}$

cap $(e)$ ,

where it is assumed that $\mathfrak{n}_{v}=0$ for $v\in V\backslash$ S. In particular, a local coding map $\phi_{s_{i^{7}}}$, from a
receiver r) to a source $s_{i}\in@(\gamma_{)})$ corresponds to the DECODING MAP. The local coding map at $v$

is the linear transformation $\Phi_{v}$ sending incoming data to outgoing data; its row decomposition
is precisely the $\phi_{\backslash m}$ above. Denote the set of all local coding maps by $\Phi=\{\phi_{wv}\}$ .

In order to express decodable information flows on a network as a (co)cycle, we complete
the graph $G=(V, \mathcal{E})$ to X $=(v,\tilde{\epsilon})$ , where $\tilde{\mathcal{E}}$ is given by adding edges $e=|\tau_{i}s_{i}|$ in $\mathcal{E}$ from
each receiver $r_{\mathfrak{j}}$ to all of its requesting sotlrces $s_{i}\in@(\tau_{\mathfrak{j}})$ with cap $(e=|\tau_{j}s_{i}|)=\tau\iota_{s_{i}}$ . To remove
ambiguity, we denote the set of incoming edges at $v\in V$ in $\mathcal{E}$ or $\tilde{\mathcal{E}}$ by In $(V^{\cdot}, \epsilon)$ or In $(v;\tilde{\mathcal{E}})$ , respec-
tively, with Out $(v;\mathcal{E})$ and Out $(v;\tilde{\mathcal{E}})$ similarly defined. This extension enables one to compare
decoded information at each receiver $\gamma_{)}$

. with transmitted information from $s_{i}\in@(\tau$ ; $)$ as the
gluing condition of the network coding sheaf on the added edge $e=|7_{)}S_{i}|$ .

We define the network coding (NC) sheaf $F$ associated to $(X, \Phi)$ locally, as follows:

Definition 3 (Local Sections).

1. For a connected open set $U$ contained in an edge $e\in\tilde{\mathcal{E}},$ $F(U):=k^{cap(e\downarrow}$ .

2. For a connected open set $U$ which only contains one node $v\in$ V, F(U) $:=k^{n_{v}}\oplus k^{t_{v}}$ , where
$1_{v}= \sum_{e\in In(v;E)}cap(e)$ .

Definition 4 (Local Restriction Maps).

1. For connected open sets $V\subset U\subset e$ for some edge $e,$ $p\vee u:=ID;F(U)arrow F(V)$ .
2. For connected open sets $V\subset u$ , where $u$ contains only one node $v$ and V is $1\propto$ated in

$e\in$ In $(v;\tilde{\epsilon})$ , Pvu : $F(U)arrow F(V)$ is given by the projection map induced by the product
structure in Definition 3.

3. For connected open sets $W\subset U$, where $u$ contains only one node $v$ and $W$ is located in
$e\in$ Out $(v;\tilde{\mathcal{E}}),$ $p_{W\cup}:=\phi_{WV}$ : $F(U)arrow F(W)$ , where $w=HEAD(e)$ .
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From these local definitions of sections and restriction maps, the network coding sheaf is
defined by the SHEAFIFICATION [1], a standard process to constrnct sections and restriction
maps via the gluing condition in Definition 2, specifically:

Definition 5 (NC Sheaf). For $U\subset$ X, F(U) is defined to be the set of all equivalent classes
$\sigma=[(\sigma_{i}, u_{i})_{i\in I}]$ , where a representative $(\sigma_{i}, u_{i})_{1}$ with a covering $U=\bigcup_{I}U_{t}$ is given by a family
of sections $\sigma_{i}\in F(U_{i})$ satisfying $\sigma_{i}|u_{\mathfrak{i}}$ nu, $=\sigma;|u_{i}\cap u,$ , and the equivalent relation $\sim$ is defined by

$(\sigma_{i}, u_{i})_{I}\sim(T_{)}, v_{;})_{1}\Leftrightarrow\sigma_{i}|u_{i}nv,$ $=\tau;|u_{i}$ nv for $i\in I,\mathfrak{j}\in$ J.

The restriction map Pvu : $F(U)arrow F(V)$ is induced by local restriction maps on a representative
(independent of the choice of a representative). The sheaf $F$ obtained by the sheafification
process is called the network coding sheaf of (X, O).

2.3 Sheaf Cohomology
Cohomology is a basic invariant of topological spaces which captures global features of the
space by means of homological algebra [7]. In like manner, for a sheaf $F$ takin$g$ values in R-
modules, the global stmcture of the sheaf data on X is characterized by its SHEAF COHOMOL-
$ocv,$ $H^{\cdot}(X;F)$ , a graded R-module. General sheaf cohomology is too involved to describe in this
short article [8, 10], we resort to a more limmited (and, fortrmately, equivalent and computable)
variant, Cech cohomology.

To define Cech cohomology of $F$, choose the open coverin$gX=(\bigcup_{v\in V}U_{v})\cup(\bigcup_{e\in\epsilon}u_{e})$ by
using open stars $u_{v}$ and $u_{e}$ for each $v\in V$ and $e\in\tilde{\mathcal{E}}$ . Here, an open star $U_{v}$ for a node
$v\in V$ is the maximal connected open set containin$g$ only one node $v$, and an open star $U_{e}$

for an edge $e\in\tilde{\mathcal{E}}$ is the maximal open set contained in the edge $e$ . Define the Cech complex
$0arrow C^{0}(X;F)arrow\delta C^{\rceil}(X;F)arrow 0$ as:

$C^{0}(X;F)=\prod F(U_{v})$ ; $C^{\rceil}(X;F)=\prod F(U_{e})$ , (2.1)
$v\in V$ $e\in 8$

where the bormdaly map $\text{\^{o}}=(\partial_{e})_{e\in\epsilon}$ is defined for each product element $F(U_{e})$ of $C^{\rceil}(X;F)$

with $e=|vw|$ by

$\partial_{e};F(U_{v})\cross F(U_{1\mathcal{V}})arrow F(U_{e})$ ,
$\partial_{e}(\sigma_{v}, \sigma_{w})=pu.u_{v}(\sigma_{v})-p_{u_{e}u_{w}}(\sigma_{w})$ . (2.2)

Definition 6 (Sheaf Cohomology). The i-th sheaf cohomology $H^{1}(X\cdot,F)$ is deffied by $H^{i}(X;F)$ $:=$

$H^{i}(C^{\cdot})$ , i.e.,

$H^{0}(X;F):=ker(\partial)$ , (2.3)
$H^{1}(X;F);=C^{1}(\chi_{1}F)/im(\partial)$ . (2.4)

For an open set A $arrow\iota X$, a sheaf $F$ on X induces a sheaf on A called the INVERSE IMAGE $\lfloor^{*}$ F.
It is defined by t’F(U) $;=F(U)$ for an open set $U\subset A$, and the restriction maps are induced
by the original ones of the sheaf F. Then, by constrtictin$g$ an open coverin$g$ for A from X $=$

$( \bigcup_{\mathcal{V}\in V}u_{v})\cup(\bigcup_{e\in\overline{\epsilon}}u_{e})$ , one can define the sheaf cohomology $H^{\cdot}(A;\iota^{*}F)$ on A as the cohomology
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of the Cech complex $C^{\cdot}(A;\iota^{*}F)$ . We will often use the notations $H^{\cdot}(A;F)=H^{\cdot}(A;\iota^{*}F)$ and
$C^{\cdot}(A\cdot,F)=C^{\cdot}(A;\iota^{*}F)$ .

The relative sheaf cohomology $H^{\cdot}(X, A;F)$ with respect to $A\subset X$ open is defined as follows.
Any A open defines a surjective chain map $p$ : $C$ ‘ $(X; F)arrow$ C’ $(A;F)$ . The relative chain complex
is defined as the subcomplex $C^{\cdot}(X,A;F);=ker(p)$ . The relative sheaf cohomology is defined
as $H^{\cdot}(X,A;F)$ $:=H^{\cdot}(C^{\cdot}(X,A;F))$ .

2.4 Computation
It should be noted that computations for NC sheaf cohomology require only module opera-
tions, thanks to the use of Cech cohomology. In particular, from the definition of the sheaf
cohomology (2.3),(2.4), it suffices to check the kemel and the cokemel of the boundary map

$\partial$ : $C^{0}(X,F)arrow C^{\rceil}(X\cdot F)$ . These calculations are performed by means of Smith normal forms.
We refer to [9] for details of computations of Smith normal forms including fast algorithms and
reduction pre-processing.

2.5 Information-Theoretic Content of $H$

The cohomologies of NC sheaves provide a concise global collation of algebraic, topological,
and information-theoretic content. We begin with an interpretation of $H^{0}(X;F)$ for a NC sheaf
F. From (2.3), it suffices to examine the kemel of the boundary map $\partial;C^{0}(X;F)arrow C^{1}(X;F)$ .

We recall the definition of an information flow on a network $G$ with coding $\Phi$ . An IN-
FORMATION FLOW $\psi$ for a family of transmitted data $z=$ $(z_{s_{1}}, \cdots , z_{s_{\alpha}}),$ $z_{s_{\mathfrak{i}}}\in k^{\mathfrak{n}_{s_{i}}},$ $s_{i}\in S$ , is
defined by an assignment $\iota\downarrow,(e)\in k^{cap(e)}$ for each edge $e\in \mathcal{E}$ satisfying the FLOW CONDITIONS;

the data in $\psi$ are related by local coding maps $\Phi_{v}$ at all vertices $v$ . More specifically, for $e=|vw|$

and $e_{i}\in$ In $(v;\mathcal{E})(i=\rceil, \cdots , K)$ ,

1. $\phi_{wv}(\psi(e_{i})_{1}^{1\langle})=\psi(e)$ for $v\not\in S\cup R$ ,

2. $\phi_{wv}(z_{s_{i}},\psi(e_{i})_{\rceil}^{1\text{く}})=\psi(e)$ for $v=s_{i}\in S$ ,

3. $\phi_{\mathcal{W}\vee}(\psi(e_{i})_{\rceil}^{K})=z_{s_{i}}$ for $v=T_{)}\cdot\in R,$ $w=s_{i}\in S(\Gamma_{)})$ ,

4. $\phi_{wv}(\psi(e_{1})_{\rceil}^{K})=\psi(e)$ for $v=\tau_{\dot{1}}\in R,$ $w\not\in S(\Gamma;)$ ,

and so on. The other cases are similarly derived by taking proper domain and target spaces of
local coding maps.

We recall that the boumdary map $\partial$ : $C^{0}(X\cdot F)arrow C^{1}(X;F)$ is determined by a family of maps
$\partial_{e}(e\in\tilde{\mathcal{E}})$ by (2.2). Hence, $\sigma=(\sigma_{v})_{v\in V}\in C^{0}(X;F)\in ker(\partial)$ if and only if $\partial_{e}(\sigma_{v}, \sigma_{w})=0$ for
all $e=|vw|\in\tilde{\mathcal{E}}$ . The restriction map $Pu_{e}u_{v}$ from the tail node $v=TAIL(e)$ is determined by
the local coding map $\phi_{wv}$, and the restriction map $Pu_{e}u_{w}$ from the head node $w=HEAD(e)$ is
determined by the projection $F(U_{w})arrow F(U_{e})$ .

Theorem 7 (Information Theoretic Content of $H^{0}(X\cdot F)$ ). For a $NC$ sheaf $F$ of $(X, \Phi)$ , elemenis of
the sheaf cohomology $H^{0}(X;F)$ are in bijective correspondence with compatible information flows on the
nefwork.

Proof. Constmct an assignment $\psi(e)\in k^{cap(e)}$ for each $e=|vw|\in\epsilon$ by $\psi(e)=Pu_{e}u_{w}(\sigma_{w})$ (i.e.,
projecting $\sigma_{w}\in F(U_{w})$ into $F(U_{e}))$ . Let $z=(z_{s_{1)}}\cdots , z_{s_{\alpha}}),$ $z_{s_{i}}\in k^{\mathfrak{n}_{s_{1}}}$ , be the product element

35



in $\sigma\in C^{0}(X;F)$ corresponding to the transmitted data from S. A simple direci calculation
reveals that the kemel condition on $\partial_{e}$ expressed as $Pu_{e}u_{v}(\sigma_{v})=Pu_{e}u_{w}(\sigma_{w})$ is equivalent to
the above flow condition for the assigmnent $\psi$ on the edge $e$ . We therefore obtain the equivalent
expression of an information flow for a family of transmitted data $z$ by means of $\sigma\in ker(\partial)$ . $\square$

This theorem makes it possible to apply homological-algebraic tools for sheaf cohomology
to network coding problems.

3 Applications

3.1 Relative Cohomology and Maxflow Bounds

Recall the definition of relative NC sheaf cohomology $H^{\cdot}(X,A;F)$ for an open set $A\subset X$ : the
relative chain complex $C^{\cdot}(X,A;F)$ is derived as a subcomplex of $C^{\cdot}(X;F)$ which is mapped to $0$

by the surjective chain map $p$ : $C^{\cdot}(X\cdot F)arrow C^{\cdot}(A;F)$ . Hence, we have a short exact sequence of
chain complexes

$0arrow C^{0}(X, A., F)arrow^{i^{0}}C^{0}(X,F)arrow^{p^{0}}C^{0}(A;F)arrow 0$ (3.1)

$\downarrow a$ $0$ $\downarrow a$ $0$ $\downarrow a$

$0arrow C^{1}(X, A;F)arrow^{i^{\rceil}}C^{1}(X;F)arrow^{p^{\rceil}}C^{I}(A;F)arrow 0$

meanin$g$ that the above diagram is commutative and $ker(i^{k})=0$, im$(i^{k})=ker(p^{k})$ , im $(p^{lc})=$

$C^{k}(A;F)$ for $k=0,$ $\rceil$ . The boumdary maps in (3.1) are all induced by the original one a :
$C^{0}(X;F)arrow C^{\rceil}(X;F)$ . One of the important techniques in homological algebra is the LONG EX-
ACT SEQUENCE induced by a short exact sequence. For (3.1), the induced long exact sequence
is:

$0arrow H^{0}(X, A;F)arrow H^{0}(X;F)i^{0}arrow p^{0}H^{0}(A,F)arrow H^{\rceil}(X, A;F)6^{0}arrow i^{\rceil}\ldots$

(3.2)

where the maps $i$. and $p$ in (3.2) are induced by those in the short exact sequence (3.1). The
map $\delta^{0}$ is called the CONNECTING HOMOMORPHISM and is given by $\delta^{0}(\sigma_{A});=\partial(\sigma_{X})$ , where
$p^{0}(\sigma_{X})=\sigma_{A}$; furthermore, $\partial(\sigma_{X})\in C^{1}(X;F)$ is identified with the element in $C^{\rceil}(X, A;F)$ , since
$p^{\rceil}\partial(\sigma_{X})=$ Op $0(\sigma_{X})=\partial\sigma_{A}=0$ leads to $\partial(\sigma_{X})\in C^{\rceil}(X,A;F)$ .

An elementary application of the long exact sequence (3.2) yields information flow capacity
bounds. This is most transparent in the single-source scenario, $S=\{s\}$. Consider an open set
A $\subset$ X-s which does not include the source node, but does include some receiver $\tau;\in$ R. Then,
the umion of incomin$g$ edges into A (those contained neither entirely in A or its complement)
define a CUT $C_{A}$ between $s$ and $T_{)}\cdot$ ; and my cut may be realized as comin$g$ from some open
subset A as above. Recall that the CAPACITY of a cut $C_{A}$ is the sum of the edge capacities over
all edges in $C_{A}$ .

Lemma 8. For A $\subset$ X-s containing a receiver and $F$ any $NC$ sheaf
1. cap $(C_{A})=\dim H^{0}(A;F)$ ;
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2. $H^{0}(X, A;F)=0$ .

Corollary 9. The maxflow is bounded below by the mincut.

Proof. From Lemma 8, $H^{0}(X, A,F)=0$ in (3.2) and hence $p^{0}:H^{0}(X;F)arrow H^{0}(A\cdot F)$ is injective,
so that $dimH^{0}(\chi_{\rangle}F)\leq dimH^{0}(A\cdot, F)$ for any network coding sheaf $F$ md any cut-inducing A. By
Theorem 7, $dimH^{0}(X;F)$ equals the flow capacity of the network coding for F. Maximizing and
$m\ddot{r}mizing$ over all NC sheaves $F$ yields,

$\frac{\max f1ow}{\max_{F}dimH^{0}(\chi_{\rangle}\cdot p)}\frac{\min_{Ct1}t}{\min_{A}dimH^{0}(A;F)}\leq$ .

$\square$

This is, of course, superfluous and more easily proved with less cumbersome tools. A co-
homological proof, however, may apply to situations which are currently unknown or difficult
to analyze.

3.2 Extensions and the Connecting Morphism

The long exact sequence of a pair (X, A) (3.2), examined in more detail and for general $A\subset X$

open, reveals more stmctnre in the multi-source setting. Of relevance is the situation where one
fixes a local information flow $\sigma_{A}$ on A and studies the EXTENSION PROBLEM; does $\sigma_{A}$ extend
globally to a network flow respecting the coding and capacity constraints7

Proposition 10 (Global Extendability). A local information flow $\sigma_{A}\in H^{0}(A, F)$ is globally extend-
able $\iota f$and only $tf$ it lies in the kernel of the connecting homomorphis$m:\delta^{0}(\sigma_{A})=0$ .

Proof. Since the information flows on A and X are represented by elements in $H^{0}(A;F)$ and
$H^{0}(X;F)$ , respectively, it suffices to find $\sigma\in H^{0}(X;F)$ such that $p^{0}(\sigma)=\sigma_{A}$ . The exactness of the
sequence (3.2) at $H^{0}(A;F)$ is expressed as im $(p^{0})=ker(\delta^{0})$ . $\square$

3.3 Excision and Network Robustness

Let $A\subset G$ be $m$ open set md $Z=X\backslash A$ be its complementary closed set. For a section $\sigma\in F(U)$ ,
the support of $\sigma$, denoted $|\sigma|$ , is defined as

$|\sigma|:=$ {$x\in U|s|\neq 0$ for any neighborhood $V\subset U$ of $x$ }.

Consider also the subspace of $F(U)$ for each open set $U\subset X$ given by

$F_{Z}(u):=\{\sigma\in F(u)||\sigma|\subset Z\}$.

Then by replacing $F(U_{v}),$ $F(U_{e})$ in (2.1) with $F_{Z}(U_{v}),$ $F_{Z}(U_{e})$ , respectively, the local cohomology
with support $Z$, denoted $H_{\dot{Z}}(X;F)$ , is defined in the same way. The local cohomology $H_{\dot{Z}}(X\cdot F)$

is expressed in $m$ exact sequence as follows [8, II.9.2]:

$0arrow H_{Z}^{0}(X;F)arrow H^{0}(X;F)i^{0}arrow p^{0}H^{0}(A;F)arrow H_{Z}^{1}(X;F)\delta^{0}arrow i^{1}\ldots$

(3.3)
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where $i$. is induced by the inclusion map $i_{U};F_{Z}(U)arrow F(U)$ .
Suppose that a network experiences a failure on a sub-network $A\subset$ G. The ROBUSTNESS

PROBLEM for information flows asks under which the global information flow $\sigma\in H^{0}(X;F)$

persists on $Z$ with the removal of A.

Proposition 11 (Network Robustness). Let A $\subset G$ be an open $sef$ and $Z=X\backslash A$ be $fhe$ comple-
mentary closed set. Then $H_{Z}^{0}(X;F)$ represents the global informationflow on thefailure network $G\backslash$ A.
Moreover, the network coding of $F$ is robust to this failure ifand only if $p^{0}=0$ .

Proof. From the definition of the local cohomology $H_{Z}^{0}(X;F)$ , a section $\sigma_{Z}\in H_{Z}^{0}(X;F)$ represents
an information flow on the network $G$ such that $|\sigma_{Z}|\subset Z$ , i.e., for any point $x\in A$ , there exists
an open set $U\subset A$ such that $\sigma_{Z}|u=0$ . Hence, it follows that $H_{Z}^{0}(X;F]$ represents the informa-
tion flows which are not changed by the removal of A. The exact sequence (3.3) completes the
argument. $\square$

Remark 12. By the Five Lemma [4], we have the isomorphism $H^{k}(X,A,F)\simeq H_{Z}^{k}(X;F)$ . Hence
the above $\arg\iota unent$ can be explained by using only relative cohomology. On the other hand,
the long exact sequence (3.3) is one of the examples showing the EXCISION PROPERTY. There
are several versions of long exact sequences related to excision property $[8, n.9]$, each of which
can be used to analyze local information flows as above.

3.4 Mayer-Vietoris and Data Merging

In this subsection, we study a data mergin$g$ problem via homological algebra. Let U,V be open
sets in X such that $X=u\cup$ V. The problem of DATA MERGING –whether local in$fo ation$
flows on $U$ and V can be merged to a global information flow on X–is amenable to an exact
sequence interpretation.

Proposition 13. (Data Merging). Let $U$ and V be open sefs in X and $\sigma u\in H^{0}(U;F)$ and $\sigma_{V}\in$

$H^{0}(V;F)$ be local information flows on $U$ and V, respectively. Then these two local information flows
can be merged into a global information flow on X if and only if the local information flows agree (are

cohomologous) on $U\cap$ V.

Proof. The Mayer-Vletoris long exact sequence [8, II.5.10] states that:

$0arrow H^{0}(X;F)arrow H^{0}(U;F)\oplus H^{0}(V;F)f^{0}arrow g^{0}H^{0}(u\cap V_{1}\cdot F)arrow\delta^{0}$

$arrow H^{1}\delta^{0}(X;F)arrow H^{I}f^{\rceil}(U;F)\oplus H^{\rceil}(V\cdot F)arrow g^{\dagger}\ldots$ , (3.4)

where $f$. and 9 are defined by the sum and difference of restriction maps, respectively. Let
$\sigma_{U}\in H^{0}(U;F)$ and $\sigma_{V}\in H^{0}(V;F)$ be local information flows on $U$ and V, respectively. By
defimition, the existence of a global idormation flow $\sigma\in H^{0}(X;F)$ which merges $\sigma u$ and $\sigma_{V}$

implies that $f^{0}(\sigma)=(\sigma u_{\rangle}\sigma)$ . By exactness, this is equivalent to the pair of local information
flows being in the kemel of 90, i.e., their difference on $U\cap V$ is null. $\square$

4 Conclusion

Tluis paper marks the introduction of sheaf-theoretical tools to network coding. Sheaf cohomol-
ogy and associated exact sequences are shown to be usefUl in several network codin$g$ contexts.
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Due to space limitations, the full scope of our proposed program md full details of proofs are
not presented.

We anticipate one important application of sheaf theory in our future work to be a char-
acterization of maxflows on general multi-source network codings. One of the possibilities to
attack this problem is to give another sheaf theoretic proof of the maxflow characterization on
a single source scenario, which will be potentially applicable to multi-source one. As is seen
in the single source case, the maxflow characterization given by the mincut can be regarded
as a flow-cut duality. From this viewpoint of duality, a derived categorical formulation of net-
work coding sheaves may provide us with some $\iota\iota seftll$ characterizations via Poincar\’e-Verdier
duality and Morse theory.

It should be also mentioned that we can differently formulate network coding problems
without the extension of the graph $Garrow$ X. Even in this formulation, information flows on
a network can be treated by using NC sheaf cohomologies [6]. Besides cohomology, other
basic operations on sheaves (e.g., $f_{*},\{_{)}^{*}\otimes$ , Xom$(\bullet$ , $\bullet$ $))$ can be defined [4, 8, 10] and are useful
for constmcting new NC sheaves or to investigate relationships between different NC sheaves
and their cohomologies. Because of the generality of the sheaf cohomological tools presented
here, extensions to higher dimensional base spaces are straightforward. We propose this to be
useful in situations with spacial expanse (wireless broadcast) or with time dependence (using
the time axis $\mathbb{R}$ in the base space).
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