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1. INTRODUCTION

The Hahn-Banach theorem is one of the most fundamental theorems in the functional analysis
theory and the separation theorem is one of the most fundamental theorems in the optimization
theory. These theorems are known well in the case where the range space is the real number
system. The following is the Hahn-Banach theorem:

Let $p$ be a sublinear mapping from a vector space $X$ to the real number system $R,$ $Y$ a subspace
of $X$ and $q$ a linear mapping from $Y$ to $R$ such that $q\leq p$ on Y. Then $q$ can be extended to a
linear mapping $g$ defined on the whole space $X$ such that $g\leq p$ .

Moreover, the following is the separation theorem:

Let $X$ be a normed space, $X^{*}$ its dual space, $A,$ $B$ subsets of $X$ such that $A$ is closed convex
and $B$ is compact convex subset with $A\cap B=\emptyset$ . Then there nists a $f\in X^{*}\backslash \{0\}$ such that
$\inf\{f(y)|y\in B\}\geq\sup\{f(x)|x\in A\}$ .

It is known that Hahn-Banach theorem establishes in the case where the range space is a
Dedekind complete Riesz space; see [3, 14, 16] and the separation theorem establishes in a
Cartesian product space of a vector space and a Dedekind complete ordered vector space; see
[6, 13].

The Hahn-Banach theorem is proved often using the Zorn lemma. For the proof of the Hahn-
Banach theorem, there exist several approaches. For instance, Hirano, Komiya, and Takahashi
[7] showed the Hahn-Banach theorem by using the Markov-Kakutani fixed point theorem [8]
in the case where the range spaoe is the real number system.

In this paper, in Section 3, using the Bourbaki-Kneser fixed point theorem, we give a new
proof of the Hahn-Banach theorem and the Mazur-Orlicz theorem in the case where the range
space is a Dedekind complete partially ordered vector space (Theorems 4 and 5). In Section 4,
we give a new proof of the separation theorem in a Cartesian product of the vector space and
Dedekind complete partially ordered vector space (Theorem 6); see [5, 6, 13].

2. PRELIMINARIES

Let $R$ be the set of real numbers, $N$ the set of natural numbers, $I$ an indexed set, $E$ a
partially ordered set and $F$ a subset of $E$ . The set $F$ is called a chain if any two elements are
comparable, that is, $x\leq y$ or $y\leq x$ for any $x,$ $y\in F$ . An element $x\in E$ is called a lower
bound of $F$ if $x\leq y$ for any $y\in F$ . An element $x\in E$ is called the minimum of $F$ if $x$ is a
lower bound of $F$ and $x\in F$ . If there exists a lower bound of $F$ , then $F$ is said to be bounded
from below. An element $x\in E$ is called an upper bound of $F$ if $y\leq x$ for any $y\in F$ . An
element $x\in E$ is called the maximum of $F$ if $x$ is an upper bound and $x\in F$ . If there exists
an upper bound of $F$ , then $F$ is said to be bounded from above. If the set of all lower bounds
of $F$ has the maximum, then the maximum is called an infimum of $F$ and denoted by $\inf F$ . If
the set of all upper bounds of $F$ has the minimum, then the minimum is called a supremum of
$F$ and denoted by $\sup F$ . A partially ordered set $E$ is said to be complete if every nonempty
chain of $E$ has an infimum; $E$ is said to be chain complete if every nonempty chain of $E$ which
is bounded from below has an infimum; $E$ is said to be Dedekind complete if every nonempty
subset of $E$ which is bounded from below has an infimum. A mapping $f$ from $E$ to $E$ is called
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decreasing if $f(x)\leq x$ for every $x\in E$ . For the further information of a partially ordered set,
see [1, 3, 4, 12, 14].

In a complete partially ordered set, the following theorem is obtained [2, 9, 10].

Theorem 1 (Bourbaki-Kneser). $LetE$ be a complete partially ordered set. Let $f$ be a decreasing
mapping from $E$ to E. Then $f$ has a fixed point.

Recently, T. C. Lim [11] proved a common fixed point theorem for the family of decreasing
commutative mapping, which is a generalization of Theorem 1.

A partially ordered set $E$ is called a partially ordered vector space if $E$ is a vector space and
$x+z\leq y+z$ and $\alpha x\leq\alpha y$ hold whenever $x,$ $y,$ $z\in E,$ $x\leq y$ , and $\alpha\in R$ . If a partially ordered
vector space $E$ is a lattice, that is, any two elements have a supremum and an infimum, then
$E$ is called a Riesz space.

Let $X$ be a vector space and $E$ a partially ordered vector space. A mapping $f$ from $X$ to $E$

is said to be concave if $f(tx+(1-t)y)\geq tf(x)+(1-t)f(y)$ for any $x,$ $y\in X$ and $t\in[0,1]$ . A
mapping $f$ from $X$ to $E$ is called sublinear if the following are satisfied.
(Sl) For any $x,$ $y\in X,$ $p(x+y)\leq p(x)+p(y)$ .
(S2) For any $x\in X$ and $\alpha\geq 0,$ $p(\alpha x)=\alpha p(x)$ .

3. THE HAHN-BANACH THEOREM
Lemma 2. Let $p$ be a sublinear mapping from a vector space $X$ to a Dedekind complete partially
ordered vector space $E,$ $K$ a nonempty convex subset of $X$ and $q$ a concave mapping from $K$

to $E$ such that $q\leq p$ on K. For any $x\in X$ , let
$f(x)= \inf\{p(x+ty)-tq(y)|t\in[0$ , oo) and $y\in K\}$ .

Then $f$ is sublinear such that $f\leq p$ . Moreover if $gi_{j}s$ a linear mapping from $X$ to $E$ , then
$g\leq f$ is equivalent to $g\leq p$ on $X$ and $q\leq g$ on $K$ .

Proof. For any $x\in X,$ $\{p(x+ty)-tq(y)|t\in[0,$ $\infty)$ and $y\in K\}$ is bounded from below.
Indeed, since

$p(x+ty)-tq(y)$ $\geq$ $p(ty)-p(-x)-tq(y)$
$\geq$ $-p(-x)$ ,

it is established. Since $E$ is Dedekind complete, $f$ is well-defined and we have $f(x)\geq-p(-x)$ .
By definition of $f$ , we have $f(x)\leq p(x)$ and $f(\alpha x)=\alpha f(x)$ for any $\alpha\geq 0$ . Thus (S2) is
established. Let $x_{1},$ $x_{2}\in X$ . For any $y_{1},$ $y_{2}\in K$ and $s,$ $t>0$ , we have

$p(x_{1}+sy_{1})-sq(y_{1})+p(x_{2}+ty_{2})-tq(y_{2})$

$\geq p(x_{1}+x_{2}+(s+t)w)-(s+t)q(w)$

$\geq f(x_{1}+x_{2})$ ,

where $w= \frac{1}{s+t}(sy_{1}+ty_{2})\in K$ . For $p(x_{1}+sy_{1})-sq(y_{1})$ , take infimum with respect to $s>0$
and $y\in K$ , we have

$f(x_{1})+p(x_{2}+ty_{2})-tq(y_{2})\geq f(x_{1}+x_{2})$

and for $p(x_{2}+ty_{2})-tq(y_{2})$ , also take infimum with respect to $t>0$ and $y\in K$ , we have
$f(x_{1})+f(x_{2})\geq f(x_{1}+x_{2})$ .

This shows that $f(x_{1})+f(x_{2})\geq f(x_{1}+x_{2})$ . Thus (Sl) is established. Suppose that $g$ is a
linear mapping from $X$ to $E$ . If $g\leq f$ , then we have $g\leq p$ . Moreover for any $y\in K$ , since

$-g(y)=g(-y)\leq f(-y)\leq p(-y+y)-q(y)=-q(y)$ ,

we have $g\geq q$ on $K$ . To prove the converse, suppose that $g\leq p$ on $X$ and $q\leq g$ on $K$ . For
any $x\in X,$ $y\in K$ and $t>0$ , we have

$g(x)=g(x+ty)-tg(y)\leq p(x+ty)-tq(y)$ .
This implies that $g\leq f$ . $\square$
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The above Lemma 2 is proved in case where the range space is a Dedekind complete Riesz
space, see [14, Lemma 1.5.1].

By Theorem 1 and Lemma 2, we obtain the following.

Lemma 3. Let $f$ be a sublinear mapping from a vector space $X$ to a Dedekind complete partially
ordered vector space E. Then there exists a linear mapping $g$ from $X$ to $E$ such that $g\leq f$ .

Proof. Put $f^{*}(x)=-f(-x)$ for any $x\in X$ . Let $y\in X$ and

$Y=$ { $h\in E^{X}|h$ is sublinear, $f^{*}\leq h\leq f$ }.
Then $Y$ is an ordered set by its canonical order. Since $E$ is Dedekind complete, $E^{X}$ is also so.
Consider an arbitrary chain $Z\subset Y$ . Since $E^{X}$ is Dedekind complete and $Z$ is bounded from
below, there exists a $g= \inf Z$ in $E^{X}$ . Then $g$ is sublinear. Since $Y$ is bounded from below, it
holds that $g\in$ Y. Thus $Y$ is complete. Let $K=\{y\}$ . We define a decreasing operator $S$ by

$Sh(x)= \inf\{h(x+ty)-h(ty)|t\in[0, \infty), y\in K\}$

for any $h\in$ Y. By Lemma 2, $Sh$ is sublinear and $S$ is a mapping from $Y$ to Y. Thus by
Theorem 1, we have a fixed point $g\in$ Y. Then for any $x\in X$ , we have $g(x)\leq g(x+y)-g(y)$

and
$g(x)+g(y)\leq g(x+y)\leq g(x)+g(y)$ .

Thus $g$ is linear and $g(y)=f(y)$ . $\square$

By Lemmas 2 and 3, we can prove the Hahn-Banach theorem and the Mazur-Orlicz theorem
in case where the range space is a Dedekind complete partially ordered vector space.

Theorem 4. Let $p$ be a sublinear mapping from a vector space $X$ to a Dedekind complete
ordered vector space $E,$ $Y$ a vector subspace of $X$ and $q$ a linear mapping from $Y$ to $E$ such
that $q\leq p$ on Y. Then $q$ can be extended to a linear mapping $g$ defined on the whole space $X$

such that $g\leq p$ .

Proof. By Lemma 2, there exists a sublinear mapping $f$ such that $f\leq p$ . By Lemma 3, there
exists a linear mapping $g$ such that $g\leq f$ . Then putting $K=Y$ in Lemma 2, we have $g\leq p$

on $X$ and $q\leq g$ on Y. Since $q$ is linear, we have $q=g$ on $Y$ . Thus the assertion holds. $\square$

We obtain the Mazur-Orlicz theorem in a Dedekind complete partially ordered vector space.

Theorem 5. Let $p$ be a sublinear mapping from a vector space $X$ to a Dedekind complete
partially ordered vector space E. Let $\{x_{j}|j\in I\}$ be a family of elements of $X$ and $\{y_{j}|j\in I\}$

a family of elements of E. Then the following (1) and (2) are equivalent.
(1) There exists a linear mapping $f$ from $X$ to $E$ such that $f(x)\leq p(x)$ for any $x\in X$ and
$y_{j}\leq f(x_{j})$ for any $j\in I$ .
(2) $For$ any $n\in N,$ $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{n}\geq 0$ and $j_{1},j_{2},$ $\ldots,j_{n}\in I$ , we have

$\sum_{i=1}^{n}\alpha_{i}y_{j_{l}}\leq p(\sum_{i=1}^{n}\alpha_{i}x_{j_{*}})$ .

Proof. The assertion from (1) to (2) is clear. For any $x\in X$ , by (2), we have

$-p(-x) \leq p(x+\sum_{i=1}^{n}\alpha_{i}x_{j_{i}})-\sum_{i=1}^{n}\alpha_{i}y_{j}\dot{.}$ .

Put $p_{0}(x)= \inf\{p(x+\sum_{i=1}^{n}\alpha_{i}x_{j}:)-\sum_{i=1}^{n}\alpha_{i}y_{j:}|n\in N,$ $\alpha_{i}\geq 0$ and $j_{i}\in I\}$ . Since $E$ is
Dedekind complete, $p_{0}$ is well-defined and $p_{0}$ is sublinear. Thus by Lemma 3, there exists a
linear mapping $f$ from $X$ to $E$ such that $f(x)\leq p_{0}(x)$ for any $x\in X$ . Since $p_{0}(-x_{j})\leq-y_{j}$ ,
we have

$y_{j}\leq-p_{0}(-x_{j})\leq f(x_{j})$ .
Since $p_{0}(x)\leq p(x)$ , we have $f(x)\leq p(x)$ . Thus the assertion holds. $\square$
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4. THE SEPARATION THEOREM

Let $X$ be a vector space, $E$ a Dedekind complete partially ordered vector space. Let $A$ be a
nonempty subset of X. $lA$ denotes the linear span of $A$ and $iA$ denotes the relative algebraic
interior of $A$ , that is, $iA=\{x\in X|$ For any $x’\in X$ there exists $\epsilon>0$ such that $x+\lambda(x’-x)\in$

$A$ for any $\lambda\in[0, \epsilon)\}$ . Let $f$ be a linear mapping from $X$ to $E,$ $g$ a linear mapping from $E$ to $E$

and $u0\in E$ . Then $H=\{(x, y)\in X\cross E|f(x)+g(y)=u_{0}\}$ is empty or an affine manifold in
$X\cross E$ . Let $A,$ $B$ be nonempty subsets of $X\cross E$ . It is said that an affine manifold $H$ separates
$A$ and $B$ if

$H_{-}=\{(x, y)\in X\cross E|f(x)+g(y)\leq u_{0}\}\supset A$

and

$H_{+}=\{(x, y)\in X\cross E|f(x)+g(y)\geq uo\}\supset B$

hold. Let $A$ be a nonempty subsets of $X\cross E$ . The operator $P_{X}$ defined by $P_{X}(x, y)=x$ for
any $(x, y)\in X\cross E$ is called the projection of $X\cross E$ onto $X$ . Then $P_{X}$ is a linear mapping
from $X\cross E$ onto $X$ . We define

$P_{X}(A)=$ {$x\in X|$ there exists $y\in E$ such that $(x,$ $y)\in X\cross E$}.
Then we have $P_{X}(A+B)=P_{X}(A)+P_{X}(A)$ for $A\neq\emptyset$ and $B\neq\emptyset$ . The set

$C(A)=\{\lambda z\in X\cross E|\lambda\geq 0, z\in A\}$

is called the cone of $A$ . Then if $A$ is convex, then $C(A)$ is convex. A subset $A\in X\cross E$ is cone
if $\lambda>0$ implies $\lambda A\subset A$ . We obtain the following separation theorem in a Cartesian product
of the vector space and the Dedekind complete partially ordered vector space.

Theorem 6. Let $A$ and $B$ be subsets of $X\cross E$ such that $C(A-B)$ is convex cone, $P_{X}(A-B)$

satisfies the following (i) and (ii):
(i) $0\in iP_{X}(A-B))$ and $\iota_{P_{X}(A-B)}=X$ .
(ii) If $(x, y_{1})\in A$ and $(x, y_{2})\in B$ , then $y_{1}\geq y_{2}$ holds.
Then there exists a linear mapping $f$ from $X$ to $E$ and a $y0\in E$ such that the affine manifold
$H=\{(x, y)\in X\cross E|f(x)-y=y_{0}\}$ sepamtes $A$ and $B$ .
Proof. By assumption (i) and the definition of $\iota_{P_{X}(A-B)}$ , for any $x\in X$ and $\lambda>0$ , there
exist $y_{1},$ $y_{2}\in E$ such that $(\lambda x, y_{1}-y_{2})\in A-B$ . Then there exists $x_{1},$ $x_{2}\in X$ such that
$(\lambda x, y_{1}-y_{2})=(x_{1}-x_{2}, y_{1}-y_{2})=(x_{1}, y_{1})-(x_{2}, y_{2})\in A-B$. For any $x\in X$ define
$E_{x}=\{y\in E|(x, y)\in C(A-B)\}$ . Since $\lambda^{-1}(y_{1}-y_{2})\in E_{x}$ for any $\lambda\in(0, \epsilon)$ , we have $E_{x}\neq\emptyset$

for all $x\in X$ . Moreover, let $y\in E_{0}$ and $y\neq 0$ , then there exists $\lambda>0$ such that $(x_{1}, y_{1})\in A$ ,
$(x_{1}, y_{1})\in B$ and $(0, y)=\lambda\{(x_{1}, y_{1})-(x_{2}, y_{2})\}$ and $x_{1}=x_{2}$ . By assumption (ii), we have
$y=\lambda(y_{1}-y_{2})\geq 0$. Thus $y\in E+\cdot$ Since $C(A-B)$ is convex cone, we have $E_{x}+E_{x’}\subset E_{x+x’}$

for any $x,$ $x^{J}\in X$ . For any $x\in X$ , there exists $y^{l}\in E$ with $-y’\in E_{-x}$ by the definition of
$E_{x}$ . Then $y-y^{t}\in E_{x}+E_{-x}\subset E_{0}\subset E+$ for any $y\in E_{x}$ . Thus $y’\leq y$ for any $y\in E_{x}$ . Put
$p(x)= \inf\{y|y\in E_{x}\}$ , then $p(x)$ is sublinear. Since $E$ is Dedekind complete, by Lemma 3,
there exists a linear mapping $f$ from $X$ to $E$ such that $f(x)\leq p(x)$ for all $x\in E$ . Then for
any $(x_{1}, y_{1})\in A,$ $(x_{2}, y_{2})\in B$ , take $x=x_{1}-x_{2}$ , we have

$f(x_{1}-x_{2})\leq p(x_{1}-x_{2})\leq y_{1}-y_{2}$

Therefore,
$f(x_{1})-y_{1}\leq f(x_{2})-y_{2}$ .

Since $E$ is Dedekind complete, there exists a $y_{0}\in E$ such that

$f(x_{1})-y_{1}\leq y0\leq f(x_{2})-y_{2}$

for any $(x_{1}, y_{1})\in A$ and $(x_{2}, y_{2})\in B$ , and $y_{0}\in E$ satisfies that $\sup\{f(x_{1})-y_{1}|(x_{1}, y_{1})\in$

$A \}\leq y_{0}\leq\inf\{f(x_{2})-y_{2}|(x_{2}, y_{2})\in B\}$ . $\square$

We also obtain the following.
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Corollary 7. Let $A$ and $B$ be subsets of $X\cross E$ such that $C(A-B)$ is convex cone, $P_{X}(A-B)$

satisfies the following (i) and (ii):
(i) $0\in iP_{X}(A-B))$ .
(ii) If $(x, y_{1})\in A$ and $(x, y_{2})\in B$ , then $y_{1}\geq y_{2}$ holds.
Then there exists a linear mapping $f$ from $X$ to $E$ and a $y0\in E$ such that the affine manifold
$H=\{(x, y)\in X\cross E|f(x)-y=y_{0}\}$ sepamtes $A$ and $B$ .

Proof. Since $X_{1}=\iota_{P_{X}(A-B)}=\iota\iota P_{X}(A-B)$ is a subspace of $X,$ $A,$ $B,$ $A-B$ and $C(A-B)$
are subsets of $X_{1}$ . By Theorem 6, there exists a linear mapping $f_{1}$ from $X_{1}$ to $E$ such that

$f_{1}(x_{1}-x_{2})\leq y_{1}-y_{2}$

for any $(x_{1}, y_{1})\in A,$ $(x_{2}, y_{2})\in B$ . Let $X_{2}$ be an algebraical complementary space of $X_{1}$ . Then
an arbitrary $z\in X$ has a unique representation $z=x+y$ with $x\in X_{1}$ and $y\in X_{2}$ . We define
a linear mapping $f$ from $X$ to $E$ by $f(z)=f_{1}(x)$ for all $z\in X$ . Then $f$ satisfies the assertion
of Corollary. $\square$

Let $C$ be a non-empty subset of $X$ and $f$ a linear mapping from $X$ to $E$ . For a mapping $T$

from $C$ to $F$ , we define its algebraical conjugate mapping $T_{c}$ by

$D(T_{c})= \{f|\sup\{f(x)-T(x)|x\in C\}\in E\},$ $T_{c}(f)= \sup\{f(x)-T(x)|x\in C\}$ ,

where $f\in D(T_{c})$ . As an application of theorem 6, we have the following Fenchel duality
theorem; see [5, 6].

Theorem 8. Let $X$ be a vector space, $E$ a Dedekind complete partially ordered vector space.
Let $D(U)$ and $D(V)$ be convex subsets of $E$ with $iD(U)\cap^{i}D(V)\neq\emptyset,$ $U\in Map(D(U), E)$ and
$V\in Map(D(V), E)$ be convex mappings, $P_{0}=D(U)\cap D(V)$ and $\inf\{U(x)+V(x)|x\in P_{0}\}\in$

E. Then there exists an $f_{0}\in D_{0}=D(U_{c})\cap D(V_{c})$ such that

$\inf\{U(x)+V(x)|x\in P_{0}\}=\sup\{-U_{c}-V_{c}|f\in D_{0}\}=-U_{c}(f_{0})-V_{c}(-f_{0})$ .

Proof. First, we prove the inequality

$\inf\{U(x)+V(x)|x\in P_{0}\}\leq-U_{c}(f_{0})-V_{c}(-f_{0})$ .

Put $y_{00}= \inf\{U(x)+V(x)|x\in P_{0}\}$ , then $y_{00}\leq U(x)+V(x)$ . Put $V’(x)=y00-V(x)$ , then
$V’(x)\leq U(x)$ for any $x\in P_{0}$ . Then by assumption, $iP_{X}$ (epi $(U)$ ) $\cap^{i}P_{X}(hypo(V’))=iD(U)\cap$

$iD(V’)\neq\emptyset$ . Since $iA+^{i}B\subset i(A+B)$ for arbitrary subsets $A$ and $B$ of $X$ if $A\neq\emptyset$ and $B\neq\emptyset$ ,
$\iota P_{X}(epi(U))\cap^{i}P_{X}(hypo(V’))\neq\emptyset$ implies $0\in iP_{X}$ (epi$(U)-$ hypo $(V’)$ ). If $(x, y_{1})\in$ epi$(U)$ and
$(x, y_{2})\in$ hypo$(V’)$ then $y_{1}\geq U(x)\geq V’(x)\geq y_{2}$ for any $x\in P_{0}$ . By Corollary 7, there exist
linear mapping $f$ from $X$ to $E$ and $y0\in E$ such that $f(x_{1})-y_{1}\leq y_{0}\leq f(x_{2})-y_{2}$ for any
$(x_{1}, y_{1})\in$ epi $(U)$ and $(x_{2}, y_{2})\in$ hypo$(V’)$ . Then $\sup\{f(x_{1})-y_{1}|(x_{1},$ $y_{1})\in$ epi$(U)\}\leq y_{0}\leq$

$\inf\{f(x_{2})-y_{2}|(x_{2},$ $y_{2})\in$ hypo$(V’)\}$ . Take $y_{1}=U(x),$ $x_{1}=x$ and $y_{2}=-V(x)+y_{0},$ $x_{2}=x$

where $x\in iP_{X}(epi(U))\cap^{i}P_{X}$ (hypo $(V’)$ ) then we have

$f(x)-U(x)\leq y_{0}$ for any $x\in D(U)$

and
$y0+y00\leq f(x)+V(x)$ for any $x\in D(V)$ .

Then there exist
$U_{c}(f)= \sup\{f(x_{1})-U(x)|x\in U\}\leq y0$ ,

$V_{c}(-f)= \sup\{(-f)(x_{1})-V(x)|x\in V\}\leq-(y_{0}+y_{00})$ .
Therefore $-U_{c}(f)-V_{c}(-f)\geq-y0+y_{00}+y0=y00$ .

On the other hand, since $D_{0}=D(U_{c})\cap(-D(V_{c}))\neq\emptyset,$ $U_{c}(f)+U(x)\geq f(x)$ and $V_{c}(-f)+$

$V(x)\geq(-f)(x)$ , we have $U(x)+V(x)\leq-U_{c}(f)-V_{c}(-f)$ for any $x\in P_{0}$ and $L\in D_{0}$ . Then
$y_{00}\geq-U_{c}(f)-V_{c}(-f)$ . Therefore we have $y_{00}=-U_{c}(f)-V_{c}(-f)$ . $\square$
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