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Abstract

In [3] we define and study the Denjoy and Henstock-Kurzweil integrals in a vector
lattice. Moreover in [5, 6, 7] we show some fixed point theorems in a vector lattice.
In those theories we need a topology in a vector lattice and some assumptions. The
purpose of this paper is to show criteria for the assumptions.

1 Introduction
There are many fixed point theorems in a topological vector space, for instance, Kirk $s$

fixed point theorem in a Banach space, and so on; see for example [11].
We consider a derivative and fixed point theorems in a vector lattice. As known well

every topological vector space has a linear topoloy. On the other hand, although every
vector lattice does not have a topoloy, it has two lattice operators, which are the supremum
$\vee$ and the $infimum\wedge$ , and also an order is introduced from these operators; see also [9, 12]
about vector lattices. There are some methods how to introduce a topology to a vector
lattice. One method is to assume that the vector lattice has a linear topology [1]. On the
other hand, there is another method to make up a topology in a vector lattice, for instance,
in [3] one method is introduced in case of the vector lattice with unit.

In [3] we define and study the Denjoy and Henstock-Kurzweil integrals in a vector
lattice. Moreover in [5, 6, 7] we show some fixed point theorems in a vector lattice. In
those theories we need a topology in a vector lattice and some assumptions. The purpose
of this paper is to show criteria for the assumptions.

2 Topology in a vector lattice
First we introduce a topology in a vector lattice introduced by [3]; see also [6, 7].
Let $X$ be a vector lattice. $e\in X$ is said to be an unit if $e\wedge x>0$ for any $x\in X$ with

$x>0$ . Let $\mathcal{K}_{X}$ be the class of units of $X$ . In the case where $X$ is the set of real numbers
$R,$ $\mathcal{K}_{R}$ is the set of positive real numbers. Let $X$ be a vector lattice with unit and let $Y$

be a subset of X. $Y$ is said to be open if for any $x\in Y$ and for any $e\in \mathcal{K}_{X}$ there exists
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$\epsilon\in \mathcal{K}_{R}$ such that $[x-\epsilon e, x+\epsilon e]\subset$ Y. Let $\mathcal{O}_{X}$ be the class of open subsets of $X$ . For
$e\in \mathcal{K}_{X}$ and for an interval $[a, b]$ we consider the following subset

$[a, b]^{e}=$ { $x|$ there exists some $\epsilon\in \mathcal{K}_{R}$ such that $x-a\geq\epsilon e$ and $b-x\geq\epsilon e$ }.

By the definition of $[a, b]^{e}$ it is easy to see that $[a, b]^{e}\subset[a, b]$ . Every mapping from $X\cross \mathcal{K}_{X}$

into $(0, \infty)$ is said to be a gauge. Let $\Delta_{X}$ be the class of gauges in $X$ . For $x\in X$ and
$\delta\in\Delta_{X},$ $O(x, \delta)$ is defined by

$O(x, \delta)=\bigcup_{e\in \mathcal{K}_{X}}[x-\delta(x, e)e, x+\delta(x, e)e]^{e}$
.

$O(x, \delta)$ is said to be a $\delta$-neighborhood of $x$ . Suppose that for any $x\in X$ and for any
$\delta\in\Delta_{X}$ there exists $U\in \mathcal{O}_{X}$ such that $x\in U\subset O(x, \delta)$ .

Let $X$ be a vector lattice with unit and $Y$ a vector lattice. Let $\mathcal{U}_{Y}^{\epsilon}(\mathcal{K}_{X}, \geq)$ be the class
of $\{v_{e}|e\in \mathcal{K}_{X}\}$ satisfying the following conditions:

(Ul) $v_{e}\in Y$ with $v_{e}>0$ ;

(U2) $v_{e1}\geq v_{e2}$ if $e_{1}\geq e_{2}$ ;

(U3) For any $e\in \mathcal{K}_{X}$ there exists $\theta(e)\in \mathcal{K}_{R}$ such that $v_{\theta(e)e} \leq\frac{1}{2}v_{e}$ .

Let $x_{0}\in Z\subset X$ and $f$ : $Zarrow$ Y. $f$ is said to be continuous at $x_{0}$ if there exists
$\{v_{e}\}\in \mathcal{U}_{Y}^{s}(\mathcal{K}_{X}, \geq)$ such that for any $e\in \mathcal{K}_{X}$ there exists $\delta\in \mathcal{K}_{R}$ such that for any $x\in Z$

if $|x-x_{0}|\leq\delta e$ , then $|f(x)-f(x_{0})|\leq v_{e}$ .
Let $X$ and $Y$ be vector lattices with unit, $Z\subset X$ and $f$ : $Zarrow Y$ . Suppose that there

exists $P\subset Y$ satisfying the following conditions:

(Pl) $P$ is open and convex;

(P2) If $x\in P$ and $x\leq y$ , then $y\in P$ ;

(P3) $0\not\in P$ ;

(P4) $\{x|x>0\}\subset P$ .

Let $P_{Y}$ be the class of the above $P’ s$ . $f$ is said to be upper semi-continuous with respect
to $P\in \mathcal{P}_{Y}$ if $\{x|y-f(x)\in P\}\in \mathcal{O}_{X}\cap Z$ for any $y\in Y.$ $f$ is said to be lower semi-
continuous with respect to $P\in P_{Y}$ if $\{x|f(x)-y\in P\}\in \mathcal{O}_{X}\cap Z$ for any $y\in Y.$ $f$ is
said to be semi-continuous with respect to $P\in \mathcal{P}_{Y}$ if it is upper and lower semi-continuous
with respect to $P\in \mathcal{P}_{Y}$ .

A vector lattice is said to be Archimedean if it holds that $x=0$ whenever there exists
$y\in X$ with $y\geq 0$ such that $0\leq rx\leq y$ for any $r\in \mathcal{K}_{R}$ .

Let $X$ be an Archimedean vector lattice. Then there exists a positive homomorphism
$fhomX$ into $R$ , that is, $f$ satisfies the following conditions:
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(Hl) $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ for any $x,$ $y\in X$ and for any $\alpha,\beta\in R$;

(H2) $f(x)\geq 0$ for any $x\in X$ with $x\geq 0$ ;

see $[$7$]^{*}$Example 3.1. Suppose that there exists a homomorphism $f$ from $X$ into $R$ satisfying
the following condition instead of (H2):

(H2) $f(x)>0$ for any $x\in X$ with $x>0$ .

The following hold under the topology above; see [6, 7].

Lemma 2.1. Let $X$ be an Archimedean vector lattice with unit and $\{x_{1}, \ldots, x_{n}\}$ a subset
of X. Then $co\{x_{1}, \ldots, x_{n}\}$ is homeomorphic to a compact and convex subset of $R^{n}$ .

Lemma 2.2. Let $X$ be an Archimedean vector lattice with unit, $Y$ a vector lattice with
unit, $Z\subset X$ and $f$ a mapping from $Z$ into Y. Suppose that there $e\dot{m}ts$ a homomorphism
from $X$ into $R$ satisfying condition $(H2)^{s}$ and that $\mathcal{P}_{Y}\neq\emptyset$ .

Then $f$ is semi-continuous with respect to any $P\in \mathcal{P}_{Y}$ if it is continuous at any $x\in Z$ .

Lemma 2.3. Let $X$ be an Archimedean vector lattice with unit, $Y$ a vector lattice with unit,
$x_{0}\in Z\subset X$ and $f$ a mapping from $Z$ into Y. Suppose that there exists a homomorphism
from $X$ into $R$ satisfying condition $(H2)^{\epsilon}$ .

Then $f$ is continuous at $x_{0}$ in the sense of topology if it is continuous at $x_{0}$ .

3 Criteria for the condition $(H2)^{s}$

Theorem 3.1. Let $X$ be an Archimedean vector lattices with unit.
Then the following are equivalent:

(1) $X$ satisfies the condition $(H2)^{8}$ ;

(2) $\mathcal{P}x\neq\emptyset$ ;

(3) There exists $O\in \mathcal{O}_{X}$ such that $O\neq\emptyset$ and $\{x|x>0\}\subset co(O)\neq X$ .

Proof. (1) $\Rightarrow(2)$ : Let $0<\beta<1$ and $\delta(x, e)=\frac{\beta f(x)}{f(e)}$ for any $x\in X$ with $x>0$ and for
any $e\in \mathcal{K}_{X}$ . Put $P= \bigcup_{x\in X}$ with $x>0$ int $(O(x, \delta))$ . Then $P$ is open and $\{x|x>0\}\subset P$ .
Note that by condition $(H2)^{s}$ for any $x_{1},$ $x_{2}\in X$ with $x_{1},$ $x_{2}>0$ and $x_{1}\neq x_{2},$ $\frac{x1}{f(x_{1})}$ and

$\frac{x_{2}}{f_{or^{2}}^{(x)}}areincomparab1emutua11y$
.

$Thereforex-\delta(x, e)e\not\leq 0foranyx\in Xwithx>0andanye\in \mathcal{K}_{X}.Assumethat0\in P.Thenthereexistx\in Xwithx>0ande\in \mathcal{K}_{X}$

such that $0\in[x-\delta(x, e)e, x+\delta(x, e)e]^{e}$ . It is a contradiction. $\cdot$ Therefore $0\not\in P$ . Note
that $x\in$ int $(A)$ if and only if there exists $\delta_{x}\in\Delta_{X}$ such that $O(x, \delta_{x})\subset A$ . Let $x\in P$ and
$x\leq y$ . Then there exist $z\in X$ with $z>0$ and $\delta_{x}\in\Delta_{X}$ such that $O(x, \delta_{x})\subset O(z, \delta)$ . Let
$\delta_{y}(u, e)=\delta_{x}(u-y+x, e)$ .
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Since $\delta(x_{2}, e)\leq\delta(x_{1}+x_{2}, e)$ for any $x_{1},$ $x_{2}\in X$ with $x_{1},$ $x_{2}>0$ , it holds that $x_{1}+O(x_{2}, \delta)\subset$

$O(x_{1}+x_{2}, \delta)$ . Therefore
$O(y, \delta_{y})=y-x+O(x, \delta_{x})$ $\subset$ $y-x+O(z, \delta)$

$\subset$ $O(z+y-x, \delta)$ ,

that is, $y\in$ int $(O(z+y-x, \delta))\subset P$ . Let $x_{0},$ $x_{1}\in P$ and $\alpha\in R$ with $0\leq\alpha\leq 1$ . Then
for $i=0,1$ there exist $y_{i}\in X$ with $y_{i}>0$ and $\delta_{i}\in\triangle x$ such that $O(x_{i}, \delta_{i})\subset O(y_{i}, \delta)$ . Let
$\delta_{\alpha}(z, e)=(1-\alpha)\delta_{0}(x_{0}, e)+\alpha\delta_{1}(x_{1}, e)$ . Take $z\in O((1-\alpha)x_{0}+\alpha x_{1}, \delta_{\alpha})$ arbitrary. Then
there exists $e\in \mathcal{K}_{X}$ such that

$z$ $\in$ $[(1-\alpha)x_{0}+\alpha x_{1}-\delta_{\alpha}((1-\alpha)x_{0}+\alpha x_{1}, e)e$ ,
$(1-\alpha)x_{0}+\alpha x_{1}+\delta_{\alpha}((1-\alpha)x_{0}+\alpha x_{1}, e)e]^{e}$

$=$ $(1-\alpha)[x_{0}-\delta_{0}(x_{0}, e)e, x_{0}+\delta_{0}(x_{0}, e)e]^{e}$

$+\alpha[x_{1}-\delta_{1}(x_{1}, e)e,x_{1}+\delta_{1}(x_{1}, e)e]^{e}$ .

Since $\delta(\alpha x, e)=\alpha\delta(x, e)$ for any $x\in X$ with $x>0$ and for any $\alpha\in \mathcal{K}_{R}$ , it holds that
$O(\alpha x, \delta)=\alpha O(x, \delta)$ . Since

$\delta(z_{0}, e_{0})e_{0}+\delta(z_{1}, e_{1})e_{1}$

$=\delta(z_{0}+z_{1},$ $\frac{f(z_{0})}{f(e_{0})}e_{0}+\frac{f(z_{1})}{f(e_{1})}e_{1})(\frac{f(z_{0})}{f(e_{0})}e_{0}+\frac{f(z_{1})}{f(e_{1})}e_{1})$

for any $z_{0},$ $z_{1}\in X$ with $z_{0},$ $z_{1}>0$ , it holds that $O(z_{0}, \delta)+O(z_{1}, \delta)\subset O(z_{0}+z_{1}, \delta)$ . Then
$z$ $\in$ $(1-\alpha)O(x_{0}, \delta_{0})+\alpha O(x_{1}, \delta_{1})$

$\subset$ $(1-\alpha)O(y_{0}, \delta)+\alpha O(y_{1}, \delta)$

$=$ $O((1-\alpha)y_{0}, \delta)+O(\alpha y_{1}, \delta)$

$\subset$ $O((1-\alpha)y_{0}+\alpha y_{1}, \delta)$ .

Therefore $O((1-\alpha)x_{0}+\alpha x_{1}, \delta_{\alpha})\subset O((1-\alpha)y_{0}+\alpha y_{1}, \delta)$ , that is, $(1-\alpha)x_{0}+\alpha x_{1}\in$

int $(O((1-\alpha)y_{0}+\alpha y_{1}, \delta))\subset P$ .
(2) $\Rightarrow(3):P\in \mathcal{P}_{X}$ satisfies $P\in \mathcal{O}_{X},$ $P\neq\emptyset$ and $\{x|x>0\}\subset co(P)\neq X$ .
(3) $\Rightarrow(1)$ : Take $x_{0}\in co(O)$ . Let $p$ be a mapping from $X$ into $[0, \infty]$ defined by $p(x)=$
$\inf\{r|r>0, \frac{1}{r}x\in co(O)-x_{0}\}$ . $p$ satisfies the following:

(1) $p(x)<\infty$ ;

(2) $\forall\alpha\in R$ with $\alpha>0,$ $p(\alpha x)=\alpha p(x)$ ;

(3) $p(x+y)\leq p(x)+p(y)$ ;

(4) $\{x|p(x)<1\}=co(O)-x_{0}$ .

Since $0\not\in co(O),$ $p(-x_{0})\geq 1$ . Let $Y=\{\lambda x_{0}|\lambda\in R\}$ and $g$ a mapping from $Y$ into $R$

defined by $g(\lambda x_{0})=-\lambda$ . $g$ is linear and $g(\lambda x_{0})\leq p(\lambda x_{0})$ . By Hanh-Banach theorem there
exists a mapping $f$ from $X$ into $R$ satisfying $f\leq p$ and $f|_{Y}=g$ . $-f$ is an answer of the
proposition. $\square$
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4 Criteria for the Hausdorffness
Let $X$ be a vector lattice with unit. Let $|\mathcal{K}_{X}|$ be the class of $x$ satisfying $|x|\in \mathcal{K}_{X}$ . For

any $x\in|\mathcal{K}_{X}|$ let $x_{+}^{\perp}=\{0\vee x\}^{\perp},$ $x_{-}^{\perp}=\{0\vee(-x)\}^{\perp}$ ,

$Q(x)=\{x_{1}|x_{1}\in|\mathcal{K}_{X}|, (x_{1})_{+}^{\perp}=x_{+}^{\perp}, (x_{1})\pm=x\pm\}$

and

$\overline{Q}(x)=(\bigcup_{x_{1},x2\in Q(x)}[0\wedge x_{1},0\vee x_{2}])\backslash \{0\}$ .

Theorem 4.1. Let $X$ be a complete vector lattice with unit and satisfying $\mathcal{P}_{X}\neq\emptyset$ .
Then $X$ is Hausdorff

Proof. Let $x_{1},$ $x_{2}\in X$ with $x_{1}\neq x_{2}$ . It holds that for any $y\in X$ there exists $x\in|\mathcal{K}_{X}|$ such
that $y\in\overline{Q}(x)$ . Let $y= \frac{x-x}{2}$ . Let $R_{x}$ be a mapping $homX$ into $X$ defined by $R_{x}(y_{1}+y_{2})=$

$-y_{1}+y_{2}$ for any $y_{1}\in x_{+}^{\perp}$ and for any for any $y_{2}\in x\pm$ . Let $O_{1}=( \frac{x1+x2}{2}-R_{x}^{-1}(P))$ and
$O_{2}=(-x4arrow^{+x2}+R_{x}^{-1}(P))$ . Then $O_{1}$ and $O_{2}$ are answers of the proposition. $\square$
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