Some inequalities concerning geometric constants of Banach spaces

高橋泰嗣	岡山県立大学 名誉教授
Yasuji Takahashi	Okayama Prefectural University, Professor Emeritus ym-takahashi@clear.ocn.ne.jp
加藤幹雄	九州工業大学 工学研究院*
Mikio Kato	Kyushu Institute of Technology katom@mns.kyutech.ac.jp

Let X be a real Banach space with dim $X \ge 2$. The closed unit ball and unit sphere of X are denoted by B_X and S_X , respectively. We shall consider the following constants:

$$C_{NJ}(X) = \sup\left\{\frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)}: x \in S_X, y \in B_X\right\},$$
(1)

$$C'_{NJ}(X) = \sup\left\{\frac{\|x+y\|^2 + \|x-y\|^2}{4} : x, y \in S_X\right\},$$
(2)

$$C_Z(X) = \sup\left\{\frac{\|x+y\|\|x-y\|}{\|x\|^2 + \|y\|^2}: x \in S_X, y \in B_X\right\},$$
(3)

$$C'_{Z}(X) = \sup\left\{\frac{\|x+y\|\|x-y\|}{2} : x, y \in S_{X}\right\},$$
(4)

$$J(X) = \sup \{ \min(\|x+y\|, \|x-y\|) : x, y \in S_X \},$$
(5)

$$\rho_X(1) = \sup\left\{\frac{\|x+y\|+\|x-y\|}{2} - 1: x, y \in S_X\right\}.$$
 (6)

Properties and relations concerning these constants have been studied by many authors. In particular the James constant J(X) and the von Neumann-Jordan constant $C_{NJ}(X)$ have been most widely treated. Recall that a Banach space X is uniformly non-square provided J(X) < 2 or equivalently $C_{NJ}(X) < 2$. The constant $C'_{NJ}(X)$ may be considered as the unitary version of $C_{NJ}(X)$ ([2],[6]). The constant $C_Z(X)$ was introduced by Zbăganu [11], who conjectured that $C_{NJ}(X) = C_Z(X)$ for all Banach spaces X, but in general these two constants are different.

^{*}Current affiliation: 信州大学工学部, Shinshu University, katom@shinshu-u.ac.jp

The constant $C'_Z(X)$ may be considered as the unitary version of $C_Z(X)$ ([6]). Then we easily have

$$\frac{J(X)^2}{2} \le C'_Z(X) \le C_Z(X) \le C_{NJ}(X),$$
(7)

$$\frac{J(X)^2}{2} \le C'_Z(X) \le \frac{(1+\rho_X(1))^2}{2} \le C'_{NJ}(X) \le C_{NJ}(X).$$
(8)

There are many Banach spaces X for which all the terms in (7) and (8) coincide. On the other hand, there exists a Banach space X such that $C_Z(X) < (1 + \rho_X(1))^2/2$ and $C_Z(X^*) > C'_{NJ}(X^*)$, where X^* is the dual space of X ([6, Example 3]).

We shall start with the estimate of $C_{NJ}(X)$ by $C'_{NJ}(X)$ and $\rho_X(1)$, which was recently proved in Kato and Takahashi [5]. In the following, let f(u,v) = $u - v + \sqrt{(u - v - 1)^2 + v^2}$. Then it is easy to see that for all $u_2 \ge u_1 \ge 1$ and $v_2 \ge v_1 \ge u_1 - 1$,

$$f(u_1,v_1)\leq f(u_2,v_2),$$

where equality holds only when $u_1 = u_2$ and $v_1 = v_2$ ([5, Lemma 3.6]).

Theorem 1 ([5, Theorem 3.4]). Let X be a Banach space. Then

$$C_{NJ}(X) \le f(C'_{NJ}(X), \rho_X(1))$$
 (9)

or

$$C_{NJ}(X) \le C'_{NJ}(X) - \rho_X(1) + \sqrt{(C'_{NJ}(X) - \rho_X(1) - 1)^2 + \rho_X(1)^2}$$

If X is not uniformly non-square, we have equality in (9) as $C_{NJ}(X) = C'_{NJ}(X) = 2$ and $\rho_X(1) = 1$. The inequality (9) also attains equality with both of the Day-James ℓ_{∞} - ℓ_1 and ℓ_2 - ℓ_{∞} spaces, which are uniformly non-square ([5, Remark 3.5]). Let us mention that Theorem 1 yields some previous results concerning the estimates of $C_{NJ}(X)$ by $C'_{NJ}(X)$ and by $\rho_X(1)$. To see this we need the following inequalities

$$\frac{(1+\rho_X(1))^2}{2} \le C'_{NJ}(X) \le 1+\rho_X(1)^2,\tag{10}$$

see [5, Proposition 3.2]. Since $\rho_X(1) \leq \sqrt{2C'_{NJ}(X)} - 1$, by (9) we have

Corollary 1 ([2, Theorem 1]). Let X be a Banach space. Then

$$C_{NJ}(X) \le f(C'_{NJ}(X), \sqrt{2C'_{NJ}(X)} - 1),$$

which is written as

$$C_{NJ}(X) \le 1 + \left(\sqrt{2C'_{NJ}(X)} - 1\right)^2.$$
 (11)

Since $C'_{NJ}(X) \leq 1 + \rho_X(1)^2$, by (9) we also have

Corollary 2 ([7, Theorem 2]). Let X be a Banach space. Then

 $C_{NJ}(X) \le f(1 + \rho_X(1)^2, \rho_X(1)),$

which is written as

$$C_{NJ}(X) \le 1 + \rho_X(1) \left(\sqrt{(1 - \rho_X(1))^2 + 1} - (1 - \rho_X(1)) \right).$$
(12)

We shall present the estimate of $C_{NJ}(X)$ by $C'_Z(X)$. To do this we need the estimates of $\rho_X(1)$ and $C'_{NJ}(X)$ by $C'_Z(X)$.

Proposition 1. For any Banach space X,

$$\rho_X(1) \le \frac{C_Z'(X)}{2},\tag{13}$$

$$C'_{NJ}(X) \le 1 + \frac{C'_Z(X)^2}{4}.$$
 (14)

In (13) and (14) equalities are attained if X is not uniformly non-square. If X is the ℓ_2 - ℓ_1 space, we also have equalities in (13) and (14) as $\rho_X(1) = 1/\sqrt{2}$, $C'_{NJ}(X) = 3/2$ and $C'_Z(X) = \sqrt{2}$ ([6, Example 3]).

By (9), (13) and (14) we have

Theorem 2. Let X be a Banach space. Then

$$C_{NJ}(X) \le f(1 + C'_Z(X)^2/4, C'_Z(X)/2),$$

which is written as

$$C_{NJ}(X) \le \frac{C'_Z(X)^2}{4} + 1 + \frac{C'_Z(X)}{4} \left(\sqrt{C'_Z(X)^2 - 4C'_Z(X) + 8} - 2 \right).$$
(15)

Now we shall present the estimate of $C_Z(X)$ by $C'_Z(X)$ and $\rho_X(1)$, which is similar to Theorem 1.

Theorem 3. Let X be a Banach space. Then

$$C_Z(X) \le f(C'_Z(X), \rho_X(1)) \tag{16}$$

or

$$C_Z(X) \le C'_Z(X) - \rho_X(1) + \sqrt{(C'_Z(X) - \rho_X(1) - 1)^2 + \rho_X(1)^2}$$

Since $C'_Z(X) \le (1 + \rho_X(1))^2/2$, by (16) we have

Corollary 3. For any Banach space X

$$C_Z(X) \le f((1+\rho_X(1))^2/2, \rho_X(1)) = 1 + \rho_X(1)^2.$$
 (17)

Remark 1. The estimates given by Theorem 3 and Corollary 3 are sharp. It should be noted that if $C_Z(X) = 1 + \rho_X(1)^2$, we have equality in (16). It is clear that if X is not uniformly non-square, we have equality in (17) as $C_Z(X) = 2$ and $\rho_X(1) = 1$. The inequality (17) also attains equality with both of the Day-James $\ell_{\infty}-\ell_1$ and $\ell_2-\ell_{\infty}$ spaces, which are uniformly non-square. In fact, $C_Z(X) = 5/4$, $\rho_X(1) = 1/2$ if X is the $\ell_{\infty}-\ell_1$ space ([6, Example 4]), and $C_Z(X) = 3/2$, $\rho_X(1) = 1/\sqrt{2}$ if X is the $\ell_2-\ell_{\infty}$ space ([6, Example 3]).

By (13) and (16) we have

Theorem 4. Let X be a Banach space. Then

$$C_Z(X) \le f(C'_Z(X), C'_Z(X)/2),$$

which is written as

$$C_Z(X) \le \frac{1}{2} \bigg\{ C'_Z(X) + \sqrt{(C'_Z(X) - 2)^2 + C'_Z(X)^2} \bigg\}.$$
 (18)

Finally we shall present the estimates of $C'_Z(X)$ and $C_Z(X)$ by J(X).

Theorem 5. Let X be a Banach space. Then

$$C'_{Z}(X) \le 4(1 - 1/J(X)).$$
 (19)

The estimate (19) yields that $\rho_X(1) \le C'_Z(X)/2 \le 2(1-1/J(X))$ ([7, Theorem 1]).

By Theorems 2 and 5 we shall have the quite simple inequality $C_{NJ}(X) \leq J(X)$, which was proved in 2009 by Takahashi and Kato [7] (see also [5, 8, 10]).

Corollary 4. Let X be a Banach space. Then

$$C_{NJ}(X) \le \frac{4}{4 - C'_Z(X)} \le J(X).$$
 (20)

By (14), (15), (18) and (19) we have

Theorem 6. Let X be a Banach space and let J = J(X). Then

$$C_{NJ}(X) \leq \left(\frac{\sqrt{2}(J-1) + \sqrt{(J-1)^2 + 1}}{J}\right)^2,$$
 (21)

$$C'_{NJ}(X) \leq 1 + 4\left(1 - \frac{1}{J}\right)^2,$$
 (22)

$$C_Z(X) \leq \frac{2(J-1) + \sqrt{5J^2 - 12J + 8}}{J}.$$
 (23)

Remark 2. Let J = J(X) < 2. Then it is easy to see that

$$\frac{2(J-1) + \sqrt{5J^2 - 12J + 8}}{J} < 1 + 4(1 - 1/J)^2 < \left(\frac{\sqrt{2}(J-1) + \sqrt{(J-1)^2 + 1}}{J}\right)^2$$

The estimates (21) and (22) was proved by Kato and Takahashi [5], see also Wang [8]. On the other hand, the estimate (23) is new.

References

- [1] J. Alonso and E. Llorens-Fuster, Geometric mean and triangles inscribed in a semicircle in Banach spaces, J. Math. Anal. Appl. **340** (2008), 1271-1283.
- [2] J. Alonso, P. Martin and P. L. Papini, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Math. 188 (2008), 135-150.
- [3] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990.
- [4] M. Kato, L. Maligranda and Y. Takahashi, On James, Jordan-von Neumann constants and the normal structure coefficients of Banach spaces, Studia Math. 144 (2001), 275-295.
- [5] M. Kato and Y. Takahashi, On sharp estimates concerning von Neumann-Jordan and James constants for a Banach space, Rend. Circ. Mat. Palermo Serie II, Suppl. 82 (2010), 75-91.
- [6] Y. Takahashi, Some geometric constants of Banach spaces, A unified approach, In: Banach and Function Spaces II, eds. M. Kato and L. Maligranda, Yokohama Publishers, Yokohama, pp. 191-220, 2007.
- [7] Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl. **359** (2009), 602-609.
- [8] F. Wang, On the James and von Neumann-Jordan constants in Banach spaces, Proc. Amer. Math. Soc. 138 (2010), 695-701.

- [9] F. Wang and B. Pang, Some inequalities concerning the James constant in Banach spaces, J. Math. Anal. Appl. **353** (2009), 305-310.
- [10] C. Yang and H. Li, An inequality between Jordan-von Neumann constant and James constant, Appl. Math. Letters 23 (2010), 277-281.
- [11] G. Zbăganu, An inequality of M. Rădulescu and S. Rădulescu which characterizes the inner product spaces, Rev. Roumaine Math. Pure Appl. 47 (2002), 253-257.