
Remarks on the coloring number of graphs \dagger

神戸大学大学院・システム情報学研究科 渕野 昌 (Sakae Fuchino) *

Graduate School of System Informatics
Kobe University
Rokko-dai 1-1, Nada, Kobe 657-8501 Japan

fuchino@diamond.kobe-u.ac.jp

Abstract

We give two characterizations of graphs with coloring number $\leq\kappa$ in

terms of elementary submodels; one under ZFC and another under SSH
and the version of very weak square principle of [8].

These characterizations suggest that the graphs with coloring number
$\leq\kappa$ behave very much like the Boolean algebras with $\kappa-$Rees-Nation

property (see [5], [8]).

1 Introduction

A graph $G=\langle G,$ $K\rangle(K\subseteq[G]^{2})$ has coloring number $\leq\kappa$ (notation: col $(G)\leq$

$\kappa)$ if there is a well ordering $\Subset$ on $G$ such that $K_{\Subset}^{a}=\{b\in G$ : $b\Subset a$ and $\{a, b\}\in$

Date: March 6, 2011 (21:01 JST)

2010 Mathematical Subject, Classification: $03E04,05C10,05C15,05C63$

Keywords: coloring number, Freese-Nation property, unit distance plane graph, very weak
square

\dagger This is an extended version of the note with the same title. Some details and proofs omitted
in the version to appear in RIMS K\^oky\^uroku are added in typewriter font. The most up-to-

date version of this note is downloadable as:
http: $//kurt$ . scitec. kobe-u. ac. $jp/^{\sim}$fuchino$/papers/RIMSl0-graph-square-x$ . pdf

$*$ The author is supported by Grant-in-Aid for Scientific Research (C) No. 19540152 of the

Ministry of Education, Culture, Sports, Science and Technology Japan.
The author thanks Lionel Nguyen Van Th\’e for calling his attention to the unit distance

plane graph. He also thanks Menachem Kojman for telling him the results cited in Section 3.

数理解析研究所講究録
第 1754巻 2011年 6-16 6



$K\}$ has cardinality $<\kappa$ for all $a\in G$ ([3]). The coloring number col $(G)$ of $G$ is
then defined as the minimum of such $\kappa’ s$ . It is easy to see that the chromatic
number $\chi(G)$ of $G$ is less or equal to col $(G)$ .

The purpose of this note is to show that the graphs with coloring number $\leq\kappa$

behave quite similarly to the Boolean algebras with $\kappa$-Freese-Nation property
(see e.g. [5], [8]).

In Section 2 we give a characterization of graphs with coloring number $\leq\kappa$

in terms of elementary submodels (Theorem 2.4). As an application of the
characterization, we present in Section 3 a short proof of the countability of the
coloring number of the plane.

In Section 4, we show that the characterization of Section 2 can be yet sharp-
ened under SSH and the version of the very weak square principle introduced
in [8] (Theorem 4.2).

Both Theorems 2.4 and 4.2 find their parallels in the theory of Boolean
algebras with $\kappa$-Freese-Nation property (see PROPOSITION 3 and THEOREM 10
in [8] $)$ .

The following theorem also underlines the analogy between the Boolean
algebras with the $\kappa$-Freese-Nation property and the graphs with coloring number
$\leq\kappa$ in the case of $\kappa=\aleph_{0}$ . Note that Boolean algebras with $\aleph_{0}$-Freese Nation
property are also called openly generated.

If $G=\langle G,$ $K\rangle$ is graph then we identify any subset $H$ of $G$ with the graph
$GrH=\langle H,$ $K\cap[H]^{2}\rangle$ .

Theorem 1.1 ([6] and [7]). The following assertions are equivalent over ZFC;

$(\alpha)$ For any Boolean algebm $B$ if there are club many subalgebms of $B$ of
cardinality $\aleph_{1}$ which are openly generated then $B$ is openly genemted.

$(\beta)$ For any graph $G$ if col $(H)\leq\aleph_{0}$ for every $H\in[G]^{N_{1}}$ then col $(G)\leq\aleph_{0}$ .
$\square$

Theorem 1.1 in the formulation as above is a sort of bluff since we actually
proved that each of the assertions $(\alpha)$ and $(\beta)$ is equivalent to the set-theoretic
principle FRP introduced in [4].

2 A characterization of graphs with coloring number $\leq\kappa$

We use here the following notations. The first one was already used in the
introduction:

For a linear ordering $\Subset$ on a graph $G=\langle G,$ $K\rangle$ we denote
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(2.1) $K_{\Subset}^{a}=\{b\in G$ : $b\Subset a$ and $\{a,$ $b\}\in K\}$ .

If $H\subseteq G$ then we write

(2.2) $K_{\Subset}^{H,a}=\{b\in H$ : $b\Subset a$ and $\{a,$ $b\}\in K\}$

For a graph $G=\langle G,$ $K\rangle,$ $H\subseteq G$ and $a\in G$ , let

(2.3) $K_{H}^{a}=\{b\in H : \langle a, b\rangle\in K\}$ .

We write $H\subseteq_{\kappa}G$ if $|K_{H}^{a}|<\kappa$ for all $a\in G\backslash H$ .
A mapping $f$ : $Garrow[G]^{<\kappa}$ is a $\kappa$-coloring mapping on $G$ if for any $a,$ $b\in G$

with $\{a, b\}\in K$ , at least one of $a\in f(b)$ or $b\in f(a)$ holds.

Lemma 2.1 ([7]). For any gmph $G$ and any infinite cardinal $\kappa$ , the following
are equivalent:

(a) col $(G)\leq\kappa$ .
(b) There is a $\kappa$ -coloring mapping on $G$ .

Proof. $(a)\Rightarrow(b)$ : Suppose that col $(G)\leq\kappa$ and let $\Subset$ be a well-ordering on $G$

such that $|K_{\Subset}^{a}|<\kappa$ for all $a\in G$ . Then $f$ : $Garrow[G]^{<\kappa}$ defined by $f(a)=K_{\Subset}^{a}$

for $a\in G$ is a $\kappa$-coloring mapping.
$(b)\Rightarrow(a)$ : Suppose that $f$ : $Garrow[G]^{<\kappa}$ is a $\kappa$-coloring mapping on $G$ . Let

$\Subset$ be a well-ordering on $G$ such that all initial segments of $G$ of order-type of
the form $\kappa\cdot\alpha$ with respect to $\Subset$ are closed with respect to $f$ . Then $\Subset$ is as
desired:

Claim 2.1.1. $|K_{\Subset}^{a}|<\kappa$ for all $a\in G$ .
$\vdash$ Suppose that $a\in G$ is the $\kappa\cdot\alpha+\beta$ ’th element with respect to $\Subset$ where
$\beta<\kappa$ . Then the first $\kappa\cdot\alpha$ elements of $G$ are closed with respect to $f$ and hence
if $b$ is among them and $\{a, b\}\in K$ then we have $b\in f(a)$ . Thus

$K_{\Subset}^{a}\subseteq$ { $b\in G$ : $b$ is the $\gamma$ ’th element for some $\kappa\cdot\alpha\leq\gamma<\kappa\cdot\alpha+\beta$ }
$\cup f(a)$ .

The right side of the inclusion has size $<\kappa$ (note that we need here the infinity
of $\kappa)$ . Hence $|K_{\Subset}^{a}|<\kappa$ . $\dashv$ (Claim 2.1.1)

$\square$ (Lemma 2.1)

Lemma 2.2. Suppose that $(G_{\alpha}$ : $\alpha<\delta\rangle$ is a filtmtion of a graph $G=\langle G,$ $K\rangle$

and $\kappa$ is an infinite cardinal. If $G_{\alpha}\subseteq_{\kappa}G$ and col $(G_{\alpha+1})\leq\kappa$ for all $\alpha<\delta$ , then
we have col $(G)\leq\kappa$ .
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Proof. For $a\in G$ let $o(a)= \min\{\alpha<\delta : a\in G_{\alpha+1}\}$ . For $\alpha<\delta$ , let $\Subset_{\alpha+1}$ be
a well-ordering of $G_{\alpha+1}$ witnessing col $(G_{\alpha+1})\leq\kappa$ . Let $\Subset$ be the ordering on $G$

defined by:

(2.4) $a\Subset b$ $\Leftrightarrow$ $o(a)<o(b)$ or $(o(a)=o(b)$ and $a\Subset_{o(a)+1}b)$ .

Then $\Subset$ is a well ordering on $G$ . The following claim shows that $\Subset$ witnesses
that $G$ has coloring number $<\kappa$ .

Claim 2.2.1. $|K_{\Subset}^{a}|<\kappa$ for all $a\in G$ .
$\vdash$ For $a\in G$ , we have $K_{\Subset}^{a}\subseteq K_{G_{o(a)}}^{a}\cup K_{\Subset_{o(a)+1}}^{G_{o(a)+1}}$

‘
$a$

Since the right side of the
inclusion is of cardinality $<\kappa$ , it follows that $|K_{\Subset}^{a}|<\kappa$ . $\dashv$ (Claim 2.2.1)

$\square$ (Lemma 2.2)

Lemma 2.3. Suppose that $H_{0}$ and $H_{1}$ are subsets of $G$ with $H_{0}\subseteq_{\kappa}G$ and
$H_{1}\subseteq_{\kappa}$ G. Then we have $H_{0}\cap H_{1}\subseteq_{\kappa}G$ .

Proof. Suppose that $a\in G\backslash (H_{0}\cap H_{1})$ . Then we have $a\in G\backslash H_{0}$ or $a\in G\backslash H_{1}$ .
If $a\in G\backslash H_{0}$ , then $K_{H_{0}\cap H_{1}}^{a}\subseteq K_{H_{0}}^{a}$ . And hence $|K_{H_{0}\cap H_{1}}^{a}|<\kappa$ . If $a\in G\backslash H_{1}$ ,
then $K_{H_{0}\cap H_{1}}^{a}\subseteq K_{H_{1}}^{a}$ . And hence again we have $|K_{H_{0}\cap H_{1}}^{a}|<\kappa$ .

This shows $H_{0}\cap H_{1}\subseteq_{\kappa}$ G. $\square$ (Lemma 2.3)

Theorem 2.4. For any gmph $G=\langle G,$ $K\rangle$ and an infinite cardinal $\kappa$ , the
following are equivalent;

(a) col $(G)\leq\kappa$ .
$(a’)$ There is a $well-ordering\Subset of$ $G$ of order-type $|G|$ such that $|K_{\Subset}^{a}|<\kappa$

for all $a\in G$ .
(b) $G$ has a $\kappa$-coloring mapping.

(c) For $a/all$ sufficiently large regular $\chi$ and for all $M\prec \mathcal{H}(\chi)$ such that
$\langle G,$ $K\rangle\in M$ and $\kappa+1\subseteq M$ we have $G\cap M\subseteq_{\kappa}G$ .

Proof. $(a)\Rightarrow(b)$ was already proved in Lemma 2.1. $(a’)\Rightarrow(a)$ is trivial. The
proof of $(b)\Rightarrow(a)$ in Lemma 2.1 actually proves $(b)\Rightarrow(a’)$ .

For $(a)\Rightarrow(c)$ , suppose that $G=\langle G,$ $K\rangle$ has coloring number $\leq\kappa$ . Let $\chi$

be a sufficiently large regular cardinal and $M\prec \mathcal{H}(\chi)$ be such that $G\in M$ and
$\kappa+1\subseteq M$ . By elementarity and $(a)\Leftrightarrow(b)$ , there is $f\in M$ such that $f$ is a
$\kappa$-coloring mapping on $G$ . Note that by $\kappa+1\subseteq M$ and by elementarity, $G\cap M$

is closed with respect to $f$ . For $a\in G\backslash M$ and $b\in K_{G\cap M}^{a}$ , since $a\not\in f(b)\subseteq M$ ,
we have $b\in f(a)$ . Thus $K_{G\cap M}^{a}\subseteq f(a)$ and hence $|K_{G\cap M}^{a}|<\kappa$ . This shows
that $G\cap ME_{\kappa}G$ .
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Now we prove $(c)\Rightarrow(a)$ by induction on $|G|$ .
If 1 $G|\leq\kappa$ , then (c) $\Rightarrow(a)$ holds since $G$ then has coloring number $\leq\kappa$

anyway –any well-ordering of $G$ of order-type 1 $G|$ will witness this.
Suppose that 1 $G|>\kappa$ and we have shown the implication $(c)\Rightarrow(a)$ for all

graphs of cardinality $<|G|$ . Let $\lambda=|G|,$ $\lambda^{*}=$ cf $(\lambda)$ and $\langle M_{\alpha}$ : $\alpha<\lambda^{*}\rangle$ a
continuously increasing chain of elementary submodels of $\mathcal{H}(\chi)$ such that

(2.5) $G\in M_{0};\kappa+1\subseteq M_{0}$ ;

(2.6) 1 $M_{\alpha}|<\lambda$ for all $\alpha<\lambda^{*}$ ; and

(2.7) $G \subseteq\bigcup_{\alpha<\lambda^{*}}M_{\alpha}$ .

For $\alpha<\lambda^{*}$ , let $G_{\alpha}=G\cap M_{\alpha}$ . Then $\langle G_{\alpha}$ : $\alpha<\lambda^{*}\rangle$ is a filtration of $G$ by
(2.6) and (2.7). $G_{\alpha}\subseteq_{\kappa}G$ for all $\alpha<\kappa$ by (2.5) and by the assumption of (c).

By Lemma 2.3, $G_{\alpha}$ also satisfies (c) for $\alpha<\lambda^{*}$ . Since $|G_{\alpha}|<\lambda$ , it follows
that col $(G_{\alpha})\leq\kappa$ for all $\alpha<\lambda^{*}$ by the induction hypothesis. Hence we have
col $(G)\leq\kappa$ by Lemma 2.2. $\square$ (Theorem 2.4)

3 Coloring number of the plane

The plane, or the unit distance gmph of the plane, is the graph $G^{1}(\mathbb{R}^{2})$ defined
by $G^{1}(\mathbb{R}^{2})=\langle \mathbb{R}^{2},$ $K_{\mathbb{R}^{2}}^{1}\rangle$ where $K^{1}=\{\{x, y\}\in[\mathbb{R}^{2}]^{2} : d(x, y)=1\}$ . Applying
Theorem 2.4, we can show easily that the coloring number of the plane is equal
to $\aleph_{0}$ .

Theorem 3.1. col $(G^{1}(\mathbb{R}^{2}))=\aleph_{0}$ .

Proof. In [2] it is noted that the list-chromatic number list $(G^{1}(\mathbb{R}^{2}))$ of $G^{1}(\mathbb{R}^{2})$ is
infinite since finite regular graph of arbitrarily large degree $d$ can be embedded
in $G^{1}(\mathbb{R}^{2})$ (e.g., throwing down of n-dimensional cube onto the plane) and
the list-chromatic number of such finite graph is $d$ (see [1]). Thus we have
$\aleph_{0}\leq list(G^{1}(\mathbb{R}^{2}))\leq col(G^{1}(\mathbb{R}^{2}))$ .

To prove the inequality col $(G^{1}(\mathbb{R}^{2}))\leq\aleph_{0}$ , let $\chi$ be sufficiently large and
$N\prec \mathcal{H}(\chi)$ . Note that we have $G^{1}(\mathbb{R}^{2})\in N$ since the plane is definable.
Suppose $x\in \mathbb{R}^{2}\backslash N$ . Let us write simply $K$ for $K_{1R^{2}}^{1}$ By Theorem 2.4, it is
enough to show that $K_{\mathbb{R}^{2}\cap N}^{x}$ is finite. Actually, we can show that $|K_{R^{2}\cap N}^{x}|\leq 1$ :

Toward a contradiction, suppose that $|K_{\mathbb{R}^{2}\cap N}^{x}|>1$ . Then there are two
distinct $y,$ $z\in G\cap N$ such that $d(x, y)=d(x, z)=1$ . But then $X=\{u\in$

$\mathbb{R}^{2}$ : $d(u, y)=d(u, z)=1\}$ is a two element set definable with parameters from
$N$ . It follows that $x\in X\subseteq N$ . This is a contradiction to the choice of $x$ .

$\square$ (Theorem 3.1)
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With the same proof we can also show:

col
$(G^{Odd}.(\mathbb{R}^{2}))=\aleph_{0}=col$

$(G^{N}(\mathbb{R}^{2}))=col$ $(G^{\mathbb{Q}}(\mathbb{R}^{2}))=col$ $(G^{algebraic}(\mathbb{R}^{2}))=$

Theorem 3.1 may be already known. However I could not find any direct men-
tion or proof of the theorem in the literature. Also, in [2] the authors prove
list $(G^{Odd}(\mathbb{R}^{2}))\leq\aleph_{0}$ directly and it seems that idea of the proof cannot be
extended to a proof of col $(G^{Odd}(\mathbb{R}^{2}))\leq\aleph_{0}$ .

I first learned a proof of col $(G^{1}(\mathbb{R}^{2}))\leq\aleph_{0}$ from Hiroshi Sakai in November
2009 who proved the inequality straightforwardly.

Theorem 2.4 is often quite useful to decide the coloring nurnber of infinite
graphs. For example, col $(K(\kappa, \kappa))=\kappa$ and col $(K(\kappa, \lambda))=\kappa^{+}$ for any $\aleph_{0}\leq\kappa<$

$\lambda;col(G^{Odd}(\mathbb{R}^{3}))=\aleph_{1}$ etc. can be seen immediately by this theorem.

We shall demonstrate the Iast equality. Recall $G^{Odd}(\mathbb{R}^{3})=\langle \mathbb{R}^{3},$ $K_{\mathbb{R}^{3}}^{Odd}\rangle$

where $K_{\mathbb{R}^{3}}^{Odd}=\{\langle\vec{x},\vec{y)}\in[\mathbb{R}^{3}]^{2}:d(\vec{x},$ $y\gamma$ is an odd (natural) number}.
Theorem A.3.1. col $(G^{Odd}(\mathbb{R}^{3}))=\aleph_{1}$ .

Proof. For notational simplicity, let $G=G^{Odd}(\mathbb{R}^{3})=(G,$ $K\rangle$ with
$G=\mathbb{R}^{3}$ and $K=K_{\mathbb{R}^{3}}^{Odd}$ . Suppose that $\chi$ is sufficiently large. By
Theorem 2.4, it is enough to show that $G\cap M\subseteq_{\aleph_{1}}G$ for all $M\prec$

$\mathcal{H}(\chi)$ but $G\cap Mg_{N_{0}}c$ for some $M\prec \mathcal{H}(\chi)$ .
Suppose that $M\prec \mathcal{H}(\chi)$ . If $\mathbb{R}\subseteq M$ then $G\subseteq M$ and we have $G\cap$

$M\subseteq_{\aleph_{i}}G$ vacuously.
Otherwise, letting $C=\{\langle x, y, 0\rangle\in \mathbb{R}^{3}:d(\langle x, y, 0\rangle,\vec{0})=1\}$ , we have

$C\not\subset M$ . Let $\vec{x}\in C\backslash M$ . Then, for any odd $n\in\omega,$ $\sqrt{n^{2}-1}\in M$

and $d(\tilde{x}, \langle 0,0, \sqrt{n^{2}-1}\rangle)=n$ . Thus $(0,0, \sqrt{n^{2}-1})\in K_{G\cap M}^{\tilde{x}}$ . This shows
that $G\cap Mg_{N_{0}}G$ .

To show $G\cap M\subseteq_{N_{1}}G$ , assume for contradiction that there is $\vec{x}\in$

$G\backslash M$ such that $K_{G\cap M}^{\tilde{x}}$ is uncountable. Then there is an odd $n\in\omega$

such that $X=\{\vec{y}\in G\cap M$ : $d(\vec{x},$ $y\gamma=n\}$ is uncountable. Let $y_{0}$ ,
$y_{1},$ $y_{3}$ be three distinct eIements of X. $Y=\{\vec{z}\in G$ : $d(\vec{z}, y_{0}^{arrow})=$

$d(\vec{z}, y_{1}^{arrow})=d(\vec{z}, y_{2}^{arrow})=n\}$ is a two-elements set definable with parameters
form $M$ . It follows that $\vec{x}\in Y\subseteq M$ . This is a contradiction to
the choice of $\vec{x}$ . $\square$ (Theorem A.3.1)

4 Coloring number under very weak square

The following version of the very weak square was introduced in [8].
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For a regular cardinal $\kappa$ and $\mu>\kappa$ , let $\coprod_{\kappa,\mu}^{***}$ be the following assertion: there
exists a sequence $\langle C_{\alpha}$ : $\alpha<\mu^{+}\rangle$ and a club set $D\subseteq\mu^{+}$ such that, for all $\alpha\in D$

with cf $(\alpha)\geq\kappa$ , we have

(4.1) $C_{\alpha}\subseteq\alpha,$ $C_{\alpha}$ is unbounded in $\alpha$ ; and

(4.2) $[\alpha]^{<\kappa}\cap\{C_{\alpha’} : \alpha’<\alpha\}$ dominates $[C_{\alpha}]^{<\kappa}$ (with respect to $\subseteq$ ).

For a (sufficiently large regular) cardinal $\chi$ and $M\prec \mathcal{H}(\chi),$ $M$ is $\kappa$-intemally

cofinal if $[M]^{<\kappa}\cap M$ is cofinal in $[M]^{<\kappa}$ with respect to $\subseteq$ . For $D\subseteq[\mathcal{H}(\chi)]^{<\kappa}$ ,
$M$ is $\mathcal{D}$ -intemally cofinal if $\mathcal{D}\cap M$ is cofinal in $[M]^{<\kappa}$ with respect to $\subseteq$ .

Suppose now that $\kappa$ is a regular cardinal and $\mu>\kappa$ is such that cf $(\mu)<\kappa$ .
Let $\mu^{*}=$ cf $(\mu)$ . For a sufficiently large $\chi$ and $x\in \mathcal{H}(\chi)$ , let us call a sequence
$\langle M_{\alpha,\beta}$ : $\alpha<\mu^{+},$ $\beta<\mu^{*})$ a $(\kappa, \mu)$ -dominating matrrix (of elementary submodels
of $\mathcal{H}(\chi))$ over $x$ if the following conditions $(4.3)-(4.6)$ hold:

(4.3) $M_{\alpha,\beta}\prec \mathcal{H}(\chi),$ $x\in M_{\alpha,\beta},$ $\kappa+1\subseteq M_{\alpha,\beta}$ and $|M_{\alpha,\beta}|<\mu$ for all $\alpha<\mu^{+}$

and $\beta<\oint 4^{*};$

(4.4) $\langle M_{\alpha_{!}\beta}$ : $\beta<\mu^{*}\rangle$ is an increasing sequence for each fixed $\alpha<\mu^{+}$ ;

(4.5) if $\alpha<\mu^{+}$ is such that cf $(\alpha)\geq\kappa$ , then there is $\beta^{*}<\mu^{*}$ such that, for
every $\beta^{*}\leq\beta<\mu^{*},$ $M_{\alpha,\beta}$ is $\kappa$-internally cofinal.

For $\alpha<\mu^{+}$ , let $M_{\alpha}= \bigcup_{\beta<\mu^{*}}M_{\alpha,\beta}$ . By (4.3) and (4.4), we have $M_{\alpha}\prec \mathcal{H}(\chi)$ .

(4.6) $\langle M_{\alpha}$ : $\alpha<\mu^{+}\rangle$ is continuously increasing and $\mu^{+}\subseteq\bigcup_{\alpha<\mu^{+}}M_{\alpha}$ .

Theorem 4.1 (THEOREM 7 in [8]). Suppose that $\kappa$ is a regular cardinal and
$\mu>\kappa$ is such that cf $(\mu)<\kappa$ . If we have cf $([\lambda]^{<\kappa}, \subseteq)=\lambda$ for cofinally many
$\lambda<\mu$ and $\coprod_{\kappa,\mu}^{***}$ holds, then, for any sufficiently large $\chi$ and $x\in \mathcal{H}(\chi)$ , there is
$a(\kappa, \mu)$ -dominating matrix over $x$ .

Theorem 4.2. Assume SSH and $\coprod_{\kappa,\mu}^{***}for$ a regular uncountable $\kappa$ and all sin-
gular cardinal $\mu$ with cf $(\mu)<\kappa<\mu$ .

Then, for any gmph $G=(G,$ $K\rangle$ the following are equivalent:

(a) col $(G)\leq\kappa$ .
(d) For $a/all$ sufficiently large regular $\chi$ and $\kappa$ -intemally cofinal $M\prec \mathcal{H}(\chi)$

with $G\in M$ we have $G\cap M\subseteq_{\kappa}G$ .
(e) For $a/all$ sufficiently large regular $\chi$ there is $\mathcal{D}\subseteq[\mathcal{H}(\chi)]^{<\kappa}$ such that $\mathcal{D}$

is cofinal in $[\mathcal{H}(\chi)]^{<\kappa}$ and, for any $\mathcal{D}$ -intemally cofinal $M\prec \mathcal{H}(\chi)$ , we
have $G\cap M\subseteq_{\kappa}G$ .
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Proof. $(a)\Rightarrow(d)$ follows from Theorem 2.4, $(d)\Rightarrow(e)$ is trivial (just put
$\mathcal{D}=[\mathcal{H}(\chi)]^{<\kappa})$ .

For $(e)\Rightarrow(a)$ , we proceed with induction on $|G|$ . If $|G|\leq\kappa$ then the
implication (e) $\Rightarrow(a)$ is trivial since col $(G)\leq\kappa$ holds always for any graph of
size $\leq\kappa$ . Suppose now that $|G|>\kappa$ and we have shown the implication $(e)\Rightarrow$

(a) for all graphs of cardinality $<|G|$ .
Assume that $G$ satisfies (e) with $\chi$ and $\mathcal{D}$ . Let $\chi^{*}$ be sufficiently large above

$\chi$ such that we have in particular $\mathcal{H}(\chi)\in \mathcal{H}(\chi^{*})$ .

Claim 4.2.1. If $M$ is a rc-internal cofinal elementary submodel of $\mathcal{H}(\chi^{*})$ such
that

(4.7) $G,$ $\chi,$
$\mathcal{D}\in M$ and $\kappa+1\subseteq M$ ,

then we have $G\cap M\subseteq_{\kappa}G$ .
$\vdash$ Suppose not. Then there is $a\in G\backslash M$ such that I $K_{G\cap M}^{a}|\geq\kappa$ . Let
$N=\mathcal{H}(\chi)\cap M$ . By elementarity we have $N\prec \mathcal{H}(\chi)$ . Let $\langle N_{\alpha}$ : $\alpha<\kappa\rangle$ be an
increasing sequence such that, for all $\alpha<\kappa$ , we have

(4.8) $N_{\alpha}\in D\cap M$ ;

(4.9) $N_{\alpha}\in N_{\alpha+1}$ ;

(4.10) there is $N_{\alpha}^{*}\in[N]^{<\kappa}\cap M$ such that $N_{\alpha}^{*}\prec N$ and $N_{\alpha}\subseteq N_{\alpha}^{*}\subseteq N_{\alpha+1}$ ; and
(4.11) $K_{G\cap M}^{a}\cap(N_{\alpha+1}\backslash N_{\alpha})\neq\emptyset$ .

The construction is possible by elementarity of $M$ and since $D$ is cofinal in
$[\mathcal{H}(\chi)]^{<\kappa}$ .

Let $N^{*}=U_{\alpha<\kappa}N_{\alpha}$ . By (4.10) we have $N^{*}\prec N\prec \mathcal{H}(\chi)$ . By (4.8) and (4.9)
$N^{*}$ is $\mathcal{D}$-internally cofinal. On the other hand, we have $|K_{G\cap N^{*}}^{a}|\geq\kappa$ by (4.11).
This is a contradiction to the assumption of (e). $\dashv$ (Claim 4.2.1)

Claim 4.2.2. If $H;_{\kappa}G$ then for every $\mathcal{D}-intemally$ cofinal $M\prec \mathcal{H}(\chi)$ we
have $H\cap M\subseteq_{\kappa}$ H. In particular, $H$ also satisfies the condition (e).

Proof. Suppose that $M\prec \mathcal{H}(\chi)$ is $\mathcal{D}$-internally approachable. For $a\in H\backslash$

$(H\cap M)$ , since $a\in G\backslash (G\cap M)$ , we have $K_{H\cap M}^{a}\subseteq K_{G\cap M}^{a}$ . The right side of
the inclusion is of cardinality $<$ rc by the assumption of (e) on $G$ . This shows
that $H\cap M\subseteq_{\kappa}$ H. $\dashv$ (Claim 4.2.2)

Now we finish the induction step for the proof of $(e)\Rightarrow(a)$ in two cases. Let
$\nu=|G|$ .
Case I. $\nu$ is a limit cardinal or $\nu=\delta^{+}$ with cf $(\delta)\geq\kappa$ .

Let $\nu^{*}=cf(\nu)$ . Note that, in this case, we have that
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(4.12) the cardinals $\lambda<\nu$ such that $cf([\lambda]^{<\kappa})=\lambda$ are cofinal among cardinals
below $\nu$

by SSH.
Let $\langle M_{\alpha}$ : $\alpha<\nu^{*}\rangle$ be an increasing sequence of elementary submodels of

$\mathcal{H}(\chi^{*})$ of cardinality $<\nu$ satisfying (4.7) and $G \subseteq\bigcup_{\alpha<\nu}$ . $M_{\alpha}$ . We can find such
a sequence by (4.12).

Let

$G_{\alpha}=\{\begin{array}{ll}G\cap M_{\alpha} if \alpha=0 or \alpha is a successor ordinal;G\cap(\bigcup_{\beta<\alpha}M_{\beta}) otherwise\end{array}$

for $\alpha<\nu^{*}$ . Then $\langle G_{\alpha}$ : $\alpha<\nu^{*}\rangle$ is a filtration of $G$ .

Claim 4.2.3. $G_{\alpha}\subseteq_{\kappa}G$ for all $\alpha<\nu^{*}$ .

Proof. If $\alpha<\nu^{*}$ is $0$ or a successor ordinal, this follows from Claim 4.2.1.
If $\alpha<\nu^{*}$ is a limit and cf $(\alpha)<\kappa$ , Then $G_{\alpha}$ is a union of less than $\kappa$ many

$G_{\beta}$ ’s where $\beta<\alpha$ may be chosen to be a successor ordinal and hence $G_{\beta}\subseteq_{\kappa}G$ .
It follows that we have $G_{\alpha}\subseteq_{\kappa}G$ also in this case.

If cf $(\alpha)\geq\kappa$ , then $\bigcup_{\beta<\alpha}M_{\beta}$ is $\kappa$-internally cofinal and hence we have $G_{\beta}\subseteq_{\kappa}$

$G$ again by Claim 4.2.1. $\dashv$ (Claim 4.2.3)

Now by Claim 4.2.2 and by the induction hypothesis, all of $G_{\alpha},$ $\alpha<\nu^{*}$ are
of coloring number $\leq\kappa$ . By Lemma 2.2, it follows that $G$ also has coloring
number $\leq\kappa$ .

Case II. $\nu=\mu^{+}$ with cf $(\mu)<\kappa$ . Let $\mu^{*}=$ cf $(\mu)$ .
By Theorem 4.1, there is a $(\kappa, \mu)$-dominating matrix $\langle M_{\alpha,\beta}$ : $\alpha<\nu,$ $\beta<\mu^{*}\rangle$

of submodels of $\mathcal{H}(\chi^{*})$ over $x=\langle G,$ $\mathcal{H}(\chi)\rangle$ .
For $\alpha<\nu$ and $\beta<\mu^{*}$ , let $G_{\alpha,\beta}=G\cap M_{\alpha,\beta}$ and $G_{\alpha}= \bigcup_{\beta<\mu}$ . $G_{\alpha,\beta}=G\cap$

$( \bigcup_{\beta<\mu^{*}}M_{\alpha,\beta})$ . By (4.6), the sequence $\langle G_{\alpha}$ : $\alpha<\nu\rangle$ is continuously increasing
and $\bigcup_{\alpha<\nu}G_{\alpha}=G$ . By (4.3), we have 1 $G_{\alpha}|\leq\mu<\nu$ . Thus $\langle G_{\alpha}$ : $\alpha<\nu\rangle$ is a
filtration of $G$ .

Let

(4.13) $C=$ { $\alpha<\nu$ : cf $(\alpha)\geq\kappa$ or $\{\alpha’<\alpha$ : cf $(\alpha^{f})\geq\kappa\}$ is cofinal in $\alpha$ }.

$C$ is a club subset of $\nu$ .

Claim 4.2.4. $G_{\alpha}\subseteq_{\kappa}G$ for all $\alpha\in C$ .
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$\vdash$ Suppose $\alpha\in C$ . If cf $(\alpha)\geq\kappa,$ $M_{\alpha,\beta}$ is $\kappa$-internally cofinal for all sufficiently
large $\beta<\mu^{*}$ by (4.5). Hence by Claim 4.2.1, we have $G_{\alpha,\beta}\subseteq_{\kappa}G$ for all such $\beta$ .
Since $\mu^{*}<\kappa$ , it follows that $G_{\alpha}\subseteq_{\kappa}G$ .

If cf $(\alpha)<\kappa$ , then let $X\subseteq\alpha$ be a cofinal subset of $\alpha$ with $|X|<\kappa$ such
that all $\alpha’\in X$ have cofinality $\geq\kappa$ . Since $G_{\alpha}= \bigcup_{\alpha\in X}G_{\alpha’}$ and $G_{\alpha’}\subseteq_{\kappa}G$ for all
$\alpha’\in X$ by the first part of the proof, it follows that $G_{\alpha}\subseteq_{\kappa}$ $G$ . $\dashv$ (Claim 4.2.4)

By Claim 4.2.2 and by the induction hypothesis, we have col $(G_{\alpha})\leq\kappa$ for
all $\alpha\in C$ . Hence by Lemma 2.2 we can conclude that col $(G)\leq\kappa$ .

$\square$ (Theorem 4.2)
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