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In 2008, Fujita showed the following:

Theorem 1 (Fujita [5]). The following are equivalent:

1. If $A\subseteq \mathbb{R}\cross \mathbb{R}$ is $\Pi_{1}^{1}$ and for any real $x,$ $A_{x}$ is Borel where $A_{x}=\{y\in$

$\mathbb{R}|(x, y)\in A\}$ , then there is a comeager Borel set $D\subseteq \mathbb{R}$ such that
$A\cap(D\cross \mathbb{R})$ is Borel, and

2. every $\Sigma_{2}^{1}$ set of reals has the Baire property.

We show that one can generalize the above theorem to a wide class of
tree-type ccc forcings. More precisely:

Theorem 2. Let $\mathbb{P}$ be a strongly arboreal, $\Sigma_{1}^{1}$ , provably ccc forcing. Then
the following are equivalent:

1. If $A\subseteq \mathbb{R}\cross \mathbb{R}$ is $\Pi_{1}^{1}$ and for any real $x,$ $A_{x}$ is Borel, then there is a
Borel set $D\subseteq \mathbb{R}$ such that $D$ is of $\mathbb{P}$-measure one and $A\cap(D\cross \mathbb{R})$ is
Borel, and

2. every $\Sigma_{2}^{1}$ set of reals is F’-measurable.

We also show that this equivalence fails for non-ccc forcings. In fact, for
Sacks forcing, the corresponding statement to the first fails in ZFC while the
one for the second is consistent with ZFC.
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Throughout this paper, we assume the basic knowledge of descriptive set
theory and forcing which can be obtained from e.g., [9], [8], and [2]. By reals,
we mean elements of the Cantor space or those of the Baire space and we
use $\mathbb{R}$ to denote the set of reals.

To prove Theorem 2, let us start with basic definitions. Let $n$ be a natural
number with $n\geq 1$ . A partial order $\mathbb{P}$ is $\Sigma_{n}^{1}$ if the sets $P,$ $\leq \mathbb{P}$ , and $\perp_{\mathbb{P}}$ are
$\Sigma_{n}^{1}$ , where $\mathbb{P}=(P, \leq \mathbb{P})$ and $1_{\mathbb{P}}$ is the incompatibility relation in P. A partial
order $\mathbb{P}$ is provably $ccc$ if there is a formula $\phi$ defining $\mathbb{P}$ and the statement $\phi$

defines a ccc partial order” is provable in ZFC. A partial order $\mathbb{P}$ is arboreal
if its conditions are perfect trees on $\omega$ (or on 2) ordered by inclusion. But
this class of forcings contains some trivial forcings such as $\mathbb{P}=\{^{<\omega}\omega\}$ . We
need the following stronger notion:

Definition 3. A partial order $\mathbb{P}$ is strongly arboreal if it is arboreal and the
following holds:

$(\forall T\in \mathbb{P})(\forall t\in T)T_{t}\in \mathbb{P}$ ,

where $T_{t}=\{s\in T|$ either $s\subseteq t$ or $s\supseteq t\}$ .
With strongly arboreal forcings, one can code generic objects by reals in

the standard way: Let $\mathbb{P}$ be strongly arboreal and $G$ be I’-generic over $V$ .
Let $x_{G}=\cup\{$ stem$(T)|T\in G\}$ , where stem$(T)$ is the longest $t\in T$ such that
$T_{t}=T$ . Then $x_{G}$ is a real and $G=\{T\in \mathbb{P}|x_{G}\in[T]\}$ , where $[T]$ is the set
of all infinite paths through $T$ . Hence $V[x_{G}]=V[G]$ . We call such real $x_{G}$ a
P-generic real over $V$ .

Almost all typical forcings related to regularity properties are strongly
arboreal:

Example 4.
1. Cohen forcing $\mathbb{C}$ : Let $T_{0}$ be $<tv\omega$ . Consider the partial order $(\{(T_{0})_{s}|$

$s\in<\omega\omega\},$ $\subseteq)$ . Then this is strongly arboreal and equivalent to Cohen forcing.
2. Random forcing $B$: Consider the set of all perfect trees $T$ on 2 such that

for any $t\in T,$ $[T_{t}]$ has a positive Lebesgue measure, ordered by inclusion.
Then this forcing is strongly arboreal and equivalent to random forcing.

3. Hechler forcing $D$ : For $(n, f)\in D$ , let

$T_{(n,f)}=\{t\in<\omega\omega|$ either $t\subseteq frn$ or

$(t\supseteq frn$ and $(\forall m\in$ dom$(t))t(m)\geq f(m))\}$ .
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Then the partial order $(\{T_{(n,f)}|(n, f)\in D\}, \subseteq)$ is strongly arboreal and
equivalent to Hechler forcing.

4. Mathias forcing $\mathbb{R}_{M}$ : For a condition $(s, A)$ in $\mathbb{R}_{M}$ , let

$T_{(s,A)}=$ { $t\in<\omega\omega|t$ is strictly increasing and $s\subseteq$ ran $(t)\subseteq s\cup A$ }.

Then $\{T_{(s,A)}|(s, A)\in \mathbb{R}_{M}\}$ is a strongly arboreal forcing equivalent to
Mathias forcing.

5. Sacks forcing @, Silver forcing V, Miller forcing $M$, Laver forcing $L$:
These forcings can be naturally seen as strongly arboreal forcings.

The following is as expected:

Lemma 5. Let $P$ be a strongly arboreal, $\Sigma_{1}^{1}$ , provably ccc forcing and $M$ be
an inner model of ZFC containing parameter defining $\mathbb{P}$ with a $\Sigma_{1}^{1}$ -formula.
Then if $x$ is P-generic over $V$ , then $x$ is $\mathbb{P}^{M}$ -generic over $M$ .

Proof. Since $P$ is $\Sigma_{1}^{1},$ $\mathbb{P}^{M}=P\cap M$ . So it suffices to show that if $A\subseteq \mathbb{P}^{M}$ is
a maximal antichain in $M$ , so is in $V$ . Let $A\subseteq P^{M}$ be a maximal antichain
in $M$ . Since $P$ is provably ccc, $M$ thinks $P^{M}$ is ccc. So $A$ is countable in $M$

and there is a real $r$ coding $A$ in $M$ . Since $P$ is $\Sigma_{1}^{1}$ , the statement “a real $r$

codes a maximal antichain in $\mathbb{P}$
” is $\Pi_{2}^{1}$ . So the real $r$ also codes the maximal

antichain $A$ in $V$ , as desired. $\blacksquare$

We now introduce a $\sigma$-ideal $I_{\mathbb{P}}$ on the reals expressing “smallness” for
each strongly arboreal forcing $P$ .

Definition 6. Let $\mathbb{P}$ be a strongly arboreal forcing. A set of reals $A$ is $\mathbb{P}$-null
if for any $T$ in $\mathbb{P}$ there is a $T’\leq T$ such that $[T’]\cap A=\emptyset$ . Let $N_{\mathbb{P}}$ denote the
set of all $\mathbb{P}$-null sets and $I_{\mathbb{P}}$ denote the $\sigma$-ideal generated by P-null sets, i.e.,
the set of all countable unions of $P$-null sets. A set of reals $A$ is of $\mathbb{P}$-measure
one if $\mathbb{R}\backslash A$ is in $I_{\mathbb{P}}$ .

Example 7.
1. Cohen forcing $\mathbb{C}:\mathbb{C}$-null sets are the same as nowhere dense sets of

reals and $I_{\mathbb{C}}$ is the ideal of meager sets of reals.
2. Random forcing $B$ : IEB-null sets are the same as Lebesgue null sets in

the Baire space and $I_{B}$ is the Lebesgue null ideal.
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3. Hechler forcing $D$: ID-null sets are the same as nowhere dense sets in
the dominating topology, i.e., the topology generated by $\{[s, f]1(s, f)\in D\}$

where

$[s, f]=\{x\in\omega\omega|s\subseteq x$ and ($\forall n\geq$ dom$(s)$ ) $x(n)\geq f(n)\}$ .

Hence $I_{D}$ is the meager ideal in the dominating topology.
4. Mathias forcing $\mathbb{R}_{M}$ : A set of reals $A$ is $\mathbb{R}_{M}$ -null if and only if $\{$ ran $(x)|$

$x\in A\cap A_{0}\}$ is Ramsey null or meager in the Ellentuck topology, where $A_{0}$

is the set of strictly increasing infinite sequences of natural numbers. Hence
$I_{N_{M}}=N_{\mathbb{R}_{M}}$ .

5. Sacks forcing @: In this case, $I_{@}=N_{S}$ by a standard fusion argument,
The ideal $I_{S}$ is called the Marczewski ideal and often denoted by $s_{0}$ .

As with Sacks forcing, all the typical non-ccc tree-type forcings admitting
a fusion argument satisfy the equation $I_{\mathbb{P}}=N_{\mathbb{P}}$ . In the case of ccc forcings,
$I_{\mathbb{P}}$ is often different from $N_{\mathbb{P}}$ (e.g., Cohen forcing and Hechler forcing).

We now introduce IF’-measurability:

Definition 8. Let $\mathbb{P}$ be strongly arboreal. A set of reals $A$ is P-measumble if
for any $T$ in $\mathbb{P}$ there is a $T’\leq T$ such that either $[T’]\cap A\in I_{\mathbb{P}}$ or $[T’]\backslash A\in I_{\mathbb{P}}$ .

As is expected, P-measurability coincides with a known regularity prop-
erty for $\mathbb{P}$ when $\mathbb{P}$ is ccc:

Proposition 9. Let IP be a strongly arboreal, ccc forcing and let $A$ be a set
of reals. Then $A$ is P-measurable if and only if there is a Borel set $B$ such
that $A\triangle B\in I_{p}$ , where $A\triangle B$ is the symmetric difference between $A$ and $B$ .

Proof. See Proposition 2.9 in [6]. $\square$

Proposition 9 does not hold for non-ccc forcings such as Sacks forcing.1
But IF’-measurability is almost the same as the regularity properties for

non-ccc forcings $P$ , e.g., for Mathias forcing, a set of reals $A$ is $\mathbb{R}_{M}$ -measurable
if and only if $\{$ ran $(x)|x\in A\cap A_{0}\}$ is completely Ramsey (or has the

$\overline{1For}$example, assuming every $n_{1}^{1}$ set has the perfect set property (i.e., either the set
is countable or contains a perfect subset), there is no $\Sigma_{1}^{1}$ Bernstein set (i.e., a set where
neither it nor its complement contains a perfect subset) but for a $\Sigma_{1}^{1}$ set of reals $A,$ $A$

is approximated by a Borel set modulo $I_{S}$ if and only if $A$ is Borel. This is because $I_{S}$

restricted to analytic sets (or co-analytic sets) is.the set of all countable sets of reals by
the assumption that every $\Pi_{1}^{1}$ set has the perfect set property.

24



Baire property in the Ellentuck topology), where $A_{0}$ is the set of all strictly
increasing infinite sequences of natural numbers. Also, for Sacks forcing, the
following holds:

Proposition 10 (Brendle, L\"owe). Let $\Gamma$ be a topologically reasonable point-
class, i.e., it is a set of sets of reals cIosed under continuous preimages and
any intersection between a set in $\Gamma$ and a closed set of reals. Then every set
in $\Gamma$ is S-measurable if and only if there is no Bernstein set in F.2

Proof. See [3, Lemma 2.1]. $\square$

As expected, every $\Sigma_{1}^{1}$ set of reals is P-measurable:

Theorem 11. Let $P$ be a strongly arboreal, proper forcing. Then every $\Sigma_{1}^{1}$

set of reals is P-measurable,

Proof. It follows from the fact that every $\Sigma_{1}^{1}$ set of reals is universally Baire,
that every universally Baire set of reals is P-Baire, and that every P-Baire
set of reals is P-measurable. For the details, see [4] and Section 3 in [6]. $\square$

We are now ready to state the theorem characterizing the regularity prop-
erties for $\Sigma_{2}^{1}$ sets of reals in terms of the existence of many generic reals over
$L[r]$ for a real $r$ , which we will use for the proof of Theorem 2:

Theorem 12. Let $P$ be a strongly arboreal, $\Sigma_{1}^{1}$ , provably ccc forcing. Then
the following are equivalent:

1. Every $\Sigma_{2}^{1}$ set of reals is P-measurable, and

2. for any real $r$ , the set of P-generic reals over $L[r]$ is of P-measure one.

Proof. See Definition 2.11, Lemma 2.13 (3), Definition 2.15, Proposition 2.17 (3),
and Theorem 4.4 in [6].

We are now ready to prove Theorem 2:

2In general, the property not being a Bernstein set does not imply S-measurability
while the converse is true. By using the axiom of choice, one can construct a set of reals
which is not S-measurable but is not a Bernstein set.
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Proof of Theorem 2. The argument is exactly the same as the one in Theo-
rem 1 in [5]. For the sake of completeness, we will give the proof.

We first show the implication from 1. to 2. Let $P$ be a $\Sigma_{2}^{1}$ set of reals. We
will show that $P$ is P-measurable. Since $P$ is $\Sigma_{2}^{1}$ , there is a $\Pi_{1}^{1}$ set $A\subseteq \mathbb{R}\cross \mathbb{R}$

such that $P=\{x\in \mathbb{R}|(\exists y)(x, y)\in A\}$ . By Kond\^o’s uniformization
theorem, there is a $\Pi_{1}^{1}$ function $f:Parrow \mathbb{R}$ uniformizing $A$ . Then for any real
$x,$ $f_{x}=\{y|(x, y)\in f\}=\{f(x)\}$ is Borel, so by applying the assumption
for $f$ , there is a Borel set $D$ of reals such that $D$ is of $\mathbb{P}$-measure one and
$f\cap(D\cross \mathbb{R})$ is Borel. Hence $P\cap D=\{x|(\exists y)(x, y)\in f\cap(Dx\mathbb{R})\}$ is $\Sigma_{1}^{1}$

and is $\mathbb{P}$-measurable by Theorem 11. So by Proposition 9, there is a Borel
set $B$ such that $(P\cap D)\triangle B$ is in $I_{\mathbb{P}}.$ Since $D$ is of P-measure one, $P\triangle B$ is
also in $I_{\mathbb{P}}$ . Again by Proposition 9, $P$ is IP’-measurable, as desired.

We now show the implication from 2. to 1. Let $WO$ be the set of reals
coding a well-order on $\omega$ . It is well-known that WO is a complete $\Pi_{1}^{1}$ set of
reals. For an element $w$ of WO, $|w|$ denotes the countable ordinal that $w$

codes. We need the following notion and lemma for the proof:

Definition 13. Let $r$ be a real. A set $X\subseteq \mathbb{R}\cross\omega_{1}$ is $\Pi_{2}^{1}(r)$ in the codes if
the set

$\{(x,$ $w)\in \mathbb{R}\cross \mathbb{R}|w\in$ WO and $(x,$ $|w|)\in X\}$

is $\Pi_{2}^{1}(r)$ .
Lemma 14. Let $r$ be a real and $X\subseteq \mathbb{R}\cross\omega_{1}$ be $\Pi_{2}^{1}(r)$ in the codes. Suppose
that for any real $x$ there is a $\xi<\omega_{1}$ such that $(x, \xi)\in X$ . Then there is a
countable ordinal $\delta$ such that for any P-generic real $x$ over $L[r]$ , there is a
$\xi<\delta$ such that $(x, \xi)\in X$ .

Proof of Lemma 14. Since $X$ is $\Pi_{2}^{1}(r)$ in the codes, pick a $\Pi_{2}^{1}$-formula $\phi(x, w, v)$

such that

$(\forall x, w)(\phi(x, w, r)\Leftrightarrow w\in$ WO and $(x, |w|)\in X)$ .

Let $\tilde{\phi}(x, \xi, r)$ be the following:

$\tilde{\phi}(x, \xi)\Leftrightarrow(\forall w\in WO)|w|=\xiarrow\phi(x, w, r)$ .

Then $\tilde{\phi}$ is absolute among all the transitive proper class models of ZFC in
which $\xi$ is countable.
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For each $\xi<\omega_{1}$ , let

$X_{\xi}=\{T\in IP |(T, 1_{\mathbb{P}_{\xi}})|\vdash_{\mathbb{P}\cross \mathbb{P}_{\epsilon}}\tilde{\phi}(\dot{x},\check{\xi},\check{r})\}^{L[r]}$ ,

where $P_{\xi}$ is Coll $(\omega, \xi)$ and $\dot{x}$ is a canonical P-name for a generic real.
We show that $\bigcup_{\xi<\omega 1}X_{\xi}$ is a dense subset of $\mathbb{P}^{L(\mathbb{R})}$ in $L[r]$ . Let $T$ be any

element of $\mathbb{P}^{L[r]}$ . Take a $\mathbb{P}$-generic real $x$ over $L[r]$ in $V$ with $x\in[T]$ . Then
by the assumption, there is a $\xi<\omega_{1}$ such that $(x, \xi)\in X$ . Take a function
$g:\omegaarrow\xi$ generic over $L[r, x]$ . Then $L[r, x, g]\models\tilde{\phi}(x, \xi, r)$ . Hence there is a
$T^{f}\leq T$ and a condition $p$ in $\mathbb{P}_{\xi}$ such that $L[r]F$ ” $(T’,p)|\vdash\tilde{\phi}(\dot{X},$ $\xi_{\check{r})}$

” Since
$P_{\xi}$ is homogeneous, it follows that $L[r]F$ $(T’,$ $1_{\mathbb{P}_{\xi}}|\vdash\tilde{\phi}(\dot{x}, \xi,\check{r})$”, so $T’\leq T$

and $T \in\bigcup_{\xi<\omega_{1}}X_{\xi}$ , as desired.
Since $P$ is provably ccc, $L[r]FP$ is ccc“, so there is a $\delta<\omega_{1}$ such that

$\bigcup_{\xi<\delta}X_{\xi}$ is a predense subset of IP in $L[r]$ . We show that this $\delta$ is the desired
countable ordinal. Take any IP-generic real $x$ over $L[r]$ . Then since $L[r]$ thinks
$\bigcup_{\xi<\delta}X_{\xi}$ is a predense subset of $P$ , the generic filter $G_{x}$ meets $\bigcup_{\xi<\delta}X_{\xi}$ and
hence there is a $\xi<\delta$ such that $G_{x}\cap X_{\xi}\neq\emptyset$ . By the definition of $X_{\xi}$ , for a
function $g:\omegaarrow\xi$ generic over $L[r, x],$ $L[r, x, g]F\tilde{\phi}(x, \xi, r)$ , hence $\tilde{\phi}(x, \xi, r)$

holds also in $V$ and $(x, \xi)\in X$ , as desired. $\square$ (Lemma 14)

We now finish showing the implication from 2. to 1. Let $A\subseteq \mathbb{R}\cross \mathbb{R}$ be
$\Pi_{1}^{1}$ such that for any real $x,$ $A_{x}$ is Borel. Let $f:\mathbb{R}\cross \mathbb{R}arrow \mathbb{R}$ be a continuous
function such that $f^{-1}$ (WO) $=A$ . Take any real $x$ . Since $A_{x}$ is Borel, the set
$f$

”
$(\{x\}\cross A_{x})$ is $\Sigma_{1}^{1}$ , hence by boundedness theorem, it is bounded in WO,

i.e.,

$(\forall x)($ョ$\xi)(\forall y)$ if $(x, y)\in A$ , then $|f(x, y)|<\xi$ .
Set

$X=\{(x, \xi)|f(\{x\}\cross A_{x})\subseteq WO_{\xi}\}$ ,

where $WO_{\xi}=\{w\in WO ||w|<\xi\}$ for each $\xi<\omega_{1}$ .
Then for any $x$ there is a $\xi$ with $(x, \xi)\in X$ . It is also easy to see that $X$ is

$\Pi_{2}^{1}(r)$ in the codes for some real $r$ . By Lemma 14, there is a $\delta<\omega_{1}$ such that
for any P-generic real $x$ over $L[r]$ there is a $\xi<\delta$ such that $(x, \xi)\in X$ . Hence
$A$ is the same as the Borel set $f^{-1}(WO_{\delta})$ on $G(L[r])\cross \mathbb{R}$, where $G(L[r])$ is
the set of P-generic reals over $L[r]$ . By 2. and Theorem 12, the set $G(L[r])$

is of P-measure one. Since $P$ is ccc, $I_{\mathbb{P}}$ is Borel generated, so there is a Borel
set $D\subseteq G(L[r])$ of $\mathbb{P}$-measure one and $A\cap(D\cross \mathbb{R})$ is Borel, as desired.

$\blacksquare$ (Theorem 2)
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After the RIMS set theory conference in 2008, Fujita asked if one could
take $\delta$ in Lemma 14 below $\gamma_{2}^{1}$ if $X$ is $\Pi_{2}^{1}$ (lightface) in the codes and if $P$ is
Cohen forcing, where $\gamma_{2}^{1}$ is the least countable ordinal that meets every set
$A\subseteq\omega_{1}$ which is $\Pi_{2}^{1}$ (lightface) in the codes.3 We show that this is generally
the case for each strongly arboreal, $\Sigma_{1}^{1}$ , provably ccc forcing $\mathbb{P}$ :

Proposition 15. Let $\mathbb{P}$ be a strongly arboreal, $\Sigma_{1}^{1}$ (lightface), ccc forcing
and $X\subseteq \mathbb{R}\cross\omega_{1}$ be $\Pi_{2}^{1}$ (lightface) in the codes such that for any real $x$

there is a $\xi<\omega_{1}$ with $(x, \xi)\in X$ . Then there is a $\delta<\gamma_{2}^{1}$ such that for any
P-generic real $x$ over $L$ , there is a $\xi<\delta$ with $(x, \xi)\in X$ .

Proof. Let $X\subseteq \mathbb{R}\cross\omega_{1}$ be $\Pi_{2}^{1}$ in the codes such that for any real $x$ there is
a $\xi$ with $(x, \xi)\in X$ .

Let $A$ be as follows:

$A=$ { $\gamma<\omega_{1}|$ ($\forall x$ : P-generic over L) $($ョ$\xi<\gamma)(x,$ $\xi)\in X$ }.

By Lemma 14, $A$ is nonempty. Hence it suffices to show that $A$ is $\Pi_{2}^{1}$ in
the codes.

Since $X$ is $\Pi_{2}^{1}$ in the codes, pick a $\Pi_{2}^{1}$-formula $\phi$ such that

$(\forall x, w)(\phi(x,$ $w)\Leftrightarrow w\in$ WO and $(x,$ $|w|)\in X)$ .

Let $\tilde{\phi}$ be the following:

$\tilde{\phi}(x, \xi)\Leftrightarrow(\forall w\in WO)|w|=\xiarrow\phi(x, w)$ .

Then

$A=$ { $\gamma<\omega_{1}|$ ($\forall x$ : P-generic over L) $(\exists\xi<\gamma)\tilde{\phi}(x,\xi)$ }
$=\{\gamma<\omega_{1}|LF(1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}})|\vdash_{\mathbb{P}x\mathbb{P}_{\gamma}}($ ョ$\xi<\check{\gamma})\tilde{\phi}(\dot{x},\xi)" \}$ ,

where $\mathbb{P}_{\gamma}$ is Coll $(\omega, \gamma)$ and $\dot{x}$ is a canonical P-name for a generic real.

Claim 16. For $\gamma<\omega_{1}$ ,
$LF$ ”(lp, lp,) $|\vdash_{\mathbb{P}x\mathbb{P}_{\gamma}}($ョ$\xi<\check{\gamma})\tilde{\phi}(\dot{x}, \xi)$

” $\Leftrightarrow VF$ ”
$(1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}})^{1\vdash_{\mathbb{P}x\mathbb{P}_{\gamma}}}(\exists\xi<$

$\check{\gamma})\tilde{\phi}(\dot{x}, \xi)$
”

$3_{\gamma_{2}^{1}}$ is also the least ordinal such that every $\Pi_{1}^{1}$ (lightface) Borel set is $\Pi_{\alpha}^{0}$ (boldface)
for some $\alpha<\omega_{1}$ . For the details, see [7].
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Proof of Claim 16. The direction from left to right follows from the fact that
if $(x, g)$ is $\mathbb{P}\cross \mathbb{P}_{\gamma}$-generic over $V$ , then so is over $L$ by Lemma 5.

For right to left, suppose $L\models$
$(1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}}.)|\vdash_{\mathbb{P}\cross \mathbb{P}_{\gamma}}($ ョ$\xi<\check{\gamma})\tilde{\phi}(\dot{x}, \xi)$” fails.

Then there is a $(p, q)\in \mathbb{P}\cross \mathbb{P}_{\gamma}$ in $L$ such that $LF$ $(p, q)|\vdash_{\mathbb{P}\cross \mathbb{P}_{\gamma}}(\forall\xi<$

$\check{\gamma})\neg\tilde{\phi}(\dot{x}, \xi)$
” Take a IP‘ $\cross \mathbb{P}_{\gamma}$ -generic $(x, g)$ over $V$ with $x\in[\rho]$ and $g\supseteq q$ .

By the assumption, there exists a $\xi<\gamma$ such that $V[x,g]F\tilde{\phi}(x, \xi)$ . But
$(x, g)$ is also $P\cross \mathbb{P}_{\gamma}$ -generic over $L$ and $L[x, g]F\tilde{\phi}(x, \xi)$ , contradicting $LF$

$(p, q)|\vdash_{\mathbb{P}\cross \mathbb{P}_{\gamma}}(\forall\xi<\check{\gamma})\neg\tilde{\phi}(\dot{x}, \xi)$
”

$\square$ (Claim 16)

Therefore,

$A=\{\gamma<\omega_{1}| (1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}}J)|\vdash_{\mathbb{P}x\mathbb{P}_{\gamma}}(\exists\xi<\check{\gamma})\tilde{\phi}(\dot{x}, \xi)" \}$.

Let $\psi$ be the following:

$\psi(w)=w\in$ WO and $(1_{\mathbb{P}}, 1_{\mathbb{P}_{|w|}})1\vdash_{\mathbb{P}x\mathbb{P}_{|w|}}$ $(\exists n\in\omega)\phi(\dot{x}, w[n))$ ,

where $w$ I $n$ is the real coding the well-order $\leq_{w}$ below $n$ , i.e. $\leq_{wrn}=\{(l, m)|$

$l\leq_{w}m<_{w}n\}$ . Then

$(\forall w)(\psi(w)\Leftrightarrow w\in$ WO and $|w|\in A)$ .

Hence it suffices to show that $\psi$ is equivalent to a $\Pi_{2}^{1}$-formula. Since $P_{|w|}$ is
ccc in $V^{\mathbb{P}},$

$P\cross P_{|w|}$ is also ccc. Moreover, it is easy to see that $\mathbb{P}\cross \mathbb{P}_{|w|}$ is $\Sigma_{1}^{1}(w)$

uniformly in $w\in$ WO. Hence, by the same argument as in Theorem 2.7 (1)
in Bagaria and Bosch [1], since $(\exists n\in\omega)\phi(x, wrn)$ is $\Pi_{2}^{1}$ in $x$ and $w$ , so is
(lp, $1_{\mathbb{P}_{|w|}}$ ) $|\vdash_{\mathbb{P}\cross \mathbb{P}_{|w|}}$

$($ョ$n\in\omega)\phi(\dot{x}, wrn)$
” in $w$ . Therefore, $\psi$ is equivalent to

a $\Pi_{2}^{1}$-formula. $\blacksquare$ (Proposition 15)

As announced in the beginning of this paper, we now show that the first
item in Theorem 2 fails in ZFC for $P=S$ (Sacks forcing):

Proposition 17. There is a $\Pi_{1}^{1}$ set $A\subseteq \mathbb{R}\cross \mathbb{R}$ such that for every $x,$ $A_{x}$ is
Borel and there is no set $D$ of@-measure one such that $A\cap(D\cross \mathbb{R})$ is Borel.

Proof. Let $A$ be the following:

$A=\{(x,$ $y)|x,$ $y\in$ WO and $|x|=|y|\}$ .

It is easy to see that $A$ is $\Pi_{1}^{1}$ and $A_{x}$ is Borel for every $x$ .
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To derive a contradiction, let $D$ be a set of S-measure one such that
$A\cap(D\cross \mathbb{R})$ is Borel. Let $B$ be the projection of $A\cap(D\cross \mathbb{R})$ to the first
coordinate. Then $B$ is analytic and by boundedness lemma, there is a $\delta<\omega_{1}$

such that the length of any element of $B$ is less than $\delta$ .
But this means that the set $C=\{y||y|=\delta\}$ is disjoint from $B$ . Since

$C$ is a subset of the projection of $A$ to the first coordinate, it is disjoint from
$D$ and it clearly contains a perfect set, contradicting the choice of D. $\blacksquare$

It is also notable that Lemma 14 can consistently fail for Sacks forcing:

Proposition 18. Let $s$ be a Sacks real over L. Then in $L[s]$ , there is an
$X\subseteq \mathbb{R}\cross\omega_{1}$ which is $\Pi_{2}^{1}$ in the codes such that for every real $x$ , there is a
$\xi<\omega_{1}$ with $(x, \xi)\in X$ and that there is no $\delta<\omega_{1}$ such that for any Sacks
real $x$ over $L$ , there is a $\xi<\delta$ with $(x, \xi)\in X$ .

Proof. We work in $L[s]$ . Let $X$ be the foIlowing:

$X=\{(x,$ $\xi)|x\in$ WO and $|x|=\xi\}\cup\{(x, 0)|x\not\in WO\}$ .

It is easy to see that $A$ is $\Pi_{2}^{1}$ in the codes and that for any every $x$ there
is an ordinal $\xi$ with $(x, \xi)\in A$ .

To derive a contradiction, suppose there is a $\delta<\omega_{1}$ such that for any
Sacks real $x$ over $L$ , there is a $\xi<\delta$ with $(x, \xi)\in A$ . It is easy to find a
non-constructible surjection from $\omega$ to $\delta$ . Code that real as a relation on
$\omega$ and make it a real in WO. Call it $x$ . Then $(x, \delta)\in A$ . But since $x$ is
non-constructible, $x$ is also a Sacks real over $L$ , contradicting the choice of
$\delta$ . $\blacksquare$

Finally note that the second item of Theorem 2 for Sacks forcing is con-
sistent with ZFC: In fact, it is equivalent to the statement that for any real
$r$ there is a real $x$ which is not in $L[r]^{4}$ which is easily seen to be consistent
with ZFC.
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4For the proof, see [3, Theorem 7.1].
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