Borel approximation of coanalytic sets with Borel sections and the regularity properties for Σ^1_2 sets of reals

Daisuke Ikegami*

In 2008, Fujita showed the following:

Theorem 1 (Fujita [5]). The following are equivalent:

1. If $A \subseteq \mathbb{R} \times \mathbb{R}$ is Π^1_1 and for any real x, A_x is Borel where $A_x = \{y \in \mathbb{R} | (x, y) \in A\}$, then there is a comeager Borel set $D \subseteq \mathbb{R}$ such that $A \cap (D \times \mathbb{R})$ is Borel, and
2. every Σ^1_2 set of reals has the Baire property.

We show that one can generalize the above theorem to a wide class of tree-type ccc forcings. More precisely:

Theorem 2. Let \mathbb{P} be a strongly arboreal, Σ^1_1, provably ccc forcing. Then the following are equivalent:

1. If $A \subseteq \mathbb{R} \times \mathbb{R}$ is Π^1_1 and for any real x, A_x is Borel, then there is a Borel set $D \subseteq \mathbb{R}$ such that D is of \mathbb{P}-measure one and $A \cap (D \times \mathbb{R})$ is Borel, and
2. every Σ^1_2 set of reals is \mathbb{P}-measurable.

We also show that this equivalence fails for non-ccc forcings. In fact, for Sacks forcing, the corresponding statement to the first fails in ZFC while the one for the second is consistent with ZFC.

*Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2b, 00014 Helsinki, Finland; daisuke.ikegami@helsinki.fi
Throughout this paper, we assume the basic knowledge of descriptive set theory and forcing which can be obtained from e.g., [9], [8], and [2]. By \textit{reals}, we mean elements of the Cantor space or those of the Baire space and we use \mathbb{R} to denote the set of reals.

To prove Theorem 2, let us start with basic definitions. Let n be a natural number with $n \geq 1$. A partial order \mathbb{P} is Σ^1_n if the sets P, $\leq P$, and $\perp P$ are Σ^1_n, where $\mathbb{P} = (P, \leq P)$ and $\perp P$ is the incompatibility relation in \mathbb{P}. A partial order \mathbb{P} is \textit{provably ccc} if there is a formula ϕ defining \mathbb{P} and the statement "ϕ defines a ccc partial order" is provable in ZFC. A partial order \mathbb{P} is \textit{arboreal} if its conditions are perfect trees on ω (or on 2) ordered by inclusion. But this class of forcings contains some trivial forcings such as $\mathbb{P} = \langle \omega \rangle$. We need the following stronger notion:

\textbf{Definition 3.} A partial order \mathbb{P} is \textit{strongly arboreal} if it is arboreal and the following holds:

$$(\forall T \in \mathbb{P}) (\forall t \in T) \ T_t \in \mathbb{P},$$

where $T_t = \{s \in T \mid \text{either } s \subseteq t \text{ or } s \supseteq t\}$.

With strongly arboreal forcings, one can code generic objects by reals in the standard way: Let \mathbb{P} be strongly arboreal and G be \mathbb{P}-generic over V. Let $x_G = \bigcup\{\text{stem}(T) \mid T \in G\}$, where stem$(T)$ is the longest $t \in T$ such that $T_t = T$. Then x_G is a real and $G = \{T \in \mathbb{P} \mid x_G \in [T]\}$, where $[T]$ is the set of all infinite paths through T. Hence $V[x_G] = V[G]$. We call such real x_G a \mathbb{P}-\textit{generic real over V}.

Almost all typical forcings related to regularity properties are strongly arboreal:

\textbf{Example 4.}

1. Cohen forcing \mathbb{C}: Let T_0 be $\omega \omega$. Consider the partial order $\{(T_0)_s \mid s \in \omega \omega, \subseteq\}$. Then this is strongly arboreal and equivalent to Cohen forcing.

2. Random forcing \mathbb{B}: Consider the set of all perfect trees T on 2 such that for any $t \in T$, $[T_t]$ has a positive Lebesgue measure, ordered by inclusion. Then this forcing is strongly arboreal and equivalent to random forcing.

3. Hechler forcing \mathbb{D}: For $(n, f) \in \mathbb{D}$, let

$$T_{(n,f)} = \{t \in \omega \mid \text{either } t \subseteq f \upharpoonright n \text{ or} \ t \supseteq f \upharpoonright n \text{ and } (\forall m \in \text{dom}(t)) \ t(m) \geq f(m)\}.$$
Then the partial order \(\{ T_{(n,f)} \mid (n,f) \in D \}, \subseteq \) is strongly arboreal and equivalent to Hechler forcing.

4. Mathias forcing \(R_M \): For a condition \((s, A)\) in \(R_M \), let

\[
T_{(s,A)} = \{ t \in \langle \omega, \omega \rangle \mid t \text{ is strictly increasing and } s \subseteq \text{ran}(t) \subseteq s \cup A \}.
\]

Then \(\{ T_{(s,A)} \mid (s, A) \in R_M \} \) is a strongly arboreal forcing equivalent to Mathias forcing.

5. Sacks forcing \(S \), Silver forcing \(V \), Miller forcing \(M \), Laver forcing \(L \): These forcings can be naturally seen as strongly arboreal forcings.

The following is as expected:

Lemma 5. Let \(P \) be a strongly arboreal, \(\Sigma^1_1 \), provably ccc forcing and \(M \) be an inner model of ZFC containing parameter defining \(P \) with a \(\Sigma^1_1 \)-formula. Then if \(x \) is \(P \)-generic over \(V \), then \(x \) is \(P^M \)-generic over \(M \).

Proof. Since \(P \) is \(\Sigma^1_1 \), \(P^M = P \cap M \). So it suffices to show that if \(A \subseteq P^M \) is a maximal antichain in \(M \), so is in \(V \). Let \(A \subseteq P^M \) be a maximal antichain in \(M \). Since \(P \) is provably ccc, \(M \) thinks \(P^M \) is ccc. So \(A \) is countable in \(M \) and there is a real \(r \) coding \(A \) in \(M \). Since \(P \) is \(\Sigma^1_1 \), the statement "a real \(r \) codes a maximal antichain in \(P \)" is \(\Pi^1_2 \). So the real \(r \) also codes the maximal antichain \(A \) in \(V \), as desired. \(\blacksquare \)

We now introduce a \(\sigma \)-ideal \(I_P \) on the reals expressing "smallness" for each strongly arboreal forcing \(P \).

Definition 6. Let \(P \) be a strongly arboreal forcing. A set of reals \(A \) is \(P \)-null if for any \(T \) in \(P \) there is a \(T' \leq T \) such that \([T'] \cap A = \emptyset\). Let \(N_P \) denote the set of all \(P \)-null sets and \(I_P \) denote the \(\sigma \)-ideal generated by \(P \)-null sets, i.e., the set of all countable unions of \(P \)-null sets. A set of reals \(A \) is of \(P \)-measure one if \(R \setminus A \) is in \(I_P \).

Example 7.

1. Cohen forcing \(\mathbb{C} \): \(\mathbb{C} \)-null sets are the same as nowhere dense sets of reals and \(I_\mathbb{C} \) is the ideal of meager sets of reals.

2. Random forcing \(\mathbb{B} \): \(\mathbb{B} \)-null sets are the same as Lebesgue null sets in the Baire space and \(I_\mathbb{B} \) is the Lebesgue null ideal.
3. Hechler forcing D: D-null sets are the same as nowhere dense sets in the dominating topology, i.e., the topology generated by $\{[s, f] \mid (s, f) \in D\}$ where

$$[s, f] = \{x \in {}^{\omega}\omega \mid s \subseteq x \text{ and } (\forall n \geq \text{dom}(s)) x(n) \geq f(n)\}.$$

Hence I_D is the meager ideal in the dominating topology.

4. Mathias forcing R_M: A set of reals A is R_M-null if and only if $\{\text{ran}(x) \mid x \in A \cap A_0\}$ is Ramsey null or meager in the Ellentuck topology, where A_0 is the set of strictly increasing infinite sequences of natural numbers. Hence $I_{R_M} = N_{R_M}$.

5. Sacks forcing S: In this case, $I_S = N_S$ by a standard fusion argument. The ideal I_S is called the Marczewski ideal and often denoted by s_0.

As with Sacks forcing, all the typical non-ccc tree-type forcings admitting a fusion argument satisfy the equation $I_{\mathbb{P}} = N_{\mathbb{P}}$. In the case of ccc forcings, $I_{\mathbb{P}}$ is often different from $N_{\mathbb{P}}$ (e.g., Cohen forcing and Hechler forcing).

We now introduce \mathbb{P}-measurability:

Definition 8. Let \mathbb{P} be strongly arboreal. A set of reals A is \mathbb{P}-measurable if for any T in \mathbb{P} there is a $T' \leq T$ such that either $[T'] \cap A \in I_{\mathbb{P}}$ or $[T'] \setminus A \in I_{\mathbb{P}}$.

As is expected, \mathbb{P}-measurability coincides with a known regularity property for \mathbb{P} when \mathbb{P} is ccc:

Proposition 9. Let \mathbb{P} be a strongly arboreal, ccc forcing and let A be a set of reals. Then A is \mathbb{P}-measurable if and only if there is a Borel set B such that $A \triangle B \in I_{\mathbb{P}}$, where $A \triangle B$ is the symmetric difference between A and B.

Proof. See Proposition 2.9 in [6].

Proposition 9 does not hold for non-ccc forcings such as Sacks forcing.\(^1\)

But \mathbb{P}-measurability is almost the same as the regularity properties for non-ccc forcings \mathbb{P}, e.g., for Mathias forcing, a set of reals A is R_M-measurable if and only if $\{\text{ran}(x) \mid x \in A \cap A_0\}$ is completely Ramsey (or has the

\(^1\)For example, assuming every Π^1_1 set has the perfect set property (i.e., either the set is countable or contains a perfect subset), there is no Σ^1_1 Bernstein set (i.e., a set where neither it nor its complement contains a perfect subset) but for a Σ^1_1 set of reals A, A is approximated by a Borel set modulo I_S if and only if A is Borel. This is because I_S restricted to analytic sets (or co-analytic sets) is the set of all countable sets of reals by the assumption that every Π^1_1 set has the perfect set property.
Baire property in the Ellentuck topology), where A_0 is the set of all strictly increasing infinite sequences of natural numbers. Also, for Sacks forcing, the following holds:

Proposition 10 (Brendle, Löwe). Let Γ be a topologically reasonable point-class, i.e., it is a set of sets of reals closed under continuous preimages and any intersection between a set in Γ and a closed set of reals. Then every set in Γ is S-measurable if and only if there is no Bernstein set in Γ.2

Proof. See [3, Lemma 2.1].

As expected, every Σ^1_1 set of reals is P-measurable:

Theorem 11. Let P be a strongly arboreal, proper forcing. Then every Σ^1_1 set of reals is P-measurable.

Proof. It follows from the fact that every Σ^1_1 set of reals is universally Baire, that every universally Baire set of reals is P-Baire, and that every P-Baire set of reals is P-measurable. For the details, see [4] and Section 3 in [6].

We are now ready to state the theorem characterizing the regularity properties for Σ^2_1 sets of reals in terms of the existence of many generic reals over $L[r]$ for a real r, which we will use for the proof of Theorem 2:

Theorem 12. Let P be a strongly arboreal, Σ^1_1, provably ccc forcing. Then the following are equivalent:

1. Every Σ^1_2 set of reals is P-measurable, and

2. for any real r, the set of P-generic reals over $L[r]$ is of P-measure one.

Proof. See Definition 2.11, Lemma 2.13 (3), Definition 2.15, Proposition 2.17 (3), and Theorem 4.4 in [6].

We are now ready to prove Theorem 2:

2In general, the property not being a Bernstein set does not imply S-measurability while the converse is true. By using the axiom of choice, one can construct a set of reals which is not S-measurable but is not a Bernstein set.
Proof of Theorem 2. The argument is exactly the same as the one in Theorem 1 in [5]. For the sake of completeness, we will give the proof.

We first show the implication from 1. to 2. Let P be a Σ^1_2 set of reals. We will show that P is \mathbb{P}-measurable. Since P is Σ^1_2, there is a Π^1_1 set $A \subseteq \mathbb{R} \times \mathbb{R}$ such that $P = \{x \in \mathbb{R} \mid (\exists y) (x, y) \in A\}$. By Kondô’s uniformization theorem, there is a Π^1_1 function $f: \mathbb{P} \to \mathbb{R}$ uniformizing A. Then for any real x, $f_x = \{y \mid (x, y) \in f\} = \{f(x)\}$ is Borel, so by applying the assumption for f, there is a Borel set D of reals such that D is of \mathbb{P}-measure one and $f \cap (D \times \mathbb{R})$ is Borel. Hence $P \cap D = \{x \mid (\exists y) (x, y) \in f \cap (D \times \mathbb{R})\}$ is Σ^1_1 and is \mathbb{P}-measurable by Theorem 11. So by Proposition 9, there is a Borel set B such that $(P \cap D) \triangle B$ is in $I_{\mathbb{P}}$. Since D is of \mathbb{P}-measure one, $P \triangle B$ is also in $I_{\mathbb{P}}$. Again by Proposition 9, P is \mathbb{P}'-measurable, as desired.

We now show the implication from 2. to 1. Let WO be the set of reals coding a well-order on ω. It is well-known that WO is a complete Π^1_1 set of reals. For an element w of WO, $|w|$ denotes the countable ordinal that w codes. We need the following notion and lemma for the proof:

Definition 13. Let r be a real. A set $X \subseteq \mathbb{R} \times \omega_1$ is $\Pi^1_2(r)$ in the codes if the set

$$\{(x, w) \in \mathbb{R} \times \mathbb{R} \mid w \in WO \text{ and } (x, |w|) \in X\}$$

is $\Pi^1_2(r)$.

Lemma 14. Let r be a real and $X \subseteq \mathbb{R} \times \omega_1$ be $\Pi^1_2(r)$ in the codes. Suppose that for any real x there is a $\xi < \omega_1$ such that $(x, \xi) \in X$. Then there is a countable ordinal δ such that for any \mathbb{P}-generic real x over $L[r]$, there is a $\xi < \delta$ such that $(x, \xi) \in X$.

Proof of Lemma 14. Since X is $\Pi^1_2(r)$ in the codes, pick a Π^1_2-formula $\phi(x, w, v)$ such that

$$(\forall x, w) \ (\phi(x, w, r) \iff w \in WO \text{ and } (x, |w|) \in X).$$

Let $\tilde{\phi}(x, \xi, r)$ be the following:

$$\tilde{\phi}(x, \xi) \iff (\forall w \in WO) \ |w| = \xi \rightarrow \phi(x, w, r).$$

Then $\tilde{\phi}$ is absolute among all the transitive proper class models of ZFC in which ξ is countable.
For each $\xi < \omega_1$, let

$$X_\xi = \{ T \in \mathbb{P} \mid (T, 1_{\mathbb{P}_\xi}) \not\Vdash_{\mathbb{P} \times \mathbb{P}_\xi} \tilde{\phi}(\dot{x}, \check{\xi}, \check{r}) \}^{L[r]},$$

where \mathbb{P}_ξ is Coll(ω, ξ) and \dot{x} is a canonical \mathbb{P}-name for a generic real.

We show that $\bigcup_{\xi<\omega_1} X_\xi$ is a dense subset of $\mathbb{P}^{L(\mathbb{R})}$ in $L[r]$. Let T be any element of $\mathbb{P}^{L[r]}$. Take a \mathbb{P}-generic real x over $L[r]$ in V with $x \in [T]$. Then by the assumption, there is a $\xi < \omega_1$ such that $(x, \xi) \in X$. Take a function $g: \omega \to \xi$ generic over $L[r, x]$. Then $L[r, x, g] \Vdash \tilde{\phi}(x, \xi, r)$. Hence there is a $T' \leq T$ and a condition p in \mathbb{P}_ξ such that $L[r] \Vdash "(T', p) \Vdash \tilde{\phi}(\dot{x}, \check{\xi}, \check{r})"$. Since \mathbb{P}_ξ is homogeneous, it follows that $L[r] \models "(T', 1_{\mathbb{P}_\xi}) \not\Vdash \tilde{\phi}(\dot{x}, \check{\xi}, \check{r})", \text{ so } T' \leq T \text{ and } T \in \bigcup_{\xi<\omega_1} X_\xi$, as desired.

Since \mathbb{P} is provably ccc, $L[r] \models "\mathbb{P} \text{ is ccc}"$, so there is a $\delta < \omega_1$ such that $\bigcup_{\xi<\delta} X_\xi$ is a predense subset of \mathbb{P} in $L[r]$. We show that this δ is the desired countable ordinal. Take any \mathbb{P}-generic real x over $L[r]$. Then since $L[r]$ thinks $\bigcup_{\xi<\delta} X_\xi$ is a predense subset of \mathbb{P}, the generic filter G_x meets $\bigcup_{\xi<\delta} X_\xi$ and hence there is a $\xi < \delta$ such that $G_x \cap X_\xi \neq \emptyset$. By the definition of X_ξ, for a function $g: \omega \to \xi$ generic over $L[r, x]$, $L[r, x, g] \Vdash \tilde{\phi}(x, \xi, r)$, hence $\tilde{\phi}(x, \xi, r)$ holds also in V and $(x, \xi) \in X$, as desired. \square (Lemma 14)

We now finish showing the implication from 2. to 1. Let $A \subseteq \mathbb{R} \times \mathbb{R}$ be Π^1_1 such that for any real x, A_x is Borel. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f^{-1}(WO) = A$. Take any real x. Since A_x is Borel, the set $f^{-1}(\{x\} \times A_x)$ is Σ^1_1, hence by boundedness theorem, it is bounded in WO, i.e.,

$$(\forall x) (\exists \xi) (\forall y) \text{ if } (x, y) \in A, \text{ then } |f(x, y)| < \xi.$$

Set

$$X = \{(x, \xi) \mid f^{-1}(\{x\} \times A_x) \subseteq \omega_0 \},$$

where $WO_\xi = \{w \in \omega_0 \mid |w| < \xi\}$ for each $\xi < \omega_1$.

Then for any x there is a ξ with $(x, \xi) \in X$. It is also easy to see that X is $\Pi^1_2(r)$ in the codes for some real r. By Lemma 14, there is a $\delta < \omega_1$ such that for any \mathbb{P}-generic real x over $L[r]$ there is a $\xi < \delta$ such that $(x, \xi) \in X$. Hence A is the same as the Borel set $f^{-1}(WO_\delta)$ on $G(L[r]) \times \mathbb{R}$, where $G(L[r])$ is the set of \mathbb{P}-generic reals over $L[r]$. By 2. and Theorem 12, the set $G(L[r])$ is of \mathbb{P}-measure one. Since \mathbb{P} is ccc, $I_\mathbb{P}$ is Borel generated, so there is a Borel set $D \subseteq G(L[r])$ of \mathbb{P}-measure one and $A \cap (D \times \mathbb{R})$ is Borel, as desired. \blacksquare (Theorem 2)
After the RIMS set theory conference in 2008, Fujita asked if one could take δ in Lemma 14 below γ_{2}^{1} if X is Π_{2}^{1} (lightface) in the codes and if \mathbb{P} is Cohen forcing, where γ_{2}^{1} is the least countable ordinal that meets every set $A \subseteq \omega_{1}$ which is Π_{2}^{1} (lightface) in the codes.\(^3\) We show that this is generally the case for each strongly arboreal, Σ_{1}^{1}, provably ccc forcing \mathbb{P}:

Proposition 15. Let \mathbb{P} be a strongly arboreal, Σ_{1}^{1} (lightface), ccc forcing and $X \subseteq \mathbb{R} \times \omega_{1}$ be Π_{2}^{1} (lightface) in the codes such that for any real x there is a $\xi < \omega_{1}$ with $(x, \xi) \in X$. Then there is a $\delta < \gamma_{2}^{1}$ such that for any \mathbb{P}-generic real x over L, there is a $\xi < \delta$ with $(x, \xi) \in X$.

Proof. Let $X \subseteq \mathbb{R} \times \omega_{1}$ be Π_{2}^{1} in the codes such that for any real x there is a ξ with $(x, \xi) \in X$.

Let A be as follows:

$$A = \{ \gamma < \omega_{1} \mid (\forall x \colon \mathbb{P}\text{-generic over } L) (\exists \xi < \gamma) (x, \xi) \in X \}.$$

By Lemma 14, A is nonempty. Hence it suffices to show that A is Π_{2}^{1} in the codes.

Since X is Π_{2}^{1} in the codes, pick a Π_{2}^{1}-formula ϕ such that

$$(\forall x, w) (\phi(x, w) \iff w \in WO \text{ and } (x, |w|) \in X).$$

Let $\tilde{\phi}$ be the following:

$$\tilde{\phi}(x, \xi) \iff (\forall w \in WO) |w| = \xi \rightarrow \phi(x, w).$$

Then

$$A = \{ \gamma < \omega_{1} \mid (\forall x \colon \mathbb{P}\text{-generic over } L) (\exists \xi < \gamma) \tilde{\phi}(x, \xi) \}$$

$$= \{ \gamma < \omega_{1} \mid L \models \text{"}(1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}}) \Vdash_{\mathbb{P} \times \mathbb{P}_{\gamma}} (\exists \xi < \check{\gamma}) \tilde{\phi}(\dot{x}, \xi)\text{"} \} ,$$

where \mathbb{P}_{γ} is Coll(ω, γ) and \dot{x} is a canonical \mathbb{P}-name for a generic real.

Claim 16. For $\gamma < \omega_{1}$,

$L \models \text{"}(1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}}) \Vdash_{\mathbb{P} \times \mathbb{P}_{\gamma}} (\exists \xi < \check{\gamma}) \tilde{\phi}(\dot{x}, \xi)\text{"} \iff V \models \text{"}(1_{\mathbb{P}}, 1_{\mathbb{P}_{\gamma}}) \Vdash_{\mathbb{P} \times \mathbb{P}_{\gamma}} (\exists \xi < \check{\gamma}) \tilde{\phi}(\dot{x}, \xi)\text{"} $\(^2\)

\(^{2}\gamma_{2}^{1}\) is also the least ordinal such that every Π_{1}^{1} (lightface) Borel set is Π_{α}^{0} (boldface) for some $\alpha < \omega_{1}$. For the details, see [7].
Proof of Claim 16. The direction from left to right follows from the fact that if \((x, g)\) is \(P \times P_\gamma\)-generic over \(V\), then so is over \(L\) by Lemma 5.

For right to left, suppose \(L \models \text{"}(1_{P}, 1_{P_\gamma}) \Vdash_{P \times P_\gamma} (\exists \xi < \check{\gamma}) \phi(\dot{x}, \xi)\)" fails. Then there is a \((p, q) \in P \times P_\gamma\) in \(L\) such that \(L \models \text{"}(p, q) \Vdash_{P \times P_\gamma} (\forall \xi < \check{\gamma}) \neg \phi(\dot{x}, \xi)\)". Take a \(P \times P_\gamma\)-generic \((x, g)\) over \(V\) with \(x \in [p]\) and \(g \supseteq q\).

By the assumption, there exists a \(\xi < \gamma\) such that \(V[x, g] \models \tilde{\phi}(x, \xi)\). But \((x, g)\) is also \(P \times P_\gamma\)-generic over \(L\) and \(L[x, g] \models \tilde{\phi}(x, \xi)\), contradicting \(L \models \text{"}(p, q) \Vdash_{P \times P_\gamma} (\forall \xi < \check{\gamma}) \neg \phi(\dot{x}, \xi)\)".

Therefore,

\[A = \{ \gamma < \omega_1 \mid "(1_{P}, 1_{P_\gamma}) \Vdash_{P \times P_\gamma} (\exists \xi < \check{\gamma}) \phi(\dot{x}, \xi)" \} . \]

Let \(\psi\) be the following:

\[\psi(w) \iff w \in \text{WO} \text{ and } (1_{P}, 1_{P_{|w|}}) \Vdash_{P \times P_{|w|}} "(\exists n \in \omega) \phi(\dot{x}, w \upharpoonright n)" , \]

where \(w \upharpoonright n\) is the real coding the well-order \(\leq_w\) below \(n\), i.e. \(\leq_{w|n} = \{(l, m) \mid l \leq_w m <_w n\}\). Then

\[(\forall w)(\psi(w) \iff w \in \text{WO} \text{ and } |w| \in A) . \]

Hence it suffices to show that \(\psi\) is equivalent to a \(\Pi^1_2\)-formula. Since \(P_{|w|}\) is ccc in \(V^P\), \(P \times P_{|w|}\) is also ccc. Moreover, it is easy to see that \(P \times P_{|w|}\) is \(\Sigma^1_2(w)\) uniformly in \(w \in \text{WO}\). Hence, by the same argument as in Theorem 2.7 (1) in Bagaria and Bosch [1], since \((\exists n \in \omega) \phi(x, w \upharpoonright n)\) is \(\Pi^1_2\) in \(x\) and \(w\), so is \((1_{P}, 1_{P_{|w|}}) \Vdash_{P \times P_{|w|}} "(\exists n \in \omega) \phi(\dot{x}, w \upharpoonright n)" \) in \(w\). Therefore, \(\psi\) is equivalent to a \(\Pi^1_2\)-formula.

\[\blacksquare \] (Proposition 15)

As announced in the beginning of this paper, we now show that the first item in Theorem 2 fails in ZFC for \(P = S\) (Sacks forcing):

Proposition 17. There is a \(\Pi^1_1\) set \(A \subseteq \mathbb{R} \times \mathbb{R}\) such that for every \(x\), \(A_x\) is Borel and there is no set \(D\) of \(S\)-measure one such that \(A \cap (D \times \mathbb{R})\) is Borel.

Proof. Let \(A\) be the following:

\[A = \{(x, y) \mid x, y \in \text{WO} \text{ and } |x| = |y|\} . \]

It is easy to see that \(A\) is \(\Pi^1_1\) and \(A_x\) is Borel for every \(x\).
To derive a contradiction, let D be a set of S-measure one such that $A \cap (D \times \mathbb{R})$ is Borel. Let B be the projection of $A \cap (D \times \mathbb{R})$ to the first coordinate. Then B is analytic and by boundedness lemma, there is a $\delta < \omega_1$ such that the length of any element of B is less than δ.

But this means that the set $C = \{y \mid |y| = \delta\}$ is disjoint from B. Since C is a subset of the projection of A to the first coordinate, it is disjoint from D and it clearly contains a perfect set, contradicting the choice of D. \hfill\Box

It is also notable that Lemma 14 can consistently fail for Sacks forcing:

Proposition 18. Let s be a Sacks real over L. Then in $L[s]$, there is an $X \subseteq \mathbb{R} \times \omega_1$ which is Π^1_2 in the codes such that for every real x, there is a $\xi < \omega_1$ with $(x, \xi) \in X$ and that there is no $\delta < \omega_1$ such that for any Sacks real x over L, there is a $\xi < \delta$ with $(x, \xi) \in X$.

Proof. We work in $L[s]$. Let X be the following:

$$X = \{(x, \xi) \mid x \in \text{WO} \text{ and } |x| = \xi\} \cup \{(x, 0) \mid x \notin \text{WO}\}.$$

It is easy to see that A is Π^1_2 in the codes and that for any every x there is an ordinal ξ with $(x, \xi) \in A$.

To derive a contradiction, suppose there is a $\delta < \omega_1$ such that for any Sacks real x over L, there is a $\xi < \delta$ with $(x, \xi) \in A$. It is easy to find a non-constructible surjection from ω to δ. Code that real as a relation on ω and make it a real in WO. Call it x. Then $(x, \delta) \in A$. But since x is non-constructible, x is also a Sacks real over L, contradicting the choice of δ. \hfill\Box

Finally note that the second item of Theorem 2 for Sacks forcing is consistent with ZFC: In fact, it is equivalent to the statement that for any real r there is a real x which is not in $L[r]^4$, which is easily seen to be consistent with ZFC.

Acknowledgment

The author would like to thank Hiroshi Fujita for raising this topic and discussing it with him. He is also grateful to Hiroshi Sakai for organizing this great conference.

30

4For the proof, see [3, Theorem 7.1].
References

