0oooo0O0oooo
017540 20110 108-114 108

THE EASTON COLLAPSE AND A SATURATED FILTER

MASAHIRO SHIOYA

ABSTRACT. Suppose that there is a huge cardinal. We prove that a two-stage
iteration of Easton collapses produces a saturated filter on the successor of a
regular cardinal.

1. INTRODUCTION
In the pioneering work [10] Kunen established:

Theorem (Kunen). Suppose that £ is huge with target A. Then in some forcing
extension kK = wi, A = wq and wy carries an wq-saturated filter.

Kunen'’s forcing has the form P*S(k, \), where P forces that & = w; and S(x, A)
is the Silver collapse introduced in [15]. The poset P is constructed by recursion
so that P * S(k,A) can be completely embedded into j(P), where j : V — M is
the original huge embedding. Kunen’s construction has since been modified to get
models containing filters that are strongly saturated in various senses. We refer the
reader to [5] for a comprehensive survey of the development.

In [7] Foreman, Magidor and Shelah proved the following striking result: If A is
supercompact, then the Levy collapse C(w, A) forces that (A = ws and) w; carries
a saturated filter. The hypothesis was later reduced by Todorcevié¢ (see [2]) to A
being Woodin, which follows from Kunen’s hypothesis as well. In contrast Foreman
and Magidor [6] showed that C(wz, A) forces the nonexistence of a saturated filter
on wy under PFA,

Let us assume again & is huge with target A. Todorgevi¢’s result implies that a
saturated filter on w; can be forced to exist by the iteration C(w, &) x C(k, ) as
well. What about ws? Namely we ask:

Question. Does C(wi, k) * C(k, \) force that wy carries an ws-saturated filter?

One motivation for the question comes from the following unpublished result of
Woodin: C(w1, k) * C(k, \) forces that an wp-dense filter on w; exists in some inner
model. (See [5] for an exposition in the case of w;.) Moreover if the answer is
positive, then we would get saturated filters on many cardinals by simply iterating
Levy collapses. This would in turn help to simplify Foreman’s construction (3, 4]
of a model in which every regular uncountable cardinal carries a saturated filter.

In this paper we define a poset E(u,x) for a pair of regular cardinals p < x,
and call it the Easton collapse. It is the product of standard collapsing posets with
Easton support, and forces k = p* if x is Mahlo. In place of the original question,
we answer the corresponding question for the iteration of Easton collapses:
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Theorem. Suppose that & is huge with target A. Let p < k be regular. Then
E(p, k) * E(k, ) forces that k carries a \-saturated filter.

In §4 we prove our theorem in somewhat refined form.

2. PRELIMINARIES

We refer the reader to [9] for background material.
Throughout the paper we use u,x and A to denote a regular cardinal. Unless
otherwise stated it is understood that u < kK < .
Let P and @ be posets. We say that a map 7 : P — @Q is a projection if the
following hold:
(1) 7 is order-preserving, i.e. p' <p p — 7(p') <o 7(p),
(2) 7(1p) = 1g and
(3) g <q m(p) — 3p* <p p(n(p*) <@ ).
Suppose that 7 : P — @ is a projection. Then rann is dense in Q. It is straight-
forward to check that the map g+— > {p € P : m(p) < q} is a complete embedding
of @ into B(P), the completion of P. It is also easy to see that if D is dense open
in @, m~!(D) is dense in P. So if G C P is generic, 7“G generates a generic filter
over Q. Let H C Q be V-generic. In V[H] let P/H be the set 7~} (H) ordered by
<p. It is straightforward to check that the map p — (7w (p), D), where p is a @-name
with m(p) g p = p, is a dense embedding of P into @ * (P/H). Finally note that
the composition of two projections is a projection.
We say that a cardinal v is strongly regular if y<7 = 7. A set d of strongly
regular cardinals is called Easton if sup(d N+) < «v for all regular ~.
Suppose that X be a set of ordinals and P, is a poset for v € X. Define
E
qux P, = {p:domp C X is Easton AVy € domp(p(y) € Py)}.
E
I1,ex Py is ordered coordinatewise: p' < p iff domp’ O domp and p'(7) <4 p(7)
for all v € domp.

E E E
LetY C X. Then ][], x Py is canonically isomorphic to [[ ey Py X[ ex_y Py
Suppose in addition 7y : P, — Q. is a projection for v € Y. Then it is easy to

E
see that the map p — (my(p(7)) : ¥ € dompNY) is a projection from [, x Py to
E

H’yGY Q‘Y' ‘
We say that P has (k, k, u)-cc if for every X € [P]”* there is Y € [X]* such that

every Z € [Y]* has a common extension. Needless to say, (k, &, u)-cc implies x-cc.
If Q is separative and can be completely embedded into P, then the («, &, u)-cc of
P implies that of Q.

Lemma 1. Suppose that k is Mahlo and P, is a poset of size < k for v < k. Then
E
[1.<y<x Py has (k, &, p)-cc.

E
Proof. Let {pe : £ < £} C [[,<y<x Py 1t suffices to find X € [k]" and § < & such
that domp; — § is mutually disjoint and p¢|d is constant for £ € X.
Since dom p; is Easton, sup(dompe N §) < £ for all regular £ < «. Since  is
Mahlo, we get a stationary § C k and § < & such that domp:.N{ C dforall§ € S.
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Since dom p; is bounded in &, C = {{ < K : V§ < {(dompg C )} is club. Note that
if £ < ¢ are both from SN C, we have dom p; N dom p¢ = dom pe N{ Ndomp, C 4.
Since | [, <y<5 Pyl < &, there is X € [SNC]* such that p¢|d is constant for £ € X,
as desired. O

For v > u we equip the set <¥v with reverse inclusion. Needless to say, <#v is
u-closed and forces |y| = p. Let us sketch a proof of

Lemma 2. If y<* =+, then <+ is isomorphic to a dense subset of <HK x <Fv.

Proof. Define
D= {(g,r) € <Fr x “"y:sup{f+1: [ €rang} = domr}.

It is easy to see that D is dense in <k x <%y, The following three facts should
suffice to construct an isomorphism between <#~ and D by recursion.

First (0,0) € D. Second each (g,r) € D has vy immediate extensions in D.
Third if ((ga,7a) : @ < d) is a descending sequence in D with § < u, then we have

(Ua<s 9orUacs Te) € D. O
Corollary 3. If v > k is strongly regular, there is a projection from <F~y to <F«.

Let F be a filter on a set. We denote by F* the set of F-positive sets ordered
by: X' < X iff 3C € F(X'NC c X). Then F7 is a separative poset. We say that
F is (s, K, u)-saturated if F'* has (k, , u)-cc.

3. THE EASTON COLLAPSE

In this section we define the Easton collapse E(u, k) and prove its basic proper-
ties.
For a set X of ordinals define
E

— <
B X) =], cx <“r

It is easy to see that E(u, X) is u-directed closed and forces |y| < p for all strongly
regular v € X. E(u,k) is a subset of V,, hence has size « if x is inaccessible.
If £ is Mahlo, then E(u,x) has s-cc by Lemma 1, and hence forces & = p*. If

1 < & < v < Aare all regular, Corollary 3 provides a projection from E(u,\ — k) =
E

E
[lecyer <Hr to Il cyer <7 = E@w, ).
Here is the main result of this section:

Lemma 4. Suppose that P has s-cc and size < k. Then there is a projection
w: P x E(k,A\) = Px E(k,)\) such that n(p,q) has the form (p,q), where
e IFp domg = domgq and
e each (v) depends only on ¢(7), i.e. if in addition 7(p',¢') = (p',¢') and
a(v) = ¢'(), thenlFp ¢(v) =4¢'(v).

Proof. Since P has k-cc and size < &, forcing with P does not change the class of
(strongly) regular cardinals > . If ¥ > s isregular and IF & < v, then thereis 8 < v
with IF @ < 8. If 4v > & is strongly regular, there exist exactly ~ representatives
from the P-names & such that I & < 7. Thus we can take P-names 7(§) so that
for every strongly regular v > &

o if £ <+, then I+ 7(£) < v and
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o if IF & < v, then there is £ <y with I+ & = 7(&).
For (p,q) € P x E(k,\) define

m(p,q) = (p, 4),
where ¢ is a P-name such that
¢ |- dom¢ = domg and
* I-4(7) = (7(g(7)(n)) : n € dom g(7)) for every v € domg.
Since P has k-cc, dom g remains an Easton subset of A — & after forcing with P.
Moreover IF ¢(v)(n) < v by ¢(v)(n) < v and the choice of 7(¢). Thus w(p,q) €
PxE(&,\).

Claim. 7 is a projection.

Proof. It is easy to see that 7 is order-preserving and 7(1p,0) = (1p,0).
Now assume (p,q) € P x E(k,A) and (p',¢') < n(p,q) in P % E(k,)). Let
(p,4) = 7(p,q). Define
p* = pl.

Then p* < p by (p',¢') < (p,¢). It remains to find ¢* < ¢ in E(k,A) such that
n(p*,q*) < (p',4¢’) in P * E(x,A). Define

d*={y:3dr € P(rlv¢€domg’)}.
Since P has k-cc and IF ¢’ € E(k, ), d* is an Easton subset of A — k. Moreover
dom g C d* because

p' Ik domg = dom¢ C domg’ C d*.

The left equality follows from the definition of ¢, the middle inclusion from (p’, ¢’) <
(p,q), and the right inclusion from the definition of d*.

Fix v € d*. Since P has s-cc and I ¢’ € E(k, )), there is 8% < & such that
IF vy € dom¢’ — dom¢’(v) C &3. If v € domg, then domg(y) C 67 because

p’ IF domg(7) = dom §(7) C domg'(7) C &3.

The left equality follows from the definition of ¢, the middle inclusion from (p’,¢’) <
(p,4), and the right inclusion from p’ IF v € dom ¢’ and the choice of 3.
Now define ¢* with dom ¢* = d* and dom g*(7) = 63 for every v € d* so that
* ¢*(7)(n) = g(7)(n) if v € dom g and n € domg(7), or else
® ¢*(7)(n) is the minimal & such that
Ik v € dom¢’ An € domg'(y) — ¢'(v)(m) = 7(§).
Note that ¢*(7)(n) < v by g € E(x,A) in the first case, and by - ¢ € E(x, ) and
the choice of 7(£) in the second case. Thus ¢* € E(k, ) and ¢* < ¢.
Let (p*,¢*) = n(p*,¢*). Since p* = p’, it remains to prove that p’ I+ ¢* < ¢'.
First recall that
IF dom¢* = domq* = d* D domg’.

It remains to prove that for every v € d* and n € &
p'IFy €domd’ An € domg'() — ¢*(v)(n) = ¢'(7)(n).
If v € dom g and n € dom ¢(v), the claim follows from
p @ () (m) = (" (v)(m) = T(a()(m)) = ¢'(v)(m).
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The left equality follows from the definition of ¢*, the middle from that of ¢*, and
the right from (¢, ¢) < (p,9).
In the remaining case the claim follows from

Iy € domg’ A n € domd'(y) — ¢*(7v)(n) = #(g" (v)(m)) = ¢ (7)(n)-
The left equality follows from the definition of ¢*, and the right from that of ¢*. O

This completes the proof. a

Remark. Lemma 4 should hold for suitable modifications of the collapses of Levy
and Silver. See [13] or [14] for the corresponding lemma for the modified Silver
collapse and the resulting model in which a saturated filter exists and Chang’s
conjecture holds.

In [11] Laver introduced a poset L(k, ), here called the Laver collapse. It is
the product of collapsing posets with Easton support and bounded height. Using
Kunen’s method Laver constructed a forcing of the form PxL(k, A), which produces
an (ws,ws, w)-saturated filter on w;. Although Lemma 4 should hold for a suitable
modification of the Laver collapse as well, we need to work with the Easton collapse
because a projection, say from L(u, A — k) to L(k, )) is not available to us. For the
same reason we cannot substitute the collapses of Levy or of Silver for the Easton
collapse.

For a P-name Q for a poset let T(P, Q) denote the term forcing. It is known
that the identity map from P x T(P, Q) to P *Q is a projection. See [5] for details.
In (1] Cummings observed that T'(P, <%v) is equivalent to <%+ if P has k-cc and
size < &, and 7<% = v. The proof of Lemma 4 shows in effect that T'(P, E(x, \))
is equivalent to E(k, ). To see that the filter in our model is A-saturated only, it
suffices to prove this fact or even Lemma 4 without additional clauses.

4. THE MAIN THEOREM

This section is devoted to the proof of

Theorem. Suppose that k is almost huge with target A and A is Mahlo. Let p < v
be both regular with u < k <v < A. Then E(u,k) * E(v, \) forces that Py carries
a (A, A, p)-saturated normal filter.

Proof. Let j : V — M witness that k is almost huge with target A, i.e. k¥ = crit(j),
A = j(k) and <*M C M. Then we have j(E(u, k)) = E(u, ), which is canonically
isomorphic to E(u,x) x E(u, A — k). As stated in §3, there is a projection from
E(u,\—k&) to E(v, ). Since E(u,«) has k-cc and size k, there is a projection from
E(u, k) x E(v,\) to E(u,&) * E(v,\) as in Lemma 4. Thus we get a projection
7 : E(u, A) = E(u, &)*E(v, \) such that 7(p) has the form (p|&, ¢), where E(u, &) IF
dom ¢ = dom p — v and each ¢(-y) depends only on p(7).

Now let G C E(u, \) be V-generic. Then 7“G generates a V-generic filter over
E(u, k) * E(v,\), say G «+ H. We claim that V[G][H] is the desired model. Since
jG=Gc G,wecanlift j : V — M to j: VIG] = M[G] in V[G]. Since A is
Mabhlo in V, E(u,)) has A-cc in V. Hence we have <*M[G] c M|[G)] in V[G)] by
AMCcMinV.
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Work in V[G]. Since E(u, £) has size « in V, A remains Mahlo and hence E(v, \)
has A-cc. Thus a nice E(v, A)-name for a subset of P,v can be viewed as an E(v, £)-
name for some £ < A. So we can list the set of all such names with cofinal repetition
as {X& £ < /\}

Now work in V[G]. Since <*M|[G] ¢ M[G], E(j(v),5(€))MC) is \-directed closed
for £ < A. So we can define for £ < A

e = the greatest lower bound of j“(H N E(v, E)V[G]) in E(j(v), (é'))M[GI

Note that § < ¢ < A implies 7¢| j(& )} = r¢. Thus we can define a descending sequence
(rg 1 € < A) in E(j(v),5(A))MIC] by recursion so that

o 7 <1 in B(j(v), 5(£))1¢] and
o if X; is a E(v,£)VC-name, then r¢ decides jv € §(Xe) in M|G).
Define
U={(Xe)u: £ <ANMIG]Er Ik j“v € j(Xe)}.

Standard arguments show that U is a V[G][H]-normal ultrafilter on PvVICGIH],
Finally we work in V[G][H]. Since E(u, A) projects down to E(u, k) * E(v,A) in
V, there is a E(u,A\)V /(G * H)-name U such that

E(u, NV /(G+H)IFU isa V[G][H]-normal ultrafilter on P,V CIH],

Define
F={XcCPw:EuN/(GxH)IFXeU}.

Standard arguments show that F is a normal filter on P,v. We claim that F is
(A, A, p)-saturated. Standard arguments show that

XY {peEwAY/(GxH):plk X €U}

defines a complete embedding of F* into B(E(u,\)Y /(G * H)). So it suffices to
prove that E(u, )V /(G * H) has (A, A, u)-cc. Let {pe : £ <A} C E(u, )V /(G H).
Since E(p,x) has s-cc and forces E(v, A) to be k-closed in V, it suffices to find
S € [A]* such that if z € [S]* and (pe : £ € ) € V, {p¢ : £ € z} has a common
extension in E(u, A\)Y /(G x H).

Let R be the set of regular cardinals < A in V. Since A is Mahlo and E(u, k) *
E(v,)) has A-cc in V, R is stationary. As in the proof of Lemma 1 we get a
stationary S C R such that {domp; : £ € S} forms a A-system, say with root d.
Moreover we may assume that pe|d is constant and domps Nk Cd for £ € S.

Suppose z € [S]* and (p¢ : € € z) € V. Define p = e, pe. We claim that p is
a lower bound of {p; : £ € z} in E(u, \)V /(G * H). Since pe¢|d is constant on S, p
is a lower bound of {p; : £ € z} in E(u,\)V.

It remains to prove that w(p) € G* H. Let (plk, §) = m(p) and (p¢|k, g¢) = 7(p¢)
for £ € S. Since p¢lx is constant on S, we have p|x = p¢|k for every £ € S. Hence
plk € G by (pelr,de) = m(pe) € G * H. To see that gg € H, note first that
(ge)e € H by (pe¢|k,de) € G+ H. Since dom(ge)g = dompg—u, {dom(g¢)c : € € S}
forms a A-system with root d — v. Moreover (g¢)g|(d — v) is constant on S. Thus
do = UEE::;(Q{ ¢ is the greatest lower bound of {(d¢)c : € € z} in E(y, aVIiGl,
Therefore gg € H, as desired. 0
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Remark. For the moment let us assume that x is huge with target A\. As remarked
in §3, our strategy requires forcing with Easton collapses rather than with Laver
collapses. This requires in turn invoking an argument of Magidor [8] that involves
local master conditions, even under the stronger hypothesis as above. In fact we
can dispense with the argument in the case v > k. Moreover the proof in this case,
if modified as in [12], shows that [A\]" carries a (A, A, p)-saturated x-complete filter
in the extension.

In [11] Laver observed that a strong form of Chang’s conjecture holds in his
model. We do not know whether our model in the case v = k satisfies the conjecture.
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