THE EASTON COLLAPSE AND A SATURATED FILTER

MASAHIRO SHIOYA

Abstract. Suppose that there is a huge cardinal. We prove that a two-stage iteration of Easton collapses produces a saturated filter on the successor of a regular cardinal.

1. Introduction

In the pioneering work [10] Kunen established:

Theorem (Kunen). Suppose that κ is huge with target λ. Then in some forcing extension $\kappa = \omega_1$, $\lambda = \omega_2$ and ω_1 carries an ω_2-saturated filter.

Kunen's forcing has the form $P*\dot{S}(\kappa, \lambda)$, where P forces that $\kappa = \omega_1$ and $\dot{S}(\kappa, \lambda)$ is the Silver collapse introduced in [15]. The poset P is constructed by recursion so that $P*\dot{S}(\kappa, \lambda)$ can be completely embedded into $j(P)$, where $j : V \rightarrow M$ is the original huge embedding. Kunen's construction has since been modified to get models containing filters that are strongly saturated in various senses. We refer the reader to [5] for a comprehensive survey of the development.

In [7] Foreman, Magidor and Shelah proved the following striking result: If λ is supercompact, then the Levy collapse $C(\omega_1, \lambda)$ forces that $(\lambda = \omega_2$ and) ω_1 carries a saturated filter. The hypothesis was later reduced by Todorčević (see [2]) to λ being Woodin, which follows from Kunen's hypothesis as well. In contrast Foreman and Magidor [6] showed that $C(\omega_2, \lambda)$ forces the nonexistence of a saturated filter on ω_2 under PFA.

Let us assume again κ is huge with target λ. Todorčević's result implies that a saturated filter on ω_1 can be forced to exist by the iteration $C(\omega_1, \kappa) * \dot{C}(\kappa, \lambda)$ as well. What about ω_2? Namely we ask:

Question. Does $C(\omega_1, \kappa) * \dot{C}(\kappa, \lambda)$ force that ω_2 carries an ω_3-saturated filter?

One motivation for the question comes from the following unpublished result of Woodin: $C(\omega_1, \kappa) * \dot{C}(\kappa, \lambda)$ forces that an ω_2-dense filter on ω_2 exists in some inner model. (See [5] for an exposition in the case of ω_1.) Moreover if the answer is positive, then we would get saturated filters on many cardinals by simply iterating Levy collapses. This would in turn help to simplify Foreman's construction [3, 4] of a model in which every regular uncountable cardinal carries a saturated filter.

In this paper we define a poset $E(\mu, \kappa)$ for a pair of regular cardinals $\mu < \kappa$, and call it the Easton collapse. It is the product of standard collapsing posets with Easton support, and forces $\kappa = \mu^+$ if κ is Mahlo. In place of the original question, we answer the corresponding question for the iteration of Easton collapses:

1991 Mathematics Subject Classification. 03E05, 03E35, 03E55.
Partially supported by JSPS Grant-in-Aid for Scientific Research No. 19540112.
Theorem. Suppose that κ is huge with target λ. Let $\mu < \kappa$ be regular. Then $E(\mu, \kappa) \ast E(\kappa, \lambda)$ forces that κ carries a λ-saturated filter.

In §4 we prove our theorem in somewhat refined form.

2. PRELIMINARIES

We refer the reader to [9] for background material.
Throughout the paper we use μ, κ and λ to denote a regular cardinal. Unless otherwise stated it is understood that $\mu < \kappa < \lambda$.

Let P and Q be posets. We say that a map $\pi : P \to Q$ is a projection if the following hold:

(1) π is order-preserving, i.e. $p' \leq_P p \to \pi(p') \leq_Q \pi(p)$,
(2) $\pi(1_P) = 1_Q$ and
(3) $q \leq_Q \pi(p) \to \exists p^* \leq_P p(\pi(p^*) \leq_Q q)$.

Suppose that $\pi : P \to Q$ is a projection. Then ran π is dense in Q. It is straightforward to check that the map $q \mapsto \sum \{p \in P : \pi(p) \leq q\}$ is a complete embedding of Q into $B(P)$, the completion of P. It is also easy to see that if D is dense open in Q, $\pi^{-1}(D)$ is dense in P. So if $G \subseteq P$ is generic, π^*G generates a generic filter over Q. Let $H \subseteq Q$ be V-generic. In $V[H]$ let P/H be the set $\pi^{-1}(H)$ ordered by \leq_P. It is straightforward to check that the map $p \mapsto (\pi(p), \hat{p})$, where \hat{p} is a Q-name with $\pi(p) \Vdash Q \hat{p} = p$, is a dense embedding of P into $Q \ast (P/H)$. Finally note that the composition of two projections is a projection.

We say that a cardinal γ is strongly regular if $\gamma^{<\gamma} = \gamma$. A set d of strongly regular cardinals is called Easton if $\text{sup}(d \cap \gamma) < \gamma$ for all regular γ.

Suppose that X be a set of ordinals and P_γ is a poset for $\gamma \in X$. Define

$$E \prod_{\gamma \in X} P_\gamma = \{p : \text{dom } p \subseteq X \text{ is Easton } \land \forall \gamma \in \text{dom } p(p(\gamma) \in P_\gamma)\}.$$

$E \prod_{\gamma \in X} P_\gamma$ is ordered coordinatewise: $p' \leq p$ iff $\text{dom } p' \supset \text{dom } p$ and $p'(\gamma) \leq_\gamma p(\gamma)$ for all $\gamma \in \text{dom } p$.

Let $Y \subseteq X$. Then $E \prod_{\gamma \in X} P_\gamma$ is canonically isomorphic to $E \prod_{\gamma \in Y} P_\gamma \times E \prod_{\gamma \notin X-Y} P_\gamma$.

Suppose in addition $\pi_\gamma : P_\gamma \to Q_\gamma$ is a projection for $\gamma \in Y$. Then it is easy to see that the map $p \mapsto (\pi_\gamma(p(\gamma)) : \gamma \in \text{dom } p \cap Y)$ is a projection from $E \prod_{\gamma \in X} P_\gamma$ to $E \prod_{\gamma \in Y} Q_\gamma$.

We say that P has (κ, κ, μ)-cc if for every $X \in [P]^\kappa$ there is $Y \in [X]^\kappa$ such that every $Z \in [Y]^\mu$ has a common extension. Needless to say, (κ, κ, μ)-cc implies κ-cc. If Q is separative and can be completely embedded into P, then the (κ, κ, μ)-cc of P implies that of Q.

Lemma 1. Suppose that κ is Mahlo and P_γ is a poset of size $< \kappa$ for $\gamma < \kappa$. Then $E \prod_{\mu \leq \gamma < \kappa} P_\gamma$ has (κ, κ, μ)-cc.

Proof. Let $\{p_\xi : \xi < \kappa\} \subseteq E \prod_{\mu \leq \gamma < \kappa} P_\gamma$. It suffices to find $X \in [\kappa]^\kappa$ and $\delta < \kappa$ such that $\text{dom } p_\xi - \delta$ is mutually disjoint and $p_\xi|\delta$ is constant for $\xi \in X$.

Since $\text{dom } p_\xi$ is Easton, $\text{sup}(\text{dom } p_\xi \cap \xi) < \xi$ for all regular $\xi < \kappa$. Since κ is Mahlo, we get a stationary $S \subseteq \kappa$ and $\delta < \kappa$ such that $\text{dom } p_\xi \cap \xi \subseteq \delta$ for all $\xi \in S$.

Since dom p_ξ is bounded in κ, $C = \{ \zeta < \kappa : \forall \zeta < \zeta (\text{dom } p_\xi \subset C) \}$ is club. Note that if $\xi < \zeta$ are both from $S \cap C$, we have $\text{dom } p_\xi \cap \text{dom } p_\zeta = \text{dom } p_\xi \cap \zeta \cap \text{dom } p_\zeta \subset \delta$. Since $|\prod_{\mu \leq \gamma \leq \delta} F_\gamma| < \kappa$, there is $X \in [S \cap C]^\kappa$ such that $p_\xi|\delta$ is constant for $\xi \in X$, as desired. \qed

For $\gamma \geq \mu$ we equip the set $<^\mu \gamma$ with reverse inclusion. Needless to say, $<^\mu \gamma$ is μ-closed and forces $|\gamma| = \mu$. Let us sketch a proof of

Lemma 2. If $\gamma <^\kappa \gamma = \gamma$, then $<^\mu \gamma$ is isomorphic to a dense subset of $<^\mu \kappa \times <^\kappa \gamma$.

Proof. Define

$$D = \{ (q, r) \in <^\mu \kappa \times <^\kappa \gamma : \sup \{ \beta + 1 : \beta \in \text{ran } q \} = \text{dom } r \}.$$

It is easy to see that D is dense in $<^\mu \kappa \times <^\kappa \gamma$. The following three facts should suffice to construct an isomorphism between $<^\mu \gamma$ and D by recursion.

First if $(\theta, 0) \in D$. Second each $(q, r) \in D$ has γ immediate extensions in D. Third if $(\langle q_\alpha, r_\alpha \rangle : \alpha < \delta)$ is a descending sequence in D with $\delta < \mu$, then we have $(\bigcup_{\alpha < \delta} q_\alpha, \bigcup_{\alpha < \delta} r_\alpha) \in D$. \qed

Corollary 3. If $\gamma \geq \kappa$ is strongly regular, there is a projection from $<^\mu \gamma$ to $<^\kappa \gamma$.

Let F be a filter on a set. We denote by F^+ the set of F-positive sets ordered by: $X' \leq X$ iff $\exists C \in F(X' \cap C \subset X)$. Then F^+ is a separative poset. We say that F is (κ, κ, μ)-saturated if F^+ has (κ, κ, μ)-cc.

3. THE EASTON COLLAPSE

In this section we define the Easton collapse $E(\mu, \kappa)$ and prove its basic properties.

For a set X of ordinals define

$$E(\mu, X) = \prod_{\mu \leq \gamma \leq X} <^\mu \gamma.$$

It is easy to see that $E(\mu, X)$ is μ-directed closed and forces $|\gamma| \leq \mu$ for all strongly regular $\gamma \in X$. $E(\mu, \kappa)$ is a subset of V_κ, hence has size κ if κ is inaccessible.

If κ is Mahlo, then $E(\mu, \kappa)$ has κ-cc by Lemma 1, and hence forces $\kappa = \mu^+$. If $\mu < \kappa \leq \nu < \lambda$ are all regular, Corollary 3 provides a projection from $E(\mu, \lambda - \kappa) = \prod_{\kappa \leq \gamma \leq \lambda} <^\mu \gamma$ to $\prod_{\mu \leq \gamma \leq \lambda} <^\mu \gamma = E(\nu, \lambda)$.

Here is the main result of this section:

Lemma 4. Suppose that P has κ-cc and size $\leq \kappa$. Then there is a projection $\pi : P \times E(\kappa, \lambda) \to P \ast E(\kappa, \lambda)$ such that $\pi(\mu, \rho)$ has the form (μ, ρ), where

- $\forces \mu \| \rho \| \hat{\gamma} = \text{dom } q$ and
- each $\hat{\rho}(\gamma)$ depends only on $q(\gamma)$, i.e. if in addition $\pi(p', q') = (p', \hat{q}')$ and $q(\gamma) = q'(\gamma)$, then $\forces \rho \hat{\gamma} = \hat{q}'(\gamma)$.

Proof. Since P has κ-cc and size $\leq \kappa$, forcing with P does not change the class of (strongly) regular cardinals $\geq \kappa$. If $\gamma \geq \kappa$ is regular and $\forces \dot{\alpha} < \gamma$, then there is $\beta < \gamma$ with $\forces \dot{\alpha} < \beta$. If $\gamma \geq \kappa$ is strongly regular, there exist exactly γ representatives from the P-names $\dot{\alpha}$ such that $\forces \dot{\alpha} < \gamma$. Thus we can take P-names $\dot{\tau}(\xi)$ so that for every strongly regular $\gamma \geq \kappa$

- if $\xi < \gamma$, then $\forces \dot{\tau}(\xi) < \gamma$ and
\begin{itemize}
 \item if \(\models \alpha < \gamma \), then there is \(\xi < \gamma \) with \(\models \alpha = \tau(\xi) \).
\end{itemize}

For \((p, q) \in P \times E(\kappa, \lambda) \) define
\[\pi(p, q) = (p, q), \]
where \(q \) is a \(P \)-name such that
\begin{itemize}
 \item \(\models dom \dot{q} = dom q \) and
 \item \(\models \dot{q}(\gamma) = \langle \dot{\tau}(q(\gamma)(\eta)) : \eta \in dom q(\gamma) \rangle \) for every \(\gamma \in dom q \).
\end{itemize}

Since \(P \) has \(\kappa \)-cc, \(dom q \) remains an Easton subset of \(\lambda - \kappa \) after forcing with \(P \).
Moreover \(\models \dot{q}(\gamma)(\eta) < \gamma \) by \(q(\gamma)(\eta) < \gamma \) and the choice of \(\tau(\xi) \). Thus \(\pi(p, q) \in P \ast \dot{E}(\kappa, \lambda) \).

\textbf{Claim.} \(\pi \) is a projection.

\textbf{Proof.} It is easy to see that \(\pi \) is order-preserving and \(\pi(1_{P}, \emptyset) = (1_{P}, \emptyset) \).

Now assume \((p, q) \in P \times E(\kappa, \lambda) \) and \((p', q') \leq (p, q) \) in \(P \ast \dot{E}(\kappa, \lambda) \). Let \((p, \dot{q}) = \pi(p, q) \).
Define
\[p^{*} = p'. \]

Then \(p^{*} \leq p \) by \((p', q') \leq (p, \dot{q}) \). It remains to find \(q^{*} \leq q \) in \(E(\kappa, \lambda) \) such that \(\pi(p^{*}, q^{*}) \leq (p', q') \) in \(P \ast \dot{E}(\kappa, \lambda) \). Define
\[d^{*} = \{ \gamma : \exists r \in P(r \models \gamma \in dom \dot{q}') \}. \]

Since \(P \) has \(\kappa \)-cc and \(\models \dot{q}' \in \dot{E}(\kappa, \lambda) \), \(d^{*} \) is an Easton subset of \(\lambda - \kappa \). Moreover \(dom q \subset d^{*} \) because
\[p' \models dom \dot{q} = dom q \subset dom \dot{q}' \subset d^{*}. \]

The left equality follows from the definition of \(\dot{q} \), the middle inclusion from \((p', q') \leq (p, \dot{q}) \), and the right inclusion from the definition of \(d^{*} \).

Fix \(\gamma \in d^{*} \). Since \(P \) has \(\kappa \)-cc and \(\models \dot{q}' \in \dot{E}(\kappa, \lambda) \), there is \(\delta_{\gamma}^{*} < \kappa \) such that
\[\models \gamma \in dom \dot{q}' \rightarrow dom \dot{q}'(\gamma) \subset \delta_{\gamma}^{*}. \]
If \(\gamma \) is in \(dom q \), then \(dom q(\gamma) \subset \delta_{\gamma}^{*} \) because
\[p' \models dom q(\gamma) = dom \dot{q}(\gamma) \subset dom \dot{q}'(\gamma) \subset \delta_{\gamma}^{*}. \]

The left equality follows from the definition of \(\dot{q} \), the middle inclusion from \((p', q') \leq (p, \dot{q}) \), and the right inclusion from \(p' \models \gamma \in dom \dot{q}' \) and the choice of \(\delta_{\gamma}^{*} \).

Now define \(q^{*} \) with \(dom q^{*} = d^{*} \) and \(dom q^{*}(\gamma) = \delta_{\gamma}^{*} \) for every \(\gamma \in d^{*} \) so that
\begin{itemize}
 \item \(q^{*}(\gamma)(\eta) = q(\gamma)(\eta) \) if \(\gamma \in dom q \) and \(\eta \in dom q(\gamma) \), or else
 \item \(q^{*}(\gamma)(\eta) \) is the minimal \(\xi \) such that \(\models \gamma \in dom \dot{q}' \land \eta \in dom \dot{q}'(\gamma) \rightarrow \dot{q}'(\gamma)(\eta) = \dot{\tau}(\xi) \).
\end{itemize}

Note that \(q^{*}(\gamma)(\eta) < \gamma \) by \(q \in E(\kappa, \lambda) \) in the first case, and by \(\models \dot{q} \in \dot{E}(\kappa, \lambda) \) and the choice of \(\tau(\xi) \) in the second case. Thus \(q^{*} \in E(\kappa, \lambda) \) and \(q^{*} \leq q \).

Let \((p^{*}, q^{*}) = \pi(p^{*}, q^{*}) \). Since \(p^{*} = p' \), it remains to prove that \(p' \models q^{*} \leq q' \).
First recall that
\[p' \models dom \dot{q}' = dom q' \supset dom \dot{q}'. \]

It remains to prove that for every \(\gamma \in d^{*} \) and \(\eta \in \delta_{\gamma}^{*} \)
\[p' \models \gamma \in dom \dot{q}' \land \eta \in dom \dot{q}'(\gamma) \rightarrow \dot{q}^{*}(\gamma)(\eta) = \dot{q}'(\gamma)(\eta). \]

If \(\gamma \) is in \(dom q \) and \(\eta \in dom q(\gamma) \), the claim follows from
\[p' \models \dot{q}^{*}(\gamma)(\eta) = \dot{\tau}(q^{*}(\gamma)(\eta)) = \dot{\tau}(q(\gamma)(\eta)) = \dot{q}'(\gamma)(\eta). \]
The left equality follows from the definition of \hat{q}^*, the middle from that of q^*, and the right from $(p', \hat{q}') \leq (p, \hat{q})$.

In the remaining case the claim follows from

$$\Vdash \gamma \in \text{dom} \hat{q}' \land \eta \in \text{dom} \hat{q}'(\gamma) \rightarrow q^*(\gamma)(\eta) = \hat{q}^*(\gamma)(\eta) = \hat{q}'(\gamma)(\eta).$$

The left equality follows from the definition of \hat{q}^*, and the right from that of q^*. \(\Box\)

This completes the proof. \(\Box\)

Remark. Lemma 4 should hold for suitable modifications of the collapses of Levy and Silver. See [13] or [14] for the corresponding lemma for the modified Silver collapse and the resulting model in which a saturated filter exists and Chang's conjecture holds.

In [11] Laver introduced a poset $L(\kappa, \lambda)$, here called the Laver collapse. It is the product of collapsing posets with Easton support and bounded height. Using Kunen's method Laver constructed a forcing of the form $P*L(\kappa, \lambda)$, which produces an $(\omega_2, \omega_2, \omega)$-saturated filter on ω_1. Although Lemma 4 should hold for a suitable modification of the Laver collapse as well, we need to work with the Easton collapse because a projection, say from $L(\mu, \lambda - \kappa)$ to $L(\kappa, \lambda)$ is not available to us. For the same reason we cannot substitute the collapses of Levy or of Silver for the Easton collapse.

For a P-name \dot{Q} for a poset let $T(P, \dot{Q})$ denote the term forcing. It is known that the identity map from $P \times T(P, \dot{Q})$ to $P*\dot{Q}$ is a projection. See [5] for details. In [1] Cummings observed that $T(P, <\kappa \gamma)$ is equivalent to $<\kappa \gamma$ if P has κ-cc and size $\leq \kappa$, and $\gamma^{<\kappa} = \gamma$. The proof of Lemma 4 shows in effect that $T(P, E(\kappa, \lambda))$ is equivalent to $E(\kappa, \lambda)$. To see that the filter in our model is λ-saturated only, it suffices to prove this fact or even Lemma 4 without additional clauses.

4. THE MAIN THEOREM

This section is devoted to the proof of

Theorem. Suppose that κ is almost huge with target λ and λ is Mahlo. Let $\mu < \nu$ be both regular with $\mu < \kappa \leq \nu < \lambda$. Then $E(\mu, \kappa) * E(\nu, \lambda)$ forces a (λ, λ, μ)-saturated normal filter.

Proof. Let $j : V \rightarrow M$ witness that κ is almost huge with target λ, i.e. $\kappa = \text{crit}(j)$, $\lambda = j(\kappa)$ and $<^\lambda M \subset M$. Then we have $j(E(\mu, \kappa)) = E(\mu, \lambda)$, which is canonically isomorphic to $E(\mu, \kappa) * E(\mu, \lambda - \kappa)$. As stated in §3, there is a projection from $E(\mu, \lambda - \kappa)$ to $E(\mu, \lambda)$. Since $E(\mu, \kappa)$ has κ-cc and size κ, there is a projection from $E(\mu, \kappa) * E(\mu, \kappa)$ to $E(\mu, \kappa) * E(\nu, \lambda)$ as in Lemma 4. Thus we get a projection $\pi : E(\mu, \lambda) \rightarrow E(\mu, \kappa) * E(\nu, \lambda)$ such that $\pi(p)$ has the form $(p|\kappa, \dot{q})$, where $E(\mu, \kappa) \Vdash \text{dom} \hat{q} = \text{dom} p - \nu$ and each $\hat{q}(\gamma)$ depends only on $p(\gamma)$.

Now let $\dot{G} \subset E(\mu, \lambda)$ be V-generic. Then $\pi'^*\dot{G}$ generates a V-generic filter over $E(\mu, \kappa) * E(\nu, \lambda)$, say $\dot{G} \ast H$. We claim that $V[\dot{G}]\lceil[H]$ is the desired model. Since $j'G = G \subset \dot{G}$, we can lift $j : V \rightarrow M$ to $j : V[\dot{G}] \rightarrow M[\dot{G}]$ in $V[\dot{G}]$. Since λ is Mahlo in V, $E(\mu, \lambda)$ has λ-cc in V. Hence we have $<^\lambda M[\dot{G}] \subset M[\dot{G}]$ in $V[\dot{G}]$ by $<^\lambda M \subset M$ in V.

112
Work in $V[G]$. Since $E(\mu, \kappa)$ has size κ in V, λ remains Mahlo and hence $E(\nu, \lambda)$ has λ-cc. Thus a nice $E(\nu, \lambda)$-name for a subset of $\mathcal{P}_\kappa \nu$ can be viewed as an $E(\nu, \xi)$-name for some $\xi < \lambda$. So we can list the set of all such names with cofinal repetition as $\{\check{X}_\xi : \xi < \lambda\}$.

Now work in $V[\check{G}]$. Since $^{<\lambda} M[\check{G}] \subset M[\check{G}]$, $E(j(\nu), j(\xi))^{M[\check{G}]}$ is λ-directed closed for $\xi < \lambda$. So we can define for $\xi < \lambda$

$$r_\xi = \text{the greatest lower bound of } j^\mu (H \cap E(\nu, \xi)^{V[\check{G}]}) \text{ in } E(j(\nu), j(\xi))^{M[\check{G}]}.$$

Note that $\xi < \zeta < \lambda$ implies $r_\zeta j(\xi) = r_\xi$. Thus we can define a descending sequence $(r_\xi : \xi < \lambda)$ in $E(j(\nu), j(\lambda))^{M[\check{G}]}$ by recursion so that

- $r_\xi \leq r_\zeta$ in $E(j(\nu), j(\xi))^{M[\check{G}]}$ and
- $\text{if } \check{X}_\xi \text{ is an } E(\nu, \xi)^{V[\check{G}]} \text{-name, then } r_\xi \text{ decides } j^\nu \in j(\check{X}_\xi) \text{ in } M[\check{G}]$.

Define

$$U = \{(\check{X}_\xi)_H : \xi < \lambda \land M[\check{G}] \models r_\xi \vdash j^\nu \in j(\check{X}_\xi)\}.$$

Standard arguments show that U is a $V[G][H]$-normal ultrafilter on $\mathcal{P}_\kappa \nu^{V[G][H]}$.

Finally we work in $V[G][H]$. Since $E(\mu, \lambda)$ projects down to $E(\mu, \kappa) \ast E(\nu, \lambda)$ in V, there is an $E(\mu, \lambda)^V/(G \ast H)$-name \dot{U} such that

$$E(\mu, \lambda)^V/(G \ast H) \models \dot{U} \text{ is a } V[G][H]\text{-normal ultrafilter on } \mathcal{P}_\kappa \nu^{V[G][H]}.$$

Define

$$F = \{X \subset \mathcal{P}_\kappa \nu : E(\mu, \lambda)^V/(G \ast H) \models X \in \dot{U}\}.$$

Standard arguments show that F is a normal filter on $\mathcal{P}_\kappa \nu$. We claim that F is (λ, λ, μ)-saturated. Standard arguments show that

$$X \mapsto \sum\{p \in E(\mu, \lambda)^V/(G \ast H) : p \models X \in \dot{U}\}$$

defines a complete embedding of F^+ into $B(E(\mu, \lambda)^V/(G \ast H))$. So it suffices to prove that $E(\mu, \lambda)^V/(G \ast H)$ has (λ, λ, μ)-cc. Let $\{p_\xi : \xi < \lambda\} \subset E(\mu, \lambda)^V/(G \ast H)$.

Since $E(\mu, \kappa)$ has κ-cc and forces $E(\nu, \lambda)$ to be κ-closed in V, it suffices to find $S \in [\lambda]^\lambda$ such that $\check{x} \in [S]^{\mu}$ and $\{p_\xi : \xi \in x\} \in V$, $\{p_\xi : \xi \in x\}$ has a common extension in $E(\mu, \lambda)^V/(G \ast H)$.

Let R be the set of regular cardinals $< \lambda$ in V. Since λ is Mahlo and $E(\mu, \kappa) \ast E(\nu, \lambda)$ has λ-cc in V, R is stationary. As in the proof of Lemma 1 we get a stationary $S \subset R$ such that $\text{dom } p_\xi : \xi \in S\}$ forms a Δ-system, say with root d. Moreover we may assume that $p_\xi|d$ is constant and $\text{dom } p_\xi \kappa \subset d$ for $\xi \in S$.

Suppose $x \in [S]^{\mu}$ and $\{p_\xi : \xi \in x\} \in V$. Define $p = \bigcup_{\xi \in x} p_\xi$. We claim that p is a lower bound of $\{p_\xi : \xi \in x\}$ in $E(\mu, \lambda)^V/(G \ast H)$. Since $p_\xi|d$ is constant on S, p is a lower bound of $\{p_\xi : \xi \in x\}$ in $E(\mu, \lambda)^V$.

It remains to prove that $\pi(p) \in G \ast H$. Let $\langle p^\nu, \check{q}_\xi \rangle = \pi(p)$ and $\langle p_\xi \kappa, \check{q}_\xi \rangle = \pi(p_\xi)$ for $\xi \in S$. Since $p_\xi|\kappa$ is constant on S, we have $p|\kappa = p_\xi|\kappa$ for every $\xi \in S$. Hence $p|\kappa \in G$ by $\langle p_\xi|\kappa, \check{q}_\xi \rangle = \pi(p_\xi) \in G \ast H$. To see that $\check{q}_\xi \in H$, note first that $(\check{q}_\xi)_G \in H$ by $\langle p_\xi|\kappa, \check{q}_\xi \rangle \in G \ast H$. Since $\text{dom } (\check{q}_\xi)_G = \text{dom } p_\xi - \nu$, $\{\text{dom } (\check{q}_\xi)_G : \xi \in S\}$ forms a Δ-system with root $d - \nu$. Moreover $(\check{q}_\xi)_G|\overline{G} \ast (d - \nu)$ is constant on S. Thus $\check{q}_G = \bigcup_{\xi \in S} \check{q}_\xi)$ is the greatest lower bound of $\{(\check{q}_\xi)_G : \xi \in x\}$ in $E(\nu, \lambda)^V[G]$. Therefore $\check{q}_G \in H$, as desired.

\square
Remark. For the moment let us assume that κ is huge with target λ. As remarked in §3, our strategy requires forcing with Easton collapses rather than with Laver collapses. This requires in turn invoking an argument of Magidor [8] that involves local master conditions, even under the stronger hypothesis as above. In fact we can dispense with the argument in the case $\nu > \kappa$. Moreover the proof in this case, if modified as in [12], shows that $[\lambda]^\kappa$ carries a (λ, λ, μ)-saturated κ-complete filter in the extension.

In [11] Laver observed that a strong form of Chang's conjecture holds in his model. We do not know whether our model in the case $\nu = \kappa$ satisfies the conjecture.

References

Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 Japan.
E-mail address: shioya@math.tsukuba.ac.jp