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ABSTRACT. In 1950, John Nash [Nl,2] established his celebrated equilibrium theorem by
applying the Brouwer or the Kakutani fixed point theorem. Since then there have appeared
several fixed point theorems from which generalizations of the Nash theorem, the Debreu
theorem, and many related results can be derived. In this paper, we introduce several
stages of such developments.

1. Introduction

John von Neumann‘s 1928 minimax theorem [Vl] and 1937 intersection lemma [V2]
have numerous generalizations and applications. Kakutani’s 1941 fixed point theorem
[K] was to give simple proofs of the $abovearrow mentioned$ results. In 1950, John Nash [Nl,2]
obtained his equilibrium theorem based on the Brouwer or Kakutani fixed point theorem.
Further, in 1952, G. Debreu [De] obtained a social equilibrium existence theorem.

On the other hand, in 1952, Fan [Fl] and Glicksberg [G] extended Kakutani $s$ theo-
rem to locally convex Hausdorff topological vector spaces, and Fan generalized the von
Neumann intersection lemma by applying his own fixed point theorem. In 1961, Fan
[F2] obtained his own KKM lemma and, in 1964 [F3], applied it to another intersection
theorem for a finite family of sets having convex sections. This was applied in 1966 [F4]

to a proof of the Nash equilibrium theorem. This is the origin of the application of the
KKM theory to the Nash theorem.

Since then there have appeared many generalizations of the Nash theorem and stud-
ies on related topics. In fact, there are diverse altemative formulations of the Nash
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equilibrium: as a fixed point of the best response correspondence, as a fixed point of
a function, as a solution of a nonlinear complementarity problem, as a solution of a
stationary point problem, as a minimum of a function on a polytope, as an element of
semi-algebraic set; see, for example, [MM].

In our previous works [P17,18], we noticed that our studies on the Nash equilibrium
were based on the following three methods:

(1) Fixed point method –Applications of the Kakutani theorem and its various
generalizations (for example, for acyclic valued multimaps, admissible maps, or better
admissible maps in the sense of Park).

(2) Continuous selection method –Applications of the fact that Fan-Browder type
maps have continuous selections under certain assumptions like Hausdorffness and com-
pactness of relevant spaces.

(3) The KKM method–As for the Sion minimax theorem [S], direct applications of
the KKM theorem [KK] or its equivalents like as the Fan-Browder fixed point theorem
[Br].

The history on the studies based on (2) and (3) was given recently in [P17,18].
In the present paper, we review the study based on the method (1); see [BK,$D$,FI,F3,

G,H,IP,K,L,Lu,M,Nl,2,Ni,P3,4,7-9,10,16,20,21,IP,PP,T] and others. In fact, we intro-
duce several stages of such developments of generalizations of the Nash theorem and
related results within the frame of fixed point theory. We are mainly concerned with
the works of the present author.

2. Ekom von Neumann to Nash

In order to give simple proofs of von Neumann‘s Lemma and the minimax theorem,
Kakutani in 1941 obtained the following generalization of the Brouwer theorem to mul-
timaps:

Theorem [K]. If $x\mapsto\Phi(x)$ is an upper semicontinuous point-to-set mapping of an
r-dimensional closed simplex $S$ into the family of nonempty closed convex subset of $S$ ,
then there exists an $x_{0}\in S$ such that $x_{0}\in\Phi(x_{0})$ .

Equivalently,

Corollary [K]. Theorem is also valid even if $S$ is an arbitmry bounded closed convex
set in $a$ Euclidean space.

As Kakutani noted, Corollary readily implies von Neumann’s Lemma, and it is known
later that those two results are directly equivalent.
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This was the beginning of the fixed point theory of multimaps having a vital connec-
tion with the minimax theory in game theory and the equilibrium theory in economics.

The first remarkable one of generalizations of von Neumann’s minimax theorem was
the Nash theorem [Nl,2] on equilibrium points of non-cooperative games. The foUowing
Nash theorem is formulated by Fan [F4, Theorem 4]:

Theorem. [F4] Let $X_{1},X_{2},$ $\cdots,$
$X_{n}$ be $n(\geq 2)$ nonempty compact convex sets each in

a real Hausdorff topological vector space. Let $f_{1},$ $f_{2},$ $\cdots,$ $f_{n}$ be $n$ real-valued continu-
ous functions defined on $\prod_{i=1}^{n}X_{i}$ . If for each $i=1,2,$ $\cdots,$ $n$ and for any given point
$(x_{1}, \cdots,x_{i-1}, x_{i+1}, \cdots, x_{n})\in\prod_{j\neq i}X_{j},$ $f_{i}(x_{1}, \cdots, x_{i-1}, x_{i}, x_{i+1}, \cdots, x_{n})$ is a quasicon-

cave function on $X_{i}$ , then there exists a point $( \hat{x}_{1},\hat{x}_{2}, \cdots,\hat{x}_{n})\in\prod_{i=1}^{n}X_{i}$ such that

$f_{i}(\hat{x}_{1},\hat{x}_{2}, \cdots,\hat{x}_{n})={\rm Max}_{x}f_{i}(\hat{x}_{1}, \cdots,\hat{x}_{i-1}, y_{i},\hat{x}_{i+1}, \cdots,\hat{x}_{n})y_{1\in:}$
$(1\leq i\leq n)$ .

3. Generalizations of Debreu’s work

In 1998 [P4], an acyclic version of the social equilibrium existence theorem of Debreu
[De] is obtained.

A polyhedron is a set in $R^{n}$ homeomorphic to a union of a finite number of compact
convex sets in $R^{n}$ . The product of two polyhedra is a polyhedron [De].

A nonempty topological space is said to be acyclic whenever its reduced homology
groups over a field of coefficients vanish. The product of two acyclic spaces is acyclic
by the $Knneth$ theorem.

The following is due to Eilenberg and Montgomery [EM] or, more generally, to Begle
[B]:

Lemma 3.1. Let $Z$ be an acyclic polyhedron and $T:Zarrow Z$ an acyclic map (that is,
$u.s.c$ . with acyclic values). Then $T$ has a fixed point $\hat{x}\in Z$ ; that is, $\hat{x}\in T(\hat{x})$ .

Let $\{X_{i}\}_{i\in I}$ be a family of sets, and let $i\in I$ be fixed. Let

$X= \prod_{j\in I}X_{j}$
and

$X_{-i}= \prod_{j\in I\backslash \{i\}}X_{j}$
.

Any $x\in X$ can be expressed as $x=[x_{-i}, x_{i}]$ for any $i\in I$ , where $x_{-i}$ denotes the
projection of $x$ onto $X_{-i}$ .

For $A\subset X,$ $x_{-i}\in X_{-i}$ , and $x_{i}\in X_{i}$ , let

$A(x_{-i})$ $:=\{y_{i}\in X_{i}|[x_{-i}, y_{i}]\in A\}$ and $A(x_{i})$ $:=\{y-i\in X_{-i}|[y_{-i}, x_{i}]\in A\}$ .

The following collectively fixed point theorem is equivalent to Lemma 3.1:
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Theorem 3.2. [P20] Let $\{X_{i}\}_{i\in I}$ be any family of acyclic polyhedm, and $T_{i}$ : $Xarrow X_{i}$

an acyclic map for each $i\in I$ . Then there exists an $\hat{x}\in X$ such that $\hat{x}_{i}\in T_{i}(\hat{x})$ for each
$i\in I$ .

Rom Theorem 3.2, we have the following extension of the social equilibrium existence
theorem of Debreu [De]:

Theorem 3.3. [P20] Let $\{X_{i}\}_{i\in I}$ be a family of acyclic polyhedra, $A_{i}$ : $X_{-i}arrow X_{i}$

closed maps, and $f_{i},g_{i}$ : Gr$(A_{i})arrow\overline{R}u.s.c$ . functions for each $i\in I$ such that
(1) $g_{i}(x)\leq f_{i}(x)$ for all $x\in$ Gr$(A_{i})$ ;
(2) $\varphi_{i}(x_{-i})=\max_{y\in A_{i}(x_{-i})}g_{i}[x_{-i}, y]$ is an $l.s.c$ . function of $x_{-i}\in X_{-i}$ ; and
(3) for each $i\in I$ and $x_{-i}\in X_{-i}$ , the set

$M(x_{-i}):=\{x_{i}\in A_{i}(x_{-i})|f_{i}[x_{-i}, x_{i}]\geq\varphi_{i}(x_{-i})\}$

is acyclic.

Then there emists an equilibrium point $\hat{a}\in$ Gr$(A_{i})$ for all $i\in I$; that is,

$\hat{a}_{i}\in A_{i}(\hat{a}_{-i})$ and $f_{i}( \hat{a})=:\max_{a\in A(\hat{a}-\iota)}g_{i}[\hat{a}_{-i}, a_{i}]$ for all $i\in I$ .

This is applied in [P4] to deduce acyclic versions of theorems on saddle points and
minimax theorems. The following acyclic version of the Nash equilibrium theorem is
given in [P4] for a finite $I$ and in [P20] for arbitrary $I$ :

Corollary 3.4. Let $\{X_{i}\}_{i\in I}$ be a family of acycli $c$ polyhedm, $X= \prod_{i\in I}X_{i}$ , and for
each $i\in I,$ $f_{i}$ : $Xarrow\overline{R}$ a continuous function such that

(0) for each $x_{-i}\in X_{-i}$ and each $\alpha\in\overline{R}$, the set

$\{x_{i}\in X_{i}|f_{i}[x_{-i}, x_{i}]\geq\alpha\}$

is empty or acyclic.
Then there exists a point $\hat{a}\in X$ such that

$f_{i}( \hat{a})=\max_{y_{i}\in X_{i}}f_{i}[\hat{a}_{-i}, y_{i}]$ for all $i\in I$ .

4. From the Idzik fixed point theorem

Let $E$ be a real Hausdorff topological vector space (in short, a $t.v.s.$ ). A set $B\subset E$

is said to be convexly totally bounded $(c.t.b.)$ whenever for every neighborhood $V$ of
$0\in E$ , there exist a finite subset $\{x_{i}|i\in I\}\subset E$ and a finite family of convex sets
$\{C_{i}|i\in I\}$ such that $C_{i}\subset V$ for each $i\in I$ and $B\subset\cup\{x_{i}+C_{i}|i\in I\}$ . See Idzik [I].

The following is a particular form of Idzik $s$ theorem [I, Theorem 4.3]:
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Theorem 4.1. [I] Let $X$ be a nonempty convex subset of a t.v.s. $E$ and $T:Xarrow X$ a
closed map with convex values. $If\overline{T(X)}$ is a compact $c.t.b$ . subset of $X$ , then $T$ has a

fixed point $x_{0}\in X$ ; that is, $x_{0}\in T(x_{0})$ .

Theorem 4.1 generalizes earlier results due to Zima, Rzepecki, Himmelberg, and
Had\v{z}i\v{c}. For references, see [I].

As an application of the Idzik theorem, in this section, we consider a noncompact
infinite optimization problem for a non-locally convex t.v.$s$ .

Rom Theorem 4.1, we deduced the following:

Theorem 4.2. [PP] Let I be an index set, and for each $i\in I,$ $X$; be a convex subset of
a $t.v.s$ . $E_{i},$ $D_{i}$ be a nonempty compact subsets of $X_{i}$ such that $D= \prod_{i\in I}D_{i}$ is a $c.t.b$ .
subset of $E= \prod_{i\in I}E_{i}$ . For each $i\in I$ , let $f_{i}$ : $X= \prod_{i\in I}X_{i}arrow R$ be a $u.s.c$ . function,
and $S_{i}$ : $X_{-i}arrow D_{i}$ a closed map such that

(1) the function $M_{i}$ defined on $X^{i}$ by

$M_{i}(x_{-i}):=$ $\sup$ $f_{i}[x_{-i}, y]$ for $x_{-i}\in X_{-i}$

$yES_{i}(x_{-i})$

is $l.s.c.$ ; and
(2) for each $x_{-i}\in X_{-i}$ , the set

$T_{i}(x_{-i}):=\{y\in S_{i}(x_{-i})|f_{i}[x_{-i},y]=M_{i}(x_{-i})\}$

is convex.
Then there msts an $\overline{x}\in D$ such that for each $i\in I$ ,

$\overline{x}_{i}\in S_{i}(\overline{x}_{-i})$ and $f_{i}[\overline{x}_{-i},\overline{x}_{i}]=M_{i}(\overline{x}_{-i})$ .

From Theorem 4.2, we obtain the following infinite version of the Nash equilibrium
theorem:

Theorem 4.3. [PP,IP] Let I be an index set, and for each $i\in I,$ $X_{i}$ be a nonempty
compact convex subset of a t.v.s. $E_{i}$ such that $X= \prod_{i\in I}X_{i}$ is a c.t.b. subset of
$E= \prod_{i\in I}E_{i}$ . For each $i\in I$ , let $f_{i}$ : $Xarrow R$ be a continuous function such that for
each given point $x_{-i}\in X_{-i},$ $x_{i}\mapsto f[x_{-i}, x_{i}]$ is a quasiconcave function on $X_{i}$ . Then
there nists an $\overline{x}\in X$ such that

$f_{i}( \overline{x})=f_{i}[\overline{x}_{-i},\overline{x}_{i}]=yX_{i}\max_{:\in}f_{i}[\overline{x}_{-i}, y_{i}]$ for each $i\in I$ .

Remarks 1. Note that Ma already established Theorem 5 without assuming that $X$ is
c.t.$b$ . A generalization of Ma’s theorem was given by Idzik.
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2. Nash $s$ original theorem is the case $E_{i}$ are Euclidean spaces and $I$ is finite.

Moreover, in 1998 [IP], we considered two applications of the Idzik fixed point theorem
[I]. First, we extended the Leray-Schauder theorem to t.v. $s$ . which are not necessarily
locally convex. As an application we derived some well-known fixed point theorems.
Second, we deduced a variation of the social equilibrium existence theorem of Debreu.
This was applied to results on saddle points, minimax theorems, and the Nash equilib-
ria. These were generalizations of results of von Neumann, Kakutani, Nash, and von
Neumann and Morgenstern; for the literature, see Debreu [De].

5. Fixed points of compositions of acyclic maps

FYom now on, a topological space is said to be acyclic if all of its reduced \v{C}ech homology
groups over rationals vanish. For nonempty subsets in a t.v.$s.$ , convex $\Rightarrow star$-shaped
$\Rightarrow$ contractible $\Rightarrow\omega-$connected $\Rightarrow$ acyclic $\Rightarrow$ connected, and not conversely in each
stage.

For topological spaces $X$ and $Y$ , a multimap $F$ : $Xarrow Y$ is called an acyclic map
whenever $F$ is u.s. $c$ . with compact acyclic values.

Let V(X, Y) be the class of all acyclic maps $F$ : $Xarrow Y$, and $V_{c}(X, Y)$ all finite
compositions of acyclic maps, where the intermediate spaces are arbitrary topological
spaces.

The following theorems are only few examples of our previous works; for more general
results, see [P14,15].

Theorem 5.1. Let $X$ be a nonempty convex subset of a locally convex t.v.s. $E$ and
$T\in V_{c}(X, X)$ . If $T$ is compact, then $T$ has a fixed point $x_{0}\in X$ ; that is, $x_{0}\in T(x_{0})$ .

A nonempty subset $X$ of a t.v. $s$ . $E$ is said to be admissible (in the sense of Klee)
provided that, for every compact subset $K$ of $X$ and every neighborhood $V$ of the origin
$0$ of $E$ , there exists a continuous map $h$ : $Karrow X$ such that $x-h(x)\in V$ for all $x\in K$

and $h(K)$ is contained in a finite dimensional subspace $L$ of $E$ .
It is well-known that every nonempty convex subset of a locally convex t.v.$s$ . is

admissible. Other examples of admissible t.v. $s$ . are $\ell^{p},$ $L^{p}(0,1),$ $H^{p}$ for $0<p<1$ , and
many others; see [P5,6,11,13-15] and references therein.

Theorem 5.2. Let $E$ be a $t.v.s$ . and $X$ an admissible convex subset of E. Then any
compact map $T\in V_{c}(X, X)$ has a fixed point.

A polytope $P$ in a subset $X$ of a t.v. $s$ . $E$ is a nonempty compact convex subset of $X$

contained in a finite dimensional subspace of $E$ .
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A nonempty subset $K$ of $E$ is said to be Klee appro vimable if for any $V\in \mathcal{V}$ , there
exists a continuous function $h:Karrow E$ such that $x-h(x)\in V$ for all $x\in K$ and $h(K)$

is contained in a polytope of $E$ . Especially, for a subset $X$ of $E,$ $K$ is said to be Klee
approximable into $X$ whenever the range $h(K)$ is contained in a polytope in $X$ .

Examples of Klee approximable sets can be seen in [P12].

We define a class $\mathfrak{B}$ of maps from a subset $X$ of a t.v.$s$ . $E$ into a topological space
$Y$ as follows [P9,11,12]:

$F\in \mathfrak{B}(X, Y)\Leftrightarrow F:Xarrow Y$ is a map such that, for each polytope $P$ in $X$ and for
any continuous function $f$ : $F(P)arrow P$, the composition $f(F|_{P})$ : $Parrow P$ has a fixed
point.

We call $\mathfrak{B}$ the ‘better’ admissible class. Recently it is known that any u.s.$c$ . map
with compact values having trivial shape (that is, contractible in each neighborhood)
belongs to $\mathfrak{B}(X,Y)$ . Note that the class $\mathfrak{B}^{p}$ in [P11,12] should be replaced by B.

The following results appeared in our previous work [P12]:

Theorem 5.3. [P12, Corollary 2.3] Let $X$ be a subset of a t.v.s. $E$ and $F\in \mathfrak{B}(X, X)$

a compact closed map. If $F(X)$ is Klee appronimable into $X_{f}$ then $F$ has a fixed point.

6. For admissible sets

In 2000 [P8] and 2002 [P10], we applied Theorem 5.2 to obtain a cyclic coincidence
theorem for acyclic maps, generalized von Neumann type intersection theorems, the
Nash type equilibrium theorems, and the von Neumann minimax theorem.

The following example of generalized forms of quasi-equilibrium theorems or social
equilibrium existence theorems directly implies a generalization of the Nash-Ma type
equilibrium existence theorem:

Theorem 6.1. [P10] Let $X_{0}$ be a topological space and $\{X_{i}\}_{\mathfrak{i}=1}^{n}$ be a family of convex
sets, each in a $t.v.s$. $E_{i}$ . For each $i=0,1,$ $\ldots,$

$n$ , let $S_{i}$ : $X_{-i}arrow X_{i}$ be a closed map
with compact values, and $f_{:},g_{i}$ : $X= \prod_{i=0}^{n}X_{i}arrow Ru.s.c$ . real-valued functions.

Suppose that for each $i$ ,
(i) $g_{i}(x)\leq f_{i}(x)$ for each $x\in X$ ;
(ii) the function $M_{i}$ : $X_{-i}arrow R$ defined by

$M_{i}(x_{-i}):= \max_{y_{i}\in s_{:(x_{-i})}}g_{i}[x_{-i}, y_{i}]$ for $X-i\in X_{-i}$

is $l.s.c.$ ; and
(iii) for each $x_{-i}\in X_{-i}$ , the set

$\{x_{i}\in S_{i}(x_{-i})|f_{i}[x_{-i}, x_{i}]\geq M_{i}(x_{-i})\}$
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is acycli $c$ .
If $X_{-0}$ is admissible in $E_{-0}= \prod_{j=1}^{n}E_{j}$ and if all the maps $S_{i}$ are compact except

possibly $S_{n}$ and $S_{n}$ is $u.s.c.$ , then there exists an equilibrium point $\hat{x}\in X$ ; that is,

$\hat{x}_{i}\in S_{i}(\hat{x}_{-i})$ and $f_{i}(\hat{x})\geq$ $\max$ $g_{i}[\hat{x}_{-i}, y]$ for all $i\in \mathbb{Z}_{n+1}$ .
$y_{i}\in S_{i}(x^{i})$

7. For Klee approximable sets

In 2008 [P13], we deduced some collectively fixed point theorems for families of maps
and, then, various von Neumann type intersection theorems.

Theorem 7.1. [P13] Let $\{E_{i}\}_{i=1}^{n}$ be a family of $t.v.s$ . For each $i$ , let $X_{i}$ be a subset of
$E_{i},$ $K_{i}$ a nonempty compact subset of $X_{i_{j}}$ and $F_{i}$ : $X-\circ K_{i}$ a closed map with acyclic
values (resp., values of trivial shape). If $K;= \prod_{i=1}^{n}K_{i}$ is Klee approximable into $X$,
then there exists an $\overline{x}=(\overline{x_{i}})_{i=1}^{n}\in X$ such that $\overline{x_{i}}\in F_{i}(\overline{x})$ for each $i$ .

Rom Theorem 7.1, we obtain the following von Neumann type intersection theorem:

Theorem 7.2. [P13] Let $\{X_{i}\}_{i=1}^{n}$ be a family of sets, each in a t.v.s. $E_{i},$ $K_{i}$ a nonempty
compact subset of $X_{i}$ , and $A_{i}$ a closed subset of $X$ such that $A_{i}(x_{-i})$ is an acyclic subset
of $K_{i}$ for each $x_{-i}\in X_{-iz}$ where $1\leq i\leq n$ . If $X$ is an almost convex admissible subset
of $E_{f}$ then $\bigcap_{j=1}^{n}A_{j}\neq\emptyset$ .

Similarly, we can obtain a more general result than Theorem 7.2 as follows:

Theorem 7.2.’ [P13] Let I be any index set, $\{X_{i}\}_{i\in I}$ a family of sets, $each$ in a $t.v.s$ .
$E_{i},$ $K_{i}$ a nonempty compact subset of $X_{i}$ , and $A_{i}$ a closed subset of $X$ for each $i\in I$ .
Suppose that for each $x_{-i}\in X_{-i},$ $A_{i}(x_{-i})$ is a convex subset of $K_{i}$ except a finite number
of $is$ for which $A_{i}(x_{-i})$ is an acyclic subset of $K_{i}$ . If $X$ is an almost convex admissible
subset of $E,$ then $\bigcap_{j\in I}A_{j}\neq\emptyset$ .

Remark. If $I=\{1,2\},$ $E_{i}$ are Euclidean, $X_{i}=K_{i}$ , and $A_{i}(x_{-i})$ are nonempty and
convex, then Theorem 7.2 or 7.2’ reduces to the intersection lemma of von Neumann
[V2].

We have another intersection theorem:

Theorem 7.3. [P13] Let $X_{0}$ be a topological space and $\{X_{i}\}_{i=1}^{n}$ a family of sets, each
in a $t.v.s$ . $E_{i}$ . For each $i=0,1,2,$ $\cdots,$ $n_{7}$ let $K_{i}$ be a nonempty subset of $X_{i}$ which is
compact except possibly $K_{n}$ and $F_{i}\in V_{c}(X_{-i}, X_{i})$ . If $K_{-0}$ is Klee approstmable into
$X_{-0},$ then $\bigcap_{i=0}^{n}$ Gr$(F_{i})\neq\emptyset$ .
Remarks. 1. In case when each $X_{i}$ is convex for $i\geq 1$ and $X_{-0}$ is admissible in $E_{-0}$ ,
Theorem 7.3 reduces to [P10, Theorem 4].
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2. Particular forms of Theorem 7.3 were given by von Neumann, Fan, Lassonde,
Chang, and Park; see [P10]. The following is one of them:

CoroUary 7.4. Let $X$ be a topological space, $Y$ a subset in a $t.v.s$ . $E$ , and $F\in V_{c}(X, Y)$

and $G\in V_{c}(Y, X)$ . If $F$ is compact and $F(X)$ is Klee approximable into $Y$ , then
Gr$(F)\cap$Gr$(G)\neq\emptyset$ .

From Corollary 7.4, we have the following:

Corollary 7.5. Let $X$ be a topological space and $Y$ a compact subset of a $t.v.s$. E. Let
$A$ and $B$ be two closed subsets of $X\cross Y$ such that

(1) for each $x\in X,$ $A(x)$ $:=\{y\in Y|(x, y)\in A\}$ is acyclic; and
(2) for each $y\in Y,$ $B(y)$ $:=\{x\in X|(x, y)\in B\}$ is acyclic.

If $A(X)$ $:=\cup\{A(x)|x\in X\}$ is Klee approximable into $Y$ , then $A\cap B\neq\emptyset$ .

Remarks. 1. If $Y$ is an admissible, compact, and almost convex subset of $E$ , then $A(X)$

is Klee approximable into Y. EspeciaUy, for the particular case when $X$ is compact and
$Y$ is convex, Corollary 7.5 was obtained in [P8].

2. For other particular forms of Corollary 7.5, see [P8].

In [P13], from Theorem 7.3, we deduced a generalized form of the quasi-equilibrium
theorem or the social equilibrium existence theorem in the sense of Debreu [De]:

Theorem 7.6. [P13] Let $X_{0}$ be a topological space, and $\{X_{i}\}_{i=1}^{n}$ a family of sets,
each in a $t.v.s$. $E_{i}$ . For $i=0,1,$ $\cdots$ , $n$ , let $K_{i}$ be a nonempty subset of $X_{i}$ which is
compact except possibly $K_{n},$ $S_{i}$ : $X_{-i}arrow K_{i}$ be a closed map unth compact values, and
$f_{i},$ $g_{i}:X=X_{-i}\cross X_{i}arrow Ru.s.c$ . real functions.

Suppose that for each $i=0,1,$ $\cdots,n$ ,
(i) $g_{i}(x)\leq f_{i}(x)$ for each $x\in X$ ;
(ii) the real function $M_{i}$ : $X_{-i}arrow R$ defined by

$M_{i}(x_{-i}):= \max_{y_{i}\in S_{i}(x-\cdot)}g_{i}[x^{i}, y_{i}]$ for $x_{-i}\in X_{-i}$

is $l.s.c.$ ; and
(iii) for each $x_{-i}\in X_{-i_{j}}$ the set

$\{y_{i}\in S_{i}(x_{-i})|f_{i}[x_{-i}, y_{i}]\geq M_{i}(x_{-i})\}$

is acyclic.

If $K_{-0}$ is Klee approstmable into $X_{-0}$ and if $S_{n}$ is $u.s.c.$ , then there exists an equi-
librium point $\hat{x}\in X$ ; that is,

$\hat{x}_{i}\in S_{i}(\hat{x}_{-i})$ and $f_{\dot{f}}[ \hat{x}_{-i},\hat{x}_{i}]\geq\max_{y_{i}\in S_{i}(x_{-i})}g_{i}[x_{-i}, y_{i}]$ for each $i\in Z_{n+1}$ .

Rom this we deduced generalization of the Nash theorem and von Neumann type
minimax theorems in [P13].
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8. Existence of pure-strategy Nash equilibrium

In this section, we introduce the contents of a recent work [P21]. The following concept
of generalized convex spaces is well known:

A genemlized convex space or a G-convex space $(X, D;\Gamma)$ consists of a topological
space $X$ and a nonempty set $D$ such that for each $A\in\langle D\rangle$ with the cardinality $|A|=$

$n+1$ , there exist a subset $\Gamma(A)$ of $X$ and a continuous function $\phi_{A}$ : $\Delta_{n}arrow\Gamma(A)$ such
that $J\in\langle A\rangle$ implies $\phi_{A}(\Delta_{J})\subset\Gamma(J)$ .

Here, $\langle D\rangle$ denotes the set of all nonempty finite subsets of $D,$ $\Delta_{n}$ the standard n-
simplex with vertices $\{e_{i}\}_{i=0}^{n}$ , and $\Delta_{J}$ the face of $\Delta_{n}$ corresponding to $J\in\langle A\rangle$ ; that is,
if $A=\{a_{0}, a_{1}, \ldots, a_{n}\}$ and $J=\{a_{i_{0}}, a_{i_{1}}, \ldots,a_{i_{k}}\}\subset A$, then $\Delta_{J}=$ co$\{e_{i_{0}}, e_{i_{1}}, \ldots, e_{i_{k}}\}$ .
We may write $\Gamma_{A}=\Gamma(A)$ .

We follow [Lu]. Let $I$ $:=\{1, \cdots, n\}$ be a set of players. A non-cooperative n-person
game of normal form is an ordered $2n$-tuple $\Lambda:=\{X_{1}, \cdots, X_{n};u_{1}, \cdots, u_{n}\}$ , where the
nonempty set $X_{i}$ is the ith player $s$ pure strategy space and $u_{i}$ : $X=X_{i}\cross x_{-i}arrow R$ is
the ith player’s payoff function. A point of $X_{i}$ is called a strategy of the ith player. Let
us denote by $x$ and $x_{-i}$ an element of $X$ and $X_{-i}$ , resp. A strategy n-tuple $(x_{1}^{*}, \cdots, x_{n}^{*})$

is called a Nash equilibrium for the game if the following inequality system holds:

$u_{i}(x_{i}^{*},x_{-i}^{*})\geq u_{i}(y_{i}, x_{-i}^{*})$ for all $y_{i}\in X_{i}$ and $i\in I$ .

As usual, we define an aggregate payoff function $U$ : $X\cross Xarrow \mathbb{R}$ as follows:

$U(x,y);= \sum_{i=1}^{n}[u_{i}(y_{i}, x_{-i})-u_{i}(x)]$ for any $x=(x_{i}, x_{-i}),$ $y=(y_{i}, y_{-i})\in X$ .

The following is given in [Lu, Proposition 1]:

Lemma 8.1. Let $\Lambda$ be a non-coopemtive game, $K$ a nonempty subset of $X$ , and $x^{*}=$

$\{x_{1}^{*}, \ldots , x_{n}^{*}\}\in K$ . Then the following are equivalent:
(a) $x^{*}$ is a Nash equilibrium;
(b) $\forall i\in I,$ $\forall y_{i}\in X_{i},$ $u_{i}(x_{i}^{*}, x_{-i}^{*})\geq u_{i}(y_{i}, x_{-i}^{*})$ ;
(c) $\forall y\in X,$ $U(x^{*}, y)\leq 0$ .
Note that (c) implies $U(x^{*}, y)\leq 0$ for all $y\in D\subset X$ .

Now we have our main result:

Theorem 8.2. Let $I=\{1, \ldots, n\}$ be a set ofplayers, $K$ a nonempty compact subset of a
Hausdorffproduct G-convex space $(X, D; \Gamma)=\prod_{i=1}^{n}(X_{i}, D_{i};\Gamma_{i})$ and $\Lambda$ a non-coopemtive
game. Suppose that
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(i) the function $U$ : $X\cross Xarrow R$ satisfies that

$\{(x, y)\in X\cross X|U(x, y)>0\}$

is open;

(ii) for each $x\in K,$ $\{y\in X|U(x,y)>0\}$ is $\Gamma$-convex [that is, $M\in\langle\{y\in$

$D|U(x,y)>0\}\rangle$ implies $\Gamma_{M}\subset\{y\in X|U(x,y)>0\}]$ ;

(iii) for each $y\in X$ , the set $\{x\in K|U(x,y)\leq 0\}$ is acyclic.

Then there exists a point $x^{*}\in K$ such that $x^{*}$ is an equilibrium point for the non-
coopemtive game.

Note that condition (i) can be replaced by the following:

$(i)’$ the function $U(x,y)$ is lower semicontinuous on $X\cross X$ .
In this case, when $X=D$ is a topological vector space, Theorem 8.2 reduces to [Lu,

Theorem 1].

9. Historical remarks

In 1928, John von Neumann found his celebrated minimax theorem [Vl], which is one
of the fundamental theorems in the theory of games developed by himself: For the
history of earlier proofs of the theorem, see von Neumann [V3] and Dantzig [D]. In
1937, the theorem was extended by himself [V2] to his intersection lemma by using a
notion of integral in Euclidean spaces. The lemma was intended to establish his minimax
theorem and his theorem on optimal balanced growth paths and applied to problems of
mathematical economics.

In 1941, Kakutani [K] obtained a fixed point theorem for multimaps, from which von
Neumann‘s minimax theorem and intersection lemma were easily deduced. In 1950,
John Nash [Nl,2] obtained his equilibrium theorem based on the Brouwer or Kakutani
fixed point theorem. Further, in 1952, G. Debreu [De] obtained a social equilibrium
existence theorem.

In the $1950’ s$ , Kakutani’s theorem was extended to Banach spaces by Bohnenblust
and Karlin [BK] and to locaUy convex t.v.$s$ . by Fan [Fl] and Glicksberg [G]. These
extensions were mainly used to generalize the von Neumam intersection lemma and
the Nash equilibrium theorem. Further generahizations were followed by Ma [M] and
others. For the literature, see [P6] and references therein.

An upper semicontinuous $(u.s.c.)$ multimaps with nonempty compact convex values
is called a Kakutani map. The Fan-Glicksberg theorem was extended by Himmelberg
[H] in 1972 for compact Kakutani maps instead of assuming compactness of domains.
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In 1988, Idzik [I] extended the Himmelberg theorem to convexly totally bounded sets
instead of convex subsets in locally convex t.v. $s$ . This result is applied in $[P3,PP,IP]$

to various problems. In 1990, Lassonde [L] extended the Himmelberg theorem to mul-
timaps factorizable by Kakutani maps through convex sets in Hausdorff topological
vector spaces. Moreover, Lassonde applied his theorem to game theory and obtained
a von Neumann type intersection theorem for finite number of sets and a Nash type
equilibrium theorem comparable to Debreu’s social equilibrium existence theorem [De].

On the other hand, in 1946, the Kakutani fixed point theorem was extended for
acyclic maps by Eilenberg and Montgomery [EM]. Moreover, the Kakutani theorem
was known to be included in the extensions, due to Eilenberg and Montgomery [EM] or
Begle [B], of Lefschetz‘s fixed point theorem to u.s. $c$ . multimaps of a compact lc-space
into the family of its nonempty compact acyclic subsets. This result was applied by Park
[P4] to give acyclic versions of the social equilibrium existence theorem due to Debreu
[De], saddle point theorems, minimax theorems, and the Nash equilibrium theorem.

Moreover, Park [Pl,2,4,10-14] obtained a sequence of fixed point theorems for various
classes of multimaps (including compact compositions of acyclic maps) defined on very
general subsets (including Klee approximable subsets) of t.v. $s$ . Especially, our cyclic
coincidence theorem for acyclic maps were applied to generalized von Neumann type
intersection theorems, the Nash type equilibrium theorems, the von Neumann type
minimax theorems, and many other results; see [P16].

Finally, recall that there are several thousand published works on the KKM theory
and fixed point theory and we can cover only a part of them. For the more historical
background for the related fixed point theory and for the more involved or related results
to this review, see the references of [P6,14-16,18,19] and the literature therein.
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