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1. INTRODUCTION
The Kolmogorov-Arnold-Moser (KAM) theorem shows the persistence of quasi-

periodic dynamical systems under the Diophantine condition on their irrational
frequencies, which are simultaneously very well approximable by rational num-
bers with the same denominator. In our previous papers ([4], [6]) we introduced
Extending Common Multiples (ECM) conditions on pairs of irrational numbers
and we have shown some inequality relations between the parameters of Dio-
phantine conditions and the ECM conditions. In this paper we investigate these
conditions for extremal irrational numbers, which were recently termed by D.
Roy in studying some optimality of Diophantine conditions. We show the un-
predictability of the quasi-periodic orbits, which have these extremal irrational
frequencies, by estimating the positive gaps of their recurrent dimensions.

Our plan of this paper is as follows. In section 2 we introduce the notations
and definitions on valuations for integers and show some inequality relations
between these valuations. In section 3 we give the definitions of ECM sequences
for a pair of irrational numbers and introduce the Diophantine conditions of the
KAM theorem. We also give the inequality relations between the parameters of
the ECM conditions and the Diophantine conditions. In section 4 we study the
case where the pair of irrational numbers are give by an extremal number and
its square and investigate the values of the L\’evy constants of these irrational
numbers. In section 5 we consider a discrete quasi-periodic orbit, the frequencies
of which are given by the extremal number and its square, and we estimate the
gap values of the recurrent dimensions of the orbits.

In this paper we cannot contain the proves of our theorems, which will be
shown in the forthcoming complete paper.

2. VALUATIONS OF INTEGERS BY CONTINUED FRACTIONS

For a irrational number $\tau$ , let $\{n_{j}/m_{j}\}$ be its convergents.
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For each positive integer $l$ we can consider the expansion of $l$ by using the
denominators $\{m_{j}\}$ ;

(2.1) $l=p_{k}m_{k}+p_{k-1}m_{k-1}+\cdots+p_{u}m_{u}$

where $p_{j}\in N_{0};p_{j}\leq a_{j+1},j=u,$ $u+1,$ $\ldots,$

$k$ and $p_{k},p_{u}\geq 1$ . By introducing the
following lexicographical order we have the uniqueness of this expansion. Assume
that some number $l$ has two expansions such that

$l$ $=p_{k_{1}}m_{k_{1}}+p_{k_{1}-1}m_{k_{1}-1}+\cdots+p_{u_{1}}m_{u1}:=[l1]$ ,
$l$ $=p_{k_{2}}m_{k_{2}}+p_{kz-1}m_{k_{2}-1}+\cdots+p_{y_{2}}m_{u2}:=[l2]$ .

Define $[l1]\leq[l2]$ if $k_{1}<k_{2}$ , or otherwise if $k_{1}=k_{2}$ and $p_{k_{1}}<p_{k_{2}}$ , or otherwise if
$k_{1}=k_{2}$ and

$p_{k_{1}}=p_{k_{2}},$ $p_{k_{1}-1}=p_{k_{2}-1},$ $\cdots$ , $p_{k_{1}-j+1}=p_{k_{2}-j+1},$ $Pk_{1}-j<Pk_{2}-j$

for some $j\in$ N. Then we can take the largest expansion for this order.
For example, note that $p_{j}\leq[m_{j+1}/m_{j}]=a_{j+1}$ and let

$l=p_{k}m_{k}+a_{k}m_{k-1}+p_{k-2}m_{k-2}+\cdots+p_{u}m_{u},$ $p_{k}<a_{k+1},$ $Pk-2\geq 1$ ,

then we choose the expansion

$l=(p_{k}+1)m_{k}+(p_{k-2}-1)m_{k-2}+\cdots+p_{u}m_{u}$ .

For $l\in N$ , define the mapping $\zeta$ : $Narrow N$ by $\zeta(l)=u$ , which specifies the final
subscript of its expansion. Now we define the two valuations $\Vert l\Vert_{\tau}$ and $[l]_{\tau}$ of a
positive integer $l$ , which has the expansion (2.1) by

$\Vert l\Vert_{\tau}=\frac{1}{m_{\zeta(l)+1}}=\frac{1}{m_{u+1}}$

and
$[l]_{\tau}= \frac{k-u}{k}$

where $\Vert l\Vert_{\tau}$ is a kind of modified “p-adic” type valuation and $[l]_{\tau}$ shows a relative
length of its expansion.

By applying the estimates in our previous paper [4] we obtain the following
theorem.

Theorem 2.1. For an irrational number $\tau$ there exist positive constants $c_{1},$ $c_{2}$

such that

(2.2) $c_{1}\Vert l\Vert_{\tau}\leq\{l\tau\}\leq c_{2}\Vert l\Vert_{\tau}$

for every positive integer $l$ where $\{r\}$ is afractional part of a positive real number
$r$ .
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3. EXTENDED COMMON MULTIPLES

We say that a sequence $\{l_{j}\}$ of positive integers is a sequence of common
multiples for an irrational pair $\{\tau_{1}, \tau_{2}\}$ if

$\lim_{jarrow\infty}\max\{\Vert l_{j}\Vert_{\tau_{1}}, \Vert l_{j}\Vert_{\tau_{2}}\}=0$

holds. Then we denote the set of the sequences of common multiples by $m(\tau_{1},\tau_{2})$ .
In cm$(\tau_{1}, \tau_{2})$ we can choose an extremal common multiples sequence (abr. ecm

sequence) $\{t_{j}\}$ , which satisfies the following properties: $t_{j+1}>t_{j}$ for every $j\in N$

and, if $t_{j}>l_{k}$ for $(l)\in cm(\tau_{1}, /\tau_{2})$ ,
$\max\{\Vert t_{j}\Vert_{\tau_{1}}, \Vert t_{j}\Vert_{\tau 2}\}<\max\{\Vert l_{k}\Vert_{\tau}1, \Vert l_{k}\Vert_{\tau 2}\}$.

There exists the maximal ecm sequence $\{T_{j}\}$ , which satisfies that $\{t_{j}\}\subset\{T_{j}\}$ for
every ecm sequence $\{t_{j}\}$ . We denote the maximal ecm sequence by $ECM(\tau_{1}, \tau_{2})$ .
In [4] we introduced the construction method of the ECM sequence.

For the $ECM(\tau_{1}, \tau_{2})$ sequence $\{T_{j}\}$ , we define the following constants

$\delta_{0}=\lim infjarrow\infty\max\{[T_{j}]_{\tau_{1}}, [T_{j}]_{r_{2}}\}$ ,

$\delta_{1}=\lim_{jarrow}\sup_{\infty}\max\{[T_{j}]_{\tau_{1}}, [T_{j}]_{\tau_{2}}\}$ .

Let $\{n_{j}/m_{j}\}$ and $\{r_{j}/l_{j}\}$ be the convergents of $\tau_{1},$ $\tau_{2}$ , respectively, and we
consider the case where the sequences $\{(m_{j})^{\frac{1}{j}}\},$ $\{(l_{j})J\tau\}1$ are bounded. We denote
the upper L\’evy constants of $\tau_{1},$ $\tau_{2}$ by $\lambda^{*}(\tau_{1}),$ $\lambda^{*}(\tau_{2})$ and the lower L\’evy constants
of $\tau_{1},$ $\tau_{2}$ by $\lambda_{*}(\tau_{1}),$ $\lambda_{*}(\tau_{2})$ , respectively, as follows.

(3.1) $\lim_{jarrow}\sup_{\infty}(m_{j})^{\frac{1}{j}}=\lambda^{*}(\tau_{1})$ , $\lim_{jarrow}\inf_{\infty}(m_{j})^{\frac{1}{j}}=\lambda_{*}(\tau_{1})$ ,

(3.2) $\lim_{jarrow}\sup_{\infty}(l_{j})^{\frac{1}{j}}=\lambda^{*}(\tau_{2})$ , $\lim\inf(l_{j})^{\frac{1}{j}}jarrow\infty=\lambda_{*}(\tau_{2})$ .

We also say that an irrrational number $\tau$ has a L\’evy constant if $\lambda^{*}(\tau)=\lambda_{*}(\tau)$ .
In 1935 Khinchin proved that almost all irrational numbers have the same L\’evy
constant value and in 1936 L\’evy found the explicit expression for this constant;
$e^{\frac{\pi^{2}}{12\log 2}}\sim 3.27582\ldots$

Hereafter we use the following notations.
$E_{1}= \min\{\lambda_{*}(\tau_{1}), \lambda_{*}(\tau_{2})\}$ , $E_{2}= \max\{\lambda^{*}(\tau_{1}), \lambda^{*}(\tau_{2})\}$ .

Usual definitions of the Diophanitine condition in KAM theorem are given as
follows.

There exist constants $\gamma,$ $d:\gamma>0,$ $d>2$ , which satisfy

$|( \tau_{1}m_{1}+\tau_{2}m_{2})-n|\geq\frac{\gamma}{|m|^{d}}$

for every integers $m=(m_{1}, m_{2})\in \mathbb{Z}^{2},$ $n\in \mathbb{Z}$ where $|\cdot|$ denotes a usual Euclidean
norm.
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Here we say that $\{\tau_{1}, \tau_{2}\}$ satisfies $d_{\eta-}(D)$ condition or we call the pair a $d_{0^{-}}(D)$

class pair if there exists a constant $d_{0}$ : $d_{0}\geq 2$ , such that, for each $d>d_{0}$ , there
exists $\gamma_{d}>0$ , which satisfies

(3.3) $|( \tau_{1}m_{1}+\tau_{2}m_{2})-n|\geq\frac{\gamma_{d}}{|m|^{d}}$

for every integers $m=(m_{1}, m_{2})\in \mathbb{Z}^{2},$ $n\in \mathbb{Z}$ and furthermore, for each $d$ :
$0<d<d_{0}$ and each $\gamma>0$ , there exist integers $m_{\gamma}=(m_{\gamma,1},m_{\gamma,2})\in \mathbb{Z}^{2}$ and
$n_{\gamma}\in \mathbb{Z}$ , which satisfy

(3.4) $|( \tau_{1}m_{\gamma,1}+\tau_{2}m_{\gamma,2})-n_{\gamma}|<\frac{\gamma}{|m_{\gamma}|^{d}}$ .

By (3.4) the constant $d_{0}$ specifies the infimum value of $d$, which satisfies (3.3).
We call a pair $\{\tau_{1}, \tau_{2}\}$ a Liouville type pair if, for every $d_{0}>0$ , there exists

$d:d>d_{0}$ such that for each $\gamma>0$ , there exists $m_{\gamma}=(m_{\gamma,1}, m_{\gamma,2})$ , which satisfies

$|( \tau_{1}m_{\gamma,1}+\tau_{2}m_{\gamma,2})-n_{\gamma}|<\frac{\gamma}{|m_{\gamma}|^{d}}$ .

Theorem 3.1. Let $\tau_{1},$ $\tau_{2}$ have the upper and lower L\’evy constants and belong to
a $d_{0^{-}}(D)$ class. Then for the constants $d_{0},$ $\delta_{0}$ we have

(3.5) $1- \frac{d_{0}-1}{2}\cdot\frac{\log E_{2}}{\log E_{1}}\leq\delta_{0}\leq 1-\frac{d_{0}}{d_{0}+2}\cdot\frac{\log E_{1}}{\log E_{2}}$ .

4. EXTREMAL NUMBERS

For the $d_{0^{-}}(D)$ condition, if $\{1, \tau_{1}, \tau_{2}\}$ are linearly independent over $\mathbb{Q}$ , it is
known that the following inequalities

$2\leq d_{0}\leq\gamma^{2}=2.618\cdots$

hold where $\gamma=(1+\sqrt{5})/2$ . Furthermore, almost an pairs of irrational numbers
with respect to Lebesgue‘s measure satisfy $d_{0}=2$ . For the case $\tau_{1}=\xi,$ $\tau_{2}=\xi^{2}$

where $\xi$ is not quadratic irrational Davenport and Schmidt estimated the upper
bound $\gamma^{2}$ in 1969 and In [10] D.Roy introduced the irrational numbers, called
extremal numbers, which satisfy $d_{0}=\gamma^{2}$ and proved that the set of extremal
numbers is countable. He gave some explicit examples of extremal numbers by
using continued fractions of Fibonacci sequences as follows.

Let $\{a, b\}$ be a pair of distinct positive integers and define the sequence $\{w_{i}\}$

recursively by
$w_{0}=b,$ $w_{1}=a,$ $w_{i}=w_{i-1}w_{i-2}(i\geq 2)$ ,

$w_{2}=ab$

$w_{3}=w_{2}w_{1}=aba$

$w_{4}=w_{3}w_{2}=abaab$

$w_{5}=w_{4}w_{3}=abaababa$

:

106



RECURRENCY AND UNPREDICTABILITY OF QUASI-PERIODIC ORBITS

and put the infinite word $w=abaababaabaab\cdots$ , which is also given by a fixed
point of the substitution $aarrow ab,$ $barrow a$ .

The example of extremal numbers is given by the continued fraction

$\xi_{a,b}=[0;w]=\frac{}{a+\frac{11}{b+\frac{1}{a+}}}$

.

In 1998 M.Queff\’elec proved that any real number whose continued fraction
is given by a fixed point of substitutions has a L\’evy constant. Thus we put
$\lambda_{1}:=\lambda^{*}(\xi)=\lambda_{*}(\xi)$ .

However, up to now we have not yet known any results about L\’evy constants
of $\xi^{2}$ and so, we put

$E_{1}= \min\{\lambda_{*}(\xi^{2}), \lambda_{1}\}$ , $E_{2}= \max\{\lambda^{*}(\xi^{2}), \lambda_{1}\}$ .
For the pair $\tau_{1}=\xi,$ $\tau_{2}=\xi^{2}$ given by an extremal number it follows from

Theorem 3.1 that we have

(4.1) $1- \frac{\gamma^{2}-1}{2}\cdot\frac{\log E_{2}}{\log E_{1}}\leq\delta_{0}\leq 1-\frac{\gamma^{2}}{\gamma^{2}+2}\cdot\frac{\log E_{1}}{\log E_{2}}$.

In [10] D.Roy obtained an ecm sequence $\{t_{j}\}$ of $\{\xi,\xi^{2}\}$ , which is constructed
by denominators of the convergents of $\xi$ by using palindrome words (see the next
section 5). Since $[t_{j}]_{\xi}=0$ , we can show that $\delta_{0}=0$ . It follows from (4.1) that
we can estimate

$\frac{\log E_{2}}{\log E_{1}}\leq\frac{2}{\gamma^{2}-1}$ .

Since almost all irrational numbers have the L\’evy constant $\lambda_{0}=e^{\pi^{2}/12\log 2}$ ,
here we assume that
(4.2) $\lambda_{*}(\xi^{2})=\lambda^{*}(\xi^{2})=\lambda_{0}=3.27582\ldots$ .

Then, if $\lambda_{0}=\lambda_{1}$ , that is, $E_{1}=E_{2}$ , we have the contradiction: $\gamma^{2}\geq 3$ .
Thus a L\’evy constant $\lambda_{1}$ is not equal to the L\’evy constant $\lambda_{0}$ or the equalities
(4.2) do not hold: $\lambda^{*}(\xi^{2})>\lambda_{*}(\xi^{2})$ or $\lambda.(\xi^{2})=\lambda^{*}(\xi^{2})\neq\lambda_{0}$ . Our numerical
calculations show that (4.2) holds and the value of $\lambda_{1}$ depends on the values of
the partial quotients $a,$ $b$ . For example, in case $a=3,$ $b=2$ we can see that
$\lambda_{*}(\xi^{2})=\lambda^{*}(\xi^{2})\sim 3.27582\ldots$ and $\lambda_{1}\sim 2.916$ .

5. QUASI-PERIODIC ORBITS

In this section we estimate the gap values of recurrent dimesnions of a simple
quasi-periodic orbit, using the extremal numbers. In our previous papers ([6], [7],
[9] $)$ we have investigated these gap values in the other examples of quasi-periodic
orbits.

For an irrational pair $\{\tau_{1}, \tau_{2}\}$ as frequency we consider the following discrete
quasi-periodic orbit in the unit interval $[0,1)$

$\Sigma=\{\varphi(n):n=0,1,2, \ldots\}$ , $\varphi(n)=\max\{\{n\tau_{1}\}, \{n\tau_{2}\}\}$
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where $\{a\}$ denotes the fractional part of $a$ .
The first $\epsilon$-recurrent time $M_{\epsilon}$ to $0$ is defined by

$M_{\epsilon}= \min\{n\in N:\varphi(n)<\epsilon\}$

and the upper and the lower recurrent dimensions are defined by

$\overline{D}(\Sigma)=\lim\sup^{\underline{\log M_{\epsilon}}}$ ,
$\epsilonarrow 0$

$-\log\epsilon$

$\underline{D}(\Sigma)=\lim_{\epsilonarrow}\inf_{0}\frac{\log M_{\epsilon}}{-\log\epsilon}$.

The gap of the recurrent dimensions, which gives the unpredictability level of
orbits, is defined by

$G(\Sigma)=\overline{D}(\Sigma)-\underline{D}(\Sigma)$ .
Since we can show the following estimates by applying the argument in our
previous paper [4]

$\underline{D}(\Sigma)\leq\frac{\log E_{2}}{(1-\delta_{0})\log E_{1}}$,

$\overline{D}(\Sigma)\geq\frac{\log E_{l}}{(1-\delta_{1})\log E_{2}}$ ,

we have

(5.1) $G( \Sigma)\geq\frac{\log E_{l}}{(1-\delta_{1})\log B}-\frac{\log E_{2}}{(1-\delta_{0})\log E_{1}}$.

Now we consider the orbit given by
$\varphi(n)=\max\{\{n\xi\}, \{n\xi^{2}\}\}$

To show the optimality of the Diophantine condition, that is, $d_{\eta}=\gamma^{2}$ , D.Roy
used the palindrome words $\{m_{i}\}$ in the Fibonacci sequence:

$m_{1}=a,$ $m_{2}=aba,$ $m_{i}=m_{i-1}s_{i-1}m_{i-2}(i\geq 3)$

where $s_{i}=ab$ for even $i$ and $si=ba$ for odd $i$ .
$m_{i}$ is a word of $w_{i+2}$ without its last two terms.

$w_{2}=ab$

$w_{3}=w_{2}w_{1}=a[ba]$ $arrow m_{1}=w_{3}-[ba]=a$

$w_{4}=w_{3}w_{2}=aba$ [ab] $arrow m_{2}=w_{4}-[ab]=aba$

$w_{5}=w_{4}w_{3}=abaaba[ba]$ $arrow m_{3}=w_{5}-[ba]=abaaba$

: :

Let $\{p_{i}/q_{i}\}$ be the convergents of $\xi$ , then

$[0;m_{i}]= \frac{p_{f_{l}-2}}{q_{f_{i}-2}}$

holds where $f_{i}$ is the usual Fibonacci sequence;
$f_{1}=1,$ $f_{2}=1,$ $f_{3}=2,$ $f_{4}=2+1=3,$ $\ldots,$

$f_{i}=f_{i-1}+f_{i-2}$ ,
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$f_{i}= \frac{5+\sqrt{5}}{10}(\frac{\sqrt{5}+1}{2})^{i-1}+\overline{10}\overline{2}()^{i-1}$.5一而一 $\sqrt{5}+1$

The essential estimates, which were used in the proof by Roy, are

$| \xi-\frac{p_{f_{i}-2}}{q_{f_{i}-2}}|<\frac{1}{q_{f_{i}-2}^{2}}$ , $| \xi^{2}-\frac{p_{f_{i}-3}}{q_{f_{i}-2}}|<\frac{c}{q_{f\dot{.}-2}^{2}}$

for some constant $c>0$ .
Since the sequence $\{q_{f-2}i\}$ of common denominators is a subsequence of ECM $(\xi, \xi^{2})$ ,

which satisfies $[q_{f_{i}-2}]_{\xi}=0$ , we can show that $\delta_{0}=0$ . On the other hand, investi-
gating the sequence $\{q_{f_{i+1}-2}-q_{f_{i}-2}\}$ , which is also a subsequence of ECM $(\xi, \xi^{2})$ ,
we can estimate $\delta_{1}\geq 1/2$ . It follows from (5.1) that we have

$G( \Sigma)\geq\frac{2\log E_{1}}{\log E_{2}}-\frac{\log E_{2}}{\log E_{1}}$ .

For instance, according to our numerical calculations, considering the case $a=3,$ $b=2$
where

$\lambda_{*}(\xi^{2})=\lambda^{*}(\xi^{2})\sim\lambda_{0}=3.27582\ldots.$ , $\lambda_{*}(\xi)=\lambda^{*}(\xi)=\lambda_{1}\neq\lambda_{0}$,
we have

$\log E_{1}=\log\lambda_{1}\sim 1.0705\ldots$ , $\log E_{2}=\log\lambda_{0}\sim 1.18657\ldots$

Then we obtain a strictly positive gap value:
$G(\Sigma)\geq 0.6959\ldots>0$ .
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