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1. INTRODUCTION

Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ and let $C$

be a nonempty closed convex subset of $H$ . Then, a mapping $T$ : $Carrow C$ is called
nonexpansive if $\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . We denote by $F(T)$ the set of
fixed points of $T$ . Let $\{T_{n}\}$ be a family of nonexpansive mappings of $C$ into itself and
let $F$ be the set of common fixed points of $\{T_{n}\}$ , i.e., $F= \bigcap_{n=1}^{\infty}F(T_{n})$ . Browder [3].
introduced the following iterations and proved strong convergence theorem:

$u_{n}=\alpha_{n}u+(1-\alpha_{n})Tu_{n}$ for every $n=1,2,$ $\ldots$ . (1.1)

where $\{\alpha_{n}\}$ is a sequence in $(0,1)$ converging to $0$ , and $u\in C$ . Reich [14] and
Takahashi and Ueda [20] extended Browder‘s result to those of a Banach space.
Wittmann [23] obtained a strong convergence theorem in Hilbert spaces by using the
iteration procedure which was initially introduced by Halpern [6]:

$x_{1}\in C$ and
$x_{n+1}=\alpha_{n}x_{1}+(1-\alpha_{n})Tx_{n}$ , $n=1,2$ , . . . , (1.2)

where $\alpha_{n}\in[0,1]$ (see [23, 18] for the proof). Moudafi[9] generalize Browder $s$ and
Halpern’s theorems [3, 6]. Moudafi $s$ generalizations are called viscosity approxi-
mations. Xu extend Moudafi $s$ theorems toe uniformly smooth Banach spaces (see
also [19] $)$ . Petrusel and Yao [12] studied viscosity approximations with generalized
contraction mappings and nonexpansive mappings, and they proved strong conver-
gence theorems for the mappings. Wangkeeree [22] studied viscosity approximations
with nonself nonexpansive mappings and proved strong convergence theorems for the
mappings. On the other hand, Cho and Kang [4] studied implicit viscosity approx-
imations for pseudocontractive semigroups and proved strong convergence theorems
for the semigroups (see also [15]).

In this paper, we study implicit and explicit viscosity approximations with gener-
alized contraction mappings and nonself nonexpansive mappings. We prove strong
convergence theorems for the nonself nonexpansive mappings. Further, we study im-
plicit and explicit viscosity approximations with generalized contraction mappings
and pseudocontractive semigroups, and prove strong convergence theorems for the
pseudocontractive semigroups.
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2. PRELIMINARIES

Throughout this paper, we denote by $\mathbb{N}$ and $\mathbb{R}$ the set of all positive integers, the
set of all real numbers, respectively. We also denote by $\mathbb{R}G^{+}$ the set of all nonnegative
real numbers. Let $E$ be a real Banach space with norm $\Vert\cdot\Vert$ . We denote by $B_{r}$ the
set $\{x\in E: \Vert x\Vert\leq r\}$ . Let $E^{*}$ be the dual space of a Banach space $E$ . The value of
$x^{*}\in E^{*}$ at $x\in E$ will be denoted by $\langle x,$ $x^{*}\rangle$ . Let $E$ be a real Banach space and let
$C$ be a nonempty closed convex subset of $E$ . We denote by $I$ the identity operator
on $E$ . The multi-valued mapping $J$ from $E$ into $E^{*}$ defined by

$J(x)=\{x^{*}\in E^{*} :\langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$ for every $x\in E$

is called the duality mapping of $E$ . From the Hahn-Banach theorem, we see that
$J(x)\neq\emptyset$ for all $x\in E$ .

A Banach space $E$ is said to be strictly convex if

$\frac{\Vert x+y\Vert}{2}<1$

for $x,$ $y\in E$ with $\Vert x\Vert=\Vert y\Vert=1$ and $x\neq y$ . In a strictly convex Banach space, we
have that if $||x\Vert=\Vert y\Vert=\Vert(1-\lambda)x+\lambda y||$ for $x,$ $y\in E$ and $\lambda\in(0,1)$ , then $x=y$ .
For every $\epsilon$ with $0\leq\epsilon\leq 2$ , we define the modulus $\delta(\epsilon)$ of convexity of $E$ by

$\delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2}$ : $\Vert x\Vert\leq 1,$ $\Vert y\Vert\leq 1,$ $\Vert x-y\Vert\geq\epsilon\}$ .

A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for every $\epsilon>0$ . If $E$ is
uniformly convex, then for $r,$ $\epsilon$ with $r\geq\epsilon>0$ , we have $\delta(\frac{\epsilon}{r})>0$ and

$\Vert\frac{x+y}{2}\Vert\leq r(1-\delta(\frac{\epsilon}{r}))$

for every $x,$ $y\in E$ with $\Vert x\Vert\leq r,$ $\Vert y\Vert\leq r$ and $\Vert x-y\Vert\geq\epsilon$ . It is well-known that a
uniformly convex Banach space is reflexive and strictly convex. Banach space $E$ is
said to be smooth if

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$

exists for each $x$ and $y$ in $S_{1}$ , where $S_{1}=\{u\in E : \Vert u\Vert=1\}$ . The norm of $E$ is said to
be uniformly G\^ateaux differentiable if for each $y$ in $S_{1}$ , the limit is attained uniformly
for $x$ in $S_{1}$ . We know that if $E$ is smooth, then the duality mapping is single-valued
and norm to weak star continuous and that if the norm of $E$ is uniformly G\^ateaux
differentiable, then the duality mapping is single-valued and norm to weak star,
uniformly continuous on each bounded subset of $E$ .

Let $\mu$ be a mean on positive integers $\mathbb{N}$ , i.e., a continuous linear functional on $l^{\infty}$

satisfying $\Vert\mu\Vert=1=\mu(1)$ . We know that $\mu$ is a mean on $N$ if and only if
$\inf\{a_{n}:n\in \mathbb{N}\}\leq\mu(f)\leq\sup\{a_{n}:n\in N\}$

for each $f=(a_{1}, a_{2}, \ldots)\in l^{\infty}$ . Occasionally, we use $\mu_{n}(a_{n})$ instead of $\mu(f)$ . So, a
Banach limit $\mu$ is a mean on $\mathbb{N}$ satisfying $\mu_{n}(a_{n})=\mu_{n}(a_{n+1})$ . Let $f=(a_{1}, a_{2}, \ldots)\in l^{\infty}$
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and let $\mu$ be a Banach limit on N. Then,

$\varliminf_{narrow\infty}a_{n}\leq\mu(f)=\mu_{n}(a_{n})\leq\varlimsup_{narrow\infty}a_{n}$ .

Specially, if $a_{n}arrow a$ , then $\mu(f)=\mu_{n}(a_{n})=a$ (see [17, 18]).
Let $E$ be a real Banach space and let $C$ be a nonempty closed convex subset of $E$ .

Then, a mapping $T:Carrow C$ is called nonexpansive if $\Vert Tx-Ty$ li $\leq\Vert x-y\Vert$ for all
$x,$ $y\in C$. We denote by $F(T)$ the set of fixed points of $T$ . A function $\psi:\mathbb{R}G^{+}arrow \mathbb{R}G^{+}$

is said to be L-function if $\psi(0)=0,$ $\psi(t)>0$ for $t>0$ and for any $s>0$ , there exists
$u>s$ such that $\psi(t)\leq s$ for $t\in[s, u]$ . A mapping $f$ from $E$ into $E$ is said to be
$(\psi, L)$-contraction if $\psi$ : $\mathbb{R}G^{+}arrow \mathbb{R}G^{+}$ is L-function and $\Vert f(x)-f(x)\Vert<\psi(\Vert x-y\Vert)$

for all $x,$ $y\in E$ with $x\neq y$ . A mapping $f:Carrow C$ is said to be Meir-Keeler type
mapping if for any $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that for any $x,$ $y\in E$ with
$\Vert x-y\Vert<\epsilon+\delta$ $\Vert f(x)-f(y)\Vert<\epsilon$ (see [10]). If $f$ is k-contractive, then $f$ is a Meir-
Keeler type mapping and $(\phi, L)$-contraction. By a generalized contraction mapping
we mean a Meir-Keeler type mapping or $(\phi, L)$-contraction (see [2, 8, 10, 12, 13, 16]).

3. STRONG CONVERGENCE THEOREMS FOR NONSELF MAPPINGS

In this section, we study implicit and explicit viscosity approximations with gen-
eralized contraction mappings and nonself nonexpansive mappings (see [1]). Now
we can prove a strong convergence theorem by an implicit viscosity approximation
method (see [1]).

Theorem 3.1. Let $E$ be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping $J$ from $E$ to $E^{*}$ . Let $C$ be a nonempty closed
convex subset of $E$ . Suppose that $C$ is a sunny nonexpansive retract of $E$ . Let $P$ be a
sunny nonexpansive retraction of $E$ onto $C$ , let $T$ be a nonself nonexpansive mapping
of $C$ into $E$ such that $F(T)\neq\emptyset$ and let $f$ be a generalized contraction mapping. Let
$\{\alpha_{n}\}$ be a sequence of real numbers such that $0<\alpha_{n}<1$ and $\lim_{narrow\infty}\alpha_{n}=0$ . If $\{x_{n}\}$ is
given by

$x_{n}= \frac{1}{n}\sum_{j=1}^{n}P(\alpha_{n}f(x_{n})+(1-\alpha_{n})(TP)^{j}x_{n})$

for every $n\in N$ , then $\{x_{n}\}$ converges strongly to $p\in F(T)$ . Further, $p$ is the unique
solution of the variational inequality :

$\langle(f-I)p,j(u-p)\rangle\leq 0$

for all $u\in F(T)$ .
We can prove a strong convergence theorem by an explicit viscosity approximation

method (see [1]).

Theorem 3.2. Let $E$ be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping $J$ from $E$ to $E^{*}$ . Let $C$ be a nonempty
closed convex subset of $E$ . Suppose that $C$ is a sunny nonexpansive retract of $E$ . Let
$P$ be a sunny nonexpansive retraction of $E$ onto $C$ , let $T$ be a nonself nonexpansive

126



mapping of $C$ into $E$ such that $F(T)\neq\emptyset$ and let $f$ be a generalized contraction
mapping. Let $\{\alpha_{n}\}$ be a sequence of real numbers such that $0< \alpha_{n}<1,\lim_{narrow\infty}\alpha_{n}=0$ ,
and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $\{x_{n}\}$ is given by $x_{1}=x\in C$ and

$x_{n+I}= \frac{1}{n}\sum_{j=1}^{n}P(\alpha_{n}f(x_{n})+(1-\alpha_{n})(TP)^{j}x_{n})$

for every $n\in \mathbb{N}$ , then $\{x_{n}\}$ converges strongly to $p\in F(T)$ . Further, $p$ is the unique
solution of the variational inequality :

$\langle(f-I)p,j(u-p)\rangle\leq 0$

for all $u\in F(T)$ .
We also have a strong convergence theorem by an explicit viscosity approximation

method (see [1]).

Theorem 3.3. Let $E$ be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping $J$ from $E$ to $E^{*}$ . Let $C$ be a nonempty
closed convex subset of $E$ . Suppose that $C$ is a sunny nonexpansive retract of $E$ . Let
$P$ be a sunny nonexpansive retraction of $E$ onto $C$ , let $T$ be a nonself nonexpansive
mapping of $C$ into $E$ such that $F(T)\neq\emptyset$ and let $f$ be a generalized contraction
mapping. Let $\{\alpha_{n}\}$ a sequence of real numbers such that $0< \alpha_{n}<1,\lim_{narrow\infty}\alpha_{n}=0$ ,
and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $\{x_{n}\}$ is given by $x_{1}=x\in C$ and

$x_{n+1}= \alpha_{n}f(x_{n})+(1-\alpha_{n})\frac{1}{n}\sum_{j=1}^{n}(PT)^{j}x_{n}$

for every $n\in \mathbb{N}$ , then $\{x_{n}\}$ converges strongly to $p\in F(T)$ . Further, $p$ is the unique
solution of the variational inequality :

$\langle(f-I)p,j(u-p)\rangle\leq 0$

for all $u\in F(T)$ .

4. STRONG CONVERGENCE THEOREMS FOR PSEUDOCONTRACTIVE SEMIGROUPS

In this section, we study implicit and explicit viscosity approximations with L-
Lipschitz semigroup pseudocontraction on $C$ . We prove strong convergence theorems
for the L-Lipschitz semigroup pseudocontraction.

A mapping $T$ : $Carrow C$ is called pseudocontractive if there exists some $j(x-y)\in$
$J(x-y)$ such that $\langle$Tx–Ty, $j(x-y)\rangle\leq\Vert x-y\Vert^{2}$ for all $x,$ $y\in C$. A mapping
$T$ : $Carrow C$ is called strongly pseudocontractive if there exists a constant $\alpha\in(0,1)$

such that
$\langle$Tx–Ty, $j(x-y)\rangle\leq\alpha\Vert x-y\Vert^{2}$ $(x, y\in C)$

for some $j(x-y)\in J(x-y)$ . A mapping $T$ : $Carrow C$ is said to be Lipschitz if there
exists a constant $L>0$ such that $\Vert Tx-Ty\Vert\leq L\Vert x-y\Vert$ for all $x,$ $y\in C$ . If $L=1$ ,
then $T$ is said to be nonexpansive. Deimling [5] proved the following theorem.
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Theorem 4.1 ([5]). Let $E$ be a Banach space, let $C$ be a nonempty closed convex
subset of $E$ . Let $T$ be a continuous and strong pseudocontractive mapping. Then, $T$

has a unique fixed point of $T$ .
A family $S=\{T(t) : t\geq 0\}$ of mappings of $C$ into itself is said to be a pseudocon-

traction semigroup on $C$ .
(i) $T(O)x=x$ for all $x\in C$ ;
(ii) $T(t+s)=T(t)T(s)$ for each $t,$ $s\in S$ ;
(iii) $\lim_{tarrow 0}T(t)x=x$ for all $x\in C$ ;
(iv) for each $t\in S,$ $T(t)$ is a pseudocontractive mapping of $C$ into itself, that is,

$\langle Tx-Ty,j(x-y)\rangle\leq\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ .
We denote by $F(S)$ the set of common fixed points of $S$ , i.e., $F(S)= \bigcap_{t\geq 0}F(T(t))$ .
Note that the class of pseudocontraction semigroups includes the class of nonexpan-
sive semigroups. Now, we can prove a strong convergence theorem by an implicit
viscosity approximation method (see [1]).

Theorem 4.2. Let $E$ be a uniformly convex Banach space with a uniformly G\^ateaux

differentiable norm and let $C$ be a nonempty closed convex subset of $E$ . Let $S=$

$\{T(t) : t\geq 0\}$ be a strongly continuous, and L-Lipschitz semigroup of pseudocontrac-
tions of $C$ into itself such that $F(S)\neq\emptyset$ . Let $f$ be a generalized contraction mapping.
Let $\{\alpha_{n}\}$ and $\{t_{n}\}$ be sequences of real numbers such that $0<\alpha_{n}<1,$ $t_{n}>0$ and
$\lim_{narrow\infty}t_{n}=\lim_{narrow\infty}\frac{\alpha_{n}}{t_{n}}=0$ . Let $\mu$ be a Banach limit. Let $\{x_{n}\}$ be a sequence defined by

$x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T(t_{n})x_{n}$

for every $n\in$ N. Assume that $\mu_{n}\Vert T(t)x_{n}-T(t)z\Vert\leq\mu_{n}\Vert x_{n}-z\Vert$ for each $z\in K$

and $t\geq 0$ , where $K= \{z\in C:\mu_{n}\Vert x_{n}-z\Vert^{2}=\min_{x\in C}\mu_{n}\Vert x_{n}-x\Vert^{2}\}$. Then, $\{x_{n}\}$

converges strongly to $p\in F(S)$ . Further, $p$ is the unique solution of the variational
inequality :

$\langle(f-I)p,j(u-p)\rangle\leq 0$

for all $u\in F(S)$ .

Now we can prove a strong convergence theorem by an explicit viscosity approxi-
mation method (see [1]).

Theorem 4.3. Let $E$ be a uniformly convex Banach space with a uniformly G\^ateaux

differentiable norm and let $C$ be a nonempty closed convex subset of $E$ . Let $S=$

$\{T(t) : t\geq 0\}$ be a strongly continuous, and nonself L-Lipschitz semigroup of
pseudocontractions of $C$ into itself such that $F(S)\neq\emptyset$ . Let $f$ be a generalized
contraction mapping. Let $\{\alpha_{n}\}$ and $\{t_{n}\}$ be sequences of real numbers such that
$0<\alpha_{n}<1,$ $t_{n}>0, \lim_{narrow\infty}t_{n}=\lim_{narrow\infty}\frac{\alpha_{n}}{t_{n}}=0$ , and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Let $\mu$ be a Banach

limit. Let $\{x_{n}\}$ be a sequence defined by $x_{1}=x\in C$ and
$x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T(t_{n})x_{n}$
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for every $n\in \mathbb{N}$ . Assume that $\mu_{n}\Vert T(t)x_{n}-T(t)z\Vert\leq\mu_{n}\Vert x_{n}-z\Vert$ for each $z\in K$

and $t\geq 0$ , where $K= \{z\in C:\mu_{n}\Vert x_{n}-z\Vert^{2}=\min_{x\in C}\mu_{n}\Vert x_{n}-x\Vert^{2}\}$. Then, $\{x_{n}\}$

converges strongly to $p\in F(S)$ . Further, $p$ is the unique solution of the variational
inequality :

$\langle(f-I)p,j(u-p)\rangle\leq 0$

for all $u\in F(S)$ .
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