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VISCOSITY APPROXIMATION METHODS FOR
FIXED POINTS PROBLEMS

(LBEK%¥  EZ #F (SACHIKO ATSUSHIBA)

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C
be a nonempty closed convex subset of H. Then, a mapping T : C — C is called
nonexpansive if ||Tz — Ty|| < ||z — y|| for all z,y € C. We denote by F(T) the set of
fixed points of T. Let {T},} be a family of nonexpansive mappings of C into itself and
let F' be the set of common fixed points of {73}, i.e., F = N, F(T,). Browder (3].
introduced the following iterations and proved strong convergence theorem:

Up = apu+ (1 —ay)Tu, forevery n=1,2,.... (1.1)

where {a,} is a sequence in (0,1) converging to 0, and u € C. Reich [14] and
Takahashi and Ueda [20] extended Browder’s result to those of a Banach space.
Wittmann [23] obtained a strong convergence theorem in Hilbert spaces by using the
iteration procedure which was initially introduced by Halpern [6]:

x, € C and
Tpp1 =opT1 + (1 —0,)Tz,, n=12..., (1.2)

where a, € [0,1] (see [23, 18] for the proof). Moudafi[9] generalize Browder’s and
Halpern’s theorems [3, 6]. Moudafi’s generalizations are called viscosity approxi-
mations. Xu extend Moudafi’s theorems toe uniformly smooth Banach spaces (see
also [19]). Petrusel and Yao [12] studied viscosity approximations with generalized
contraction mappings and nonexpansive mappings, and they proved strong conver-
gence theorems for the mappings. Wangkeeree [22] studied viscosity approximations
with nonself nonexpansive mappings and proved strong convergence theorems for the
mappings. On the other hand, Cho and Kang [4] studied implicit viscosity approx-
imations for pseudocontractive semigroups and proved strong convergence theorems
for the semigroups (see also [15]).

In this paper, we study implicit and explicit viscosity approximations with gener-
alized contraction mappings and nonself nonexpansive mappings. We prove strong
convergence theorems for the nonself nonexpansive mappings. Further, we study im-
plicit and explicit viscosity approximations with generalized contraction mappings
and pseudocontractive semigroups, and prove strong convergence theorems for the
pseudocontractive semigroups.
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2. PRELIMINARIES

Throughout this paper, we denote by N and R the set of all positive integers, the
set of all real numbers, respectively. We also denote by RG™ the set of all nonnegative
real numbers. Let F be a real Banach space with norm || - ||. We denote by B, the
set {z € E : ||z|| < r}. Let E* be the dual space of a Banach space E. The value of
z* € E* at £ € E will be denoted by (z,z*). Let E be a real Banach space and let
C' be a nonempty closed convex subset of E. We denote by I the identity operator
on E. The multi-valued mapping J from E into E* defined by

J(@) = {z* € B": (z,0") = |lz|? = "2} forevery z€E
is called the duality mapping of E. From the Hahn-Banach theorem, we see that

J(z)#Pforallz € E.
A Banach space F is said to be strictly convex if

Iz + yl
<1
2
for z,y € E with ||z|| = ||ly|| = 1 and z # y. In a strictly convex Banach space, we

have that if ||z|| = ||ly|| = || (1 = A)z + Ay|| for z,y € E and A € (0,1), then z = y.
For every € with 0 < € < 2, we define the modulus é(¢) of convexity of E by

5(e) =inf{1 el ey < < 1o - vl > e}.

A Banach space E is said to be uniformly convex if § (¢) > 0 for every € > 0. If E is
uniformly convex, then for r, & with r > & > 0, we have ¢ (f) > 0 and

<r(1-0(7)
r
for every z,y € E with ||z|| < r, ||y|| < r and ||z — y|| > €. It is well-known that a

uniformly convex Banach space is reflexive and strictly convex. Banach space F is
said to be smooth if

r+y

ool gyl ]

t—0 t
exists for each z and y in S;, where S; = {u € E : ||u]| = 1}. The norm of F is said to
be uniformly Gateaux differentiable if for each y in S7, the limit is attained uniformly
for x in S;. We know that if £ is smooth, then the duality mapping is single-valued
and norm to weak star continuous and that if the norm of E is uniformly Gateaux
differentiable, then the duality mapping is single-valued and norm to weak star,
uniformly continuous on each bounded subset of E.

Let u be a mean on positive integers N, i.e., a continuous linear functional on [*

satisfying ||g|| = 1 = p(1). We know that y is a mean on N if and only if

inf{a, : n € N} < u(f) < sup{a, : n € N}

for each f = (a1,a9,...) € I®°. Occasionally, we use u,(a,) instead of u(f). So, a
Banach limit 4 is a mean on N satisfying p,(a,) = pn(an+1). Let f = (a1, a9,...) € 1%
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and let u be a Banach limit on N. Then,
lim a, < p(f) = palan) < lim Qn.

n—oo n—00
Specially, if a,, — a, then u(f) = pn(a,) = a (see [17, 18]).

Let E be a real Banach space and let C' be a nonempty closed convex subset of E.
Then, a mapping T : C — C is called nonexpansive if ||T2 — Ty|| < ||z — y|| for all
z,y € C. We denote by F(T) the set of fixed points of T. A function ¢: RG* — RG*
is said to be L-function if 1/(0) = 0, ¥(¢) > 0 for ¢ > 0 and for any s > 0, there exists
u > s such that ¥(t) < s for t € [s,u]. A mapping f from FE into E is said to be
(¥, L)-contraction if ¢ : RGt — RG™ is L-function and ||f(z) — f(2)|| < ¥(|lz —y||)
for all z,y € E with z # y. A mapping f: C — C is said to be Meir-Keeler type
mapping if for any € > 0 there exists § = d(¢) > 0 such that for any z,y € FE with
lze—y|l <e+é | f(z)— f(y)| <e (see [10]). If f is k-contractive, then f is a Meir-
Keeler type mapping and (¢, L)-contraction. By a generalized contraction mapping
we mean a Meir-Keeler type mapping or (¢, L)-contraction (see [2, 8, 10, 12, 13, 16]).

3. STRONG CONVERGENCE THEOREMS FOR NONSELF MAPPINGS

In this section, we study implicit and explicit viscosity approximations with gen-
eralized contraction mappings and nonself nonexpansive mappings (see [1]). Now
we can prove a strong convergence theorem by an implicit viscosity approximation
method (see [1)).

Theorem 3.1. Let E be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping J from E to E*. Let C be a nonempty closed
convex subset of E. Suppose that C' is a sunny nonexpansive retract of E. Let P be a
sunny nonexpansive retraction of E onto C, let T be a nonself nonexpansive mapping
of C into E such that F(T') # 0 and let f be a generalized contraction mapping. Let
{a,} be a sequence of real numbers such that 0 < ¢, < 1 and nlm°1° a, =0. If {z,} is

given by .
tn = = 3 P(eaf (@) + (1 - an)(TP)'zs)

=1
for every n € N, then {z,} converges strongly to p € F(T). Further, p is the unique
solution of the variational inequality :

(f =Dp,j(u—p)) <0
for all u € F(T).

We can prove a strong convergence theorem by an explicit viscosity approximation
method (see [1]).

Theorem 3.2. Let E be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping J from E to E*. Let C be a nonempty
closed convex subset of E. Suppose that C is a sunny nonexpansive retract of E. Let
P be a sunny nonexpansive retraction of E onto C, let T be a nonself nonexpansive
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mapping of C' into E such that F(T) # 0 and let f be a generalized contraction

mapping. Let {a,} be a sequence of real numbers such that 0 < o, < 1, lim o, = 0,
n—oo

and ) >  a, = oco. If {z,} is given by z; =z € C and

Tap1 = % S Panf(@n) + (1 — an)(TPYz,)

j=1

for every n € N, then {,} converges strongly to p € F(T). Further, p is the unique
solution of the variational inequality :

(f =Dp,j(u—p)) <0
for all w € F(T).

We also have a strong convergence theorem by an explicit viscosity approximation
method (see [1]).

Theorem 3.3. Let E be a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping J from E to E*. Let C be a nonempty
closed convex subset of E. Suppose that C is a sunny nonexpansive retract of E. Let
P be a sunny nonexpansive retraction of E onto C, let T be a nonself nonexpansive
mapping of C' into E such that F(T) # 0 and let f be a generalized contraction
mapping. Let {a,} a sequence of real numbers such that 0 < a,, < 1, lim o, = 0,

n—o0
and ) ° , a, = oo. If {z,} is given by z; = z € C and
1< :
Tny1 = anf(mn) + (1 - an)ﬁ ZI(PT)an
]=
for every n € N, then {z,} converges strongly to p € F(T). Further, p is the unique
solution of the variational inequality :

(f =Dp,j(u—p)) <0
for all w € F(T).

4. STRONG CONVERGENCE THEOREMS FOR PSEUDOCONTRACTIVE SEMIGROUPS

In this section, we study implicit and explicit viscosity approximations with L-
Lipschitz semigroup pseudocontraction on C. We prove strong convergence theorems
for the L-Lipschitz semigroup pseudocontraction.

A mapping T : C' — C is called pseudocontractive if there exists some j(z — y) €
J(z — y) such that (Tz — Ty,j(z — y)) < ||z — y||? for all z,y € C. A mapping
T : C — C is called strongly pseudocontractive if there exists a constant a € (0, 1)
such that

(Tz—Ty,j(z-y)) < allz—yl* (z,y€C)
for some j(zr —y) € J(z —y). A mapping T : C — C is said to be Lipschitz if there
exists a constant L > 0 such that ||Tz — Ty|| < L||lz —y|| forall z,y € C. If L =1,
then T is said to be nonexpansive. Deimling [5] proved the following theorem.
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Theorem 4.1 ([5]). Let E be a Banach space, let C be a nonempty closed convex
subset of E. Let T be a continuous and strong pseudocontractive mapping. Then, T
has a unique fixed point of 7T'.

A family S = {T(t) : t > 0} of mappings of C into itself is said to be a pseudocon-
traction semigroup on C.
(i) T(0)z =z for all z € C;

(ii) T(t + s) = T(t)T(s) for each t,s € S,

(iii) lim;o T(t)z = z for all z € C;

(iv) for each t € S, T(t) is a pseudocontractive mapping of C into itself, that is,

(Tz — Ty, j(z - y)) < llz - yl®
for all z,y € C.

We denote by F(S) the set of common fixed points of S, i.e., F(S) = ;50 F(T'(¢))-
Note that the class of pseudocontraction semigroups includes the class of nonexpan-

sive semigroups. Now, we can prove a strong convergence theorem by an implicit
viscosity approximation method (see [1]).

Theorem 4.2. Let E be a uniformly convex Banach space with a uniformly Gateaux
differentiable norm and let C be a nonempty closed convex subset of E. Let S =
{T(t) : t > 0} be a strongly continuous, and L-Lipschitz semigroup of pseudocontrac-
tions of C into itself such that F'(S) # 0. Let f be a generalized contraction mapping.
Let {a,} and {t,} be sequences of real numbers such that 0 < a,, < 1,%, > 0 and

lim ¢, = lim Zn — 0. Let p be a Banach limit. Let {z,} be a sequence defined by

n—00 n—00 n

Tp = A f(Z,) + (1 — an)T(tn)2x

for every n € N. Assume that u,||T(t)z, — T(t)z|| < pnllzn — 2|| for each z € K
and t > 0, where K = {z € C : pn||zn — 2||* = mingec pinl|zn — z||*}. Then, {z,}
converges strongly to p € F(S). Further, p is the unique solution of the variational
inequality :

(f=Dp,j(u—p)) <0
for all u € F(S).

Now we can prove a strong convergence theorem by an explicit viscosity approxi-
mation method (see [1]).

Theorem 4.3. Let E be a uniformly convex Banach space with a uniformly Gateaux
differentiable norm and let C be a nonempty closed convex subset of E. Let S =
{T(t) : t > 0} be a strongly continuous, and nonself L-Lipschitz semigroup of
pseudocontractions of C into itself such that F(S) # 0. Let f be a generalized

contraction mapping. Let {a,} and {t,} be sequences of real numbers such that
Q

0<a,<1l,t >0, limt¢t,=lim —=0,and Y . &, = co. Let u be a Banach
n—o N—00 n

limit. Let {z,} be a sequence defined by z, =z € C and
Tnt1 = Anf(Zn) + (1 — an)T(tn)Tn
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for every n € N. Assume that p,||T(¢t)z, — T(t)z|| < pnl|zn — 2|| for each z € K
and t > 0, where K = {2z € C : p, ||z, — 2||? = mingec pn)|zn — z||*}. Then, {z,}
converges strongly to p € F(S). Further, p is the unique solution of the variational
inequality :

(f=Dp,j(u—p)) <0
for all u € F(S).
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