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1. INTRODUCTION
The Hahn-Banach theorem is one of the most fundamental theorems in the functional analysis

theory. This theorem is known well in the case where the range space is the real number system
as follows:

Let $p$ be a sublinear mapping from a vector space $X$ to the real number system $R,$ $Y$ a vector
subspace of $X$ and $q$ a linear mapping from $Y$ to $R$ such that $q\leq p$ on Y. Then $q$ can be
extended to a linear mapping $g$ defined on the whole space $X$ to $R$ such that $g\leq p$ .
It is known that this theorem establishes in the case where the range space is a Dedekind
complete Riesz space as follows [4, 16, 18]:

Let $p$ be a sublinear mapping from a vector space $X$ to a Dedekind complete Riesz space $E,$ $Y$

a vector subspace of $X$ and $q$ a linear mapping from $Y$ to $E$ such that $q\leq p$ on Y. Then $q$ can
be extended to a linear mapping $g$ defined on the whole space $X$ to $E$ such that $g\leq p$ .
Moreover, it is known that the Hahn-Banach extension property and a Dedekind completeness,
which is equivalent the least upper bound property, are equivalent in a partially ordered vector
space [2, 9, 17].

The Hahn-Banach theorem is often proved by using the Zorn lemma. On the other hand,
Hirano, Komiya, and Takahashi [8] showed the Hahn-Banach theorem by using the Markov-
Kakutani fixed point theorem [10] in the case where the range space is the real number system.

In this paper, in Section 3, using the Bourbaki-Kneser fixed point theorem, we give a new proof
of the Hahn-Banach theorem and the Mazur-Orlicz theorem in the case where the range space
is a Dedekind complete partially ordered vector space (Theorem 3.3, Theorem 3.4). In Section
4, we give a new proof of the separation theorem in a Cartesian product of the vector space and
Dedekind complete partially ordered vector space (Theorem 4.1); see [6, 7, 15]. The Bourbaki-
Kneser fixed point theorem is proved without using the Zorn lemma; see [11]. Therefore the
theorems above are proved without using the Zorn lemma.

2. PRELIMINARIES
Let $R$ be the set of real numbers, $N$ the set of natural numbers, $I$ an indexed set, $(E, \leq)$ a

partially ordered set and $F$ a subset of $E$ . The set $F$ is called a chain if any two elements are
comparable, that is, $x\leq y$ or $y\leq x$ for any $x,$ $y\in F$ . An element $x\in E$ is called a lower bound
of $F$ if $x\leq y$ for any $y\in F$ . An element $x\in E$ is called the minimum of $F$ if $x$ is a lower bound
of $F$ and $x\in F$ . If there exists a lower bound of $F$ , then $F$ is said to be bounded from below. An
element $x\in E$ is called an upper bound of $F$ if $y\leq x$ for any $y\in F$ . An element $x\in E$ is called
the maximum of $F$ if $x$ is an upper bound and $x\in F$ . If there exists an upper bound of $F$ , then
$F$ is said to be bounded from above. If the set of all lower bounds of $F$ has the maximum, then
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the maximum is called an infimum of $F$ and denoted by $\inf F$ . If the set of all upper bounds
of $F$ has the minimum, then the minimum is called a supremum of $F$ and denoted by $\sup F$ .
A partially ordered set $E$ is said to be complete if every nonempty chain of $E$ has an infimum;
$E$ is said to be Dedekind complete if every nonempty subset of $E$ which is bounded from below
has an infimum. A mapping $f$ from $E$ to $E$ is called decreasing if $f(x)\leq x$ for every $x\in E$ . For
the further information of a partially ordered set, see [1, 4, 5, 14, 16].

In a complete partially ordered set, the following theorem is obtained [3, 11, 12].

Theorem 2.1 (Bourbaki-Kneser). Let $E$ be a complete partially ordered set. Let $f$ be a de-
creasing mapping from $E$ to E. Then $f$ has a fixed point.

Recently, T. C. Lim [13] proved a common fixed point theorem for the family of decreasing
commutative mapping, which is a generalization of Theorem 2.1.

A partially ordered set $E$ is called a partially ordered vector space if $E$ is a vector space and
$x+z\leq y+z$ and $\alpha x\leq\alpha y$ hold whenever $x,$ $y,$ $z\in E,$ $x\leq y$ , and $\alpha$ is a nonnegative real number.
If a partially ordered vector space $E$ is a lattice, that is, any two elements have a supremum
and an infimum, then $E$ is called a Riesz space.

Let $X$ be a vector space and $E$ a partially ordered vector space. A mapping $f$ from $X$ to $E$

is said to be concave if $f(tx+(1-t)y)\geq tf(x)+(1-t)f(y)$ for any $x,$ $y\in X$ and $t\in[0,1]$ . A
mapping $f$ from $X$ to $E$ is called sublinear if the following conditions are satisfied.

(Sl) For any $x,$ $y\in X,$ $p(x+y)\leq p(x)+p(y)$ .
(S2) For any $x\in X$ and $\alpha\geq 0$ in $R,$ $p(\alpha x)=\alpha p(x)$ .

3. THE HAHN-BANACH THEOREM

Lemma 3.1. Let $p$ be a sublinear mapping from a $vector$ space $X$ to a Dedekind complete
partially ordered vector space $E,$ $K$ a nonempty convex subset of $X$ and $q$ a concave mapping
from $K$ to $E$ such that $q\leq p$ on K. For any $x\in X$ , let

$f(x)= \inf\{p(x+ty)-tq(y)|t\in[0,$ $\infty)$ and $y\in K\}$ .
Then $f$ is sublinear such that $f\leq p$ . Moreover if $g$ is a linear mapping from $X$ to $E$ , then $g\leq f$

is equivalent to $g\leq p$ on $X$ and $q\leq g$ on $K$ .

Proof. For any $x\in X,$ $\{p(x+ty)-tq(y)|t\in[0,$ $\infty)$ and $y\in K\}$ is bounded from below.
Indeed, since

$p(x+ty)-tq(y)\geq p(ty)-p(-x)-tq(y)\geq-p(-x)$ ,
it is established. Since $E$ is Dedekind complete, $f$ is well-defined and we have $f(x)\geq-p(-x)$ .
By definition of $f$ , we have $f(x)\leq p(x)$ and $f(\alpha x)=\alpha f(x)$ for any $\alpha\geq 0$ . Thus (S2) is
established. Let $x_{1},$ $x_{2}\in X$ . For any $y_{1},$ $y_{2}\in K$ and $s,$ $t>0$ , we have

$p(x_{1}+sy_{1})-sq(y_{1})+p(x_{2}+ty_{2})-tq(y_{2})$

$\geq p(x_{1}+x_{2}+(s+t)w)-(s+t)q(w)$

$\geq f(x_{1}+x_{2})$ ,

where $w= \frac{1}{s+t}(sy_{1}+ty_{2})\in K$ . For $p(x_{1}+sy_{1})-sq(y_{1})$ , take infimum with respect to $s>0$
and $y\in K$ , we have

$f(x_{1})+p(x_{2}+ty_{2})-tq(y_{2})\geq f(x_{1}+x_{2})$

and for $p(x_{2}+ty_{2})-tq(y_{2})$ , also take infimum with respect to $t>0$ and $y\in K$ , we have
$f(x_{1})+f(x_{2})\geq f(x_{1}+x_{2})$ .

This shows that $f(x_{1})+f(x_{2})\geq f(x_{1}+x_{2})$ . Thus (Sl) is established. Suppose that $g$ is a linear
mapping from $X$ to $E$ . If $g\leq f$ , then we have $g\leq p$ . Moreover for any $y\in K$ , since

$-g(y)=g(-y)\leq f(-y)\leq p(-y+y)-q(y)=-q(y)$ ,
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we have $g\geq q$ on $K$ . To prove the converse, suppose that $g\leq p$ on $X$ and $q\leq g$ on $K$ . For any
$x\in X,$ $y\in K$ and $t>0$ , we have

$g(x)=g(x+ty)-tg(y)\leq p(x+ty)-tq(y)$ .
This implies that $g\leq f$ . 口

The above lemma is proved in case where the range space is a Dedekind complete Riesz space,
see [16, Lemma 1.5.1].

By Theorem 2.1 and Lemma 3.1, we can give a following Lemma.

Lemma 3.2. Let $f$ be a sublinear mapping from a vector space $X$ to a Dedekind complete
partially ordered vector space E. Then there exists a linear mapping $g$ from $X$ to $E$ such that
$g\leq f$ .

Pmof. Put $f^{*}(x)=-f(-x)$ for any $x\in X$ . Let $y\in X$ and

$Y=$ { $h\in E^{X}|h$ is sublinear, $f^{*}\leq h\leq f$}.
Then $Y$ is an ordered set by its canonical order. Since $E$ is Dedekind complete, $E^{X}$ is also so.
Consider an arbitrary chain $Z\subset$ Y. Since $E^{X}$ is Dedekind complete and $Z$ is bounded from
below, there exists a $g= \inf Z$ in $E^{X}$ . Then $g$ is sublinear. Since $Y$ is bounded from below, it
holds that $g\in$ Y. Thus $Y$ is complete. Let $K=\{y\}$ . We define a decreasing operator $S$ by

$Sh(x)= \inf\{h(x+ty)-h(ty)|t\in[0, \infty), y\in K\}$

for any $h\in$ Y. By Lemma 3.1, $Sh$ is sublinear and $S$ is a mapping from $Y$ to Y. Thus by
Theorem 2.1, we have a fixed point $g\in Y$ . Then for any $x\in X$ , we have $g(x)\leq g(x+y)-g(y)$

and
$g(x)+g(y)\leq g(x+y)\leq g(x)+g(y)$ .

Thus $g$ is linear. 口

By lemma 3.2 and lemma 3.1, we can prove the Hahn-Banach theorem and the Mazur-Orlicz
theorem in case where the range space is a Dedekind complete partially ordered vector space.

Theorem 3.3. Let $p$ be a sublinear mapping from a vector space $X$ to a Dedekind complete
ordered vector space $E,$ $Y$ a vector subspace of $X$ and $q$ a linear mapping from $Y$ to $E$ such that
$q\leq p$ on Y. Then $q$ can be extended to a linear mapping $g$ defined on the whole space $X$ such
that $g\leq p$ .

Proof. By Lemma 3.1, there exists a sublinear mapping $f$ such that $f\leq p$ . By lemma 3.2, there
exists a linear mapping $g$ such that $g\leq f$ . Then putting $K=Y$ in Lemma 3.1, we have $g\leq p$

on $X$ and $q\leq g$ on $Y$ . Since $q$ is linear, we have $q=g$ on Y. Thus the aSSertion hOlds. 口

We obtain the Mazur-Orlicz theorem in a Dedekind complete partially ordered vector space.

Theorem 3.4. Let $p$ be a sublinear mapping from a vector space $X$ to a Dedekind complete
partially ordered vector space E. Let $\{x_{j}|j\in I\}$ be a family of elements of $X$ and $\{y_{j}|j\in I\}$

a family of elements of E. Then the following (1) and (2) are equivalent.
(1) There exists a linear mapping $f$ from $X$ to $E$ such that $f(x)\leq p(x)$ for any $x\in X$ and
$y_{j}\leq f(x_{j})$ for any $j\in I$ .
(2) $For$ any $n\in N,$ $\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{n}\geq 0$ and $j_{1},j_{2},$ $\ldots,j_{n}\in I$ , we have

$\sum_{i=1}^{n}\alpha_{i}y_{j_{i}}\leq p(\sum_{i=1}^{n}\alpha_{i}x_{j_{i}})$ .
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Proof. The assertion from (1) to (2) is clear. For any $x\in X$ , by (2), we have

$-p(-x) \leq p(x+\sum_{i=1}^{n}\alpha_{i}x_{j_{i}})-\sum_{i=1}^{n}\alpha_{i}y_{j_{i}}$ .

Put

$p_{0}(x)= \inf\{p(x+\sum_{i=1}^{n}\alpha_{i}x_{j}\dot{.})-\sum_{i=1}^{n}\alpha_{i}y_{j_{i}}$ $n\in N,$ $\alpha_{i}\geq 0$ and $j_{i}\in I\}$ .

Since $E$ is Dedekind complete, $p0$ is well-defined and $p0$ is sublinear. Thus by Corollary 3.2,
there exists a linear mapping $f$ from $X$ to $E$ such that $f(x)\leq p_{0}(x)$ for any $x\in X$ . Since
$po(-x_{j})\leq-y_{j}$ , we have

$y_{j}\leq-p_{0}(-x_{j})\leq f(x_{j})$ .
Since $p_{0}(x)\leq p(x)$ , we have $f(x)\leq p(x)$ Thus the assertion holdS 口

4. THE SEPARATION THEOREM

Let $X$ be a vector space, $E$ a Dedekind complete partially ordered vector space. Let $A$ be a
nonempty subset of $X$ and $L(A)$ denotes the affine manifold spanned by $A$ . We define

Int$(A)=\{x\in X|x+\lambda(x’-x)\in Aforany\lambda\in[0,\epsilon)Foranyx’\in L(A)thereexists\epsilon>0$
such that

$\}$ .

If $L(A)=E$, then we write $I(A)$ insted of Int$(A)$ . A subset $A$ is said to be expansive if for
$at$ least one $x\in Int(A)$ and any $x’\in A,$ $x+\lambda x\in Int(A)$ holds for any $\lambda\in[0,1)$ . Let $f$ be
a linear mapping from $X$ to $E,$ $g$ a linear mapping from $E$ to $E$ and $u_{0}$ a point in $E$ . Then
$H=\{(x, y)\in X\cross E|f(x)+g(y)=u_{0}\}$ is empty or an affine manifold in $X\cross E$ . Let $A,$ $B$ be
nonempty subsets of $X\cross E$ . A subset $A\subset X\cross E$ is cone if $\lambda>0$ implies $\lambda A\subset A$ . It is said that
an affine manifold $H$ separates $A$ and $B$ if $H_{-=}\{(x, y)\in X\cross E|f(x)+g(y)\leq u_{0}\}\supset A$ and
$H+=\{(x, y)\in X\cross E|f(x)+g(y)\geq u_{0}\}\supset B$ hold. The operator $P_{X}$ defined by $P_{X}(x, y)=x$

for any $(x, y)\in X\cross E$ is called the projection of $X\cross E$ onto $X$ . Then $P_{X}$ is a linear mapping
from $X\cross E$ to $X$ . We define

$P_{X}(A)=$ {$x\in X|$ there exists $y\in E$ such that $(x,$ $y)\in A$ }.
Then we have $P_{X}(A+B)=P_{X}(A)+P_{X}(A)$ for $A\neq\emptyset$ and $B\neq\emptyset$ . The subset

$C(A)=\{\lambda z\in X\cross E|\lambda\geq 0, z\in A\}$

is called the cone spanned by $A$ . If $A$ is convex, then $C(A)$ is convex. We obtain the separation
theorem in a Cartesian product of the vector space and the Dedekind complete partially ordered
vector space.

Theorem 4.1. Let $A$ and $B$ be subsets of $X\cross E$ such that $C(A-B)$ is convex cone, $P_{X}(A-B)$

is expansive and satisfies the following (i) and (ii) :
(i) $0\in I(P_{X}(A-B))$ ,
(ii) if $(x, y_{1})\in A$ and $(x, y_{2})\in B$ , then $y_{1}\geq y_{2}$ holds.
Then there emsts a linear mapping $f$ from $X$ to $E$ and a $y0\in E$ such that the affine manifold
$H=\{(x, y)\in X\cross E|f(x)-y=y_{0}\}$ separates $A$ and $B$ .
Proof. By assumption (i) and the definition of $I(P_{X}(A-B))$ , for any $x\in X$ there exists $\epsilon>0$

and for any $\lambda\in[0, \epsilon)$ , there exists $y\in E$ such that $(\lambda x, y)\in A-B$ . Then there exist $X_{1},$ $X2\in X$

and $y_{1},$ $y_{2}\in E$ such that $(\lambda x, y)=(x_{1}-x_{2}, y_{1}-y_{2})=(x_{1}, y_{1})-(x_{2}, y_{2})\in A-B$ . Define
$E_{x}=\{y\in E|(x, y)\in C(A-B)\},$ $x\in X$ . Since $\lambda^{-1}(y_{1}-y_{2})\in E_{x}$ for any $\lambda\in(0, \epsilon)$ , we have
$E_{x}\neq\emptyset$ . Let $y\in E_{0}$ and $y\neq 0$ , then there exists $\lambda>0,$ $(x_{1}, y_{1})\in A$ and $(x_{2}, y_{2})\in B$ such that
$(0, y)=\lambda\{(x_{1}, y_{1})-(x_{2}, y_{2})\}$ and $x_{1}=x_{2}$ . By assumption (ii), we have $y=\lambda(y_{1}-y_{2})\geq 0$ .
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We define $E+=\{y\in E|y\geq 0\}$ . Then we have $y\in E+\cdot$ Since $C(A-B)$ is convex cone,
we have $E_{x}+E_{x^{J}}\subset E_{x+x^{J}}$ for any $x,$ $x’\in X$ . We prove that for every $x\in X$ the subset $E_{x}$

possesses a lower bound in $E$ . Since $E_{x}$ is nonempty, for any $x\in X$ , there exists $y’\in E$ with
$-y^{l}\in E_{-x}$ . Then we have $y-y’\in E_{x}+E_{-x}\subset E_{0}\subset E_{+}$ for any $y\in E_{x}$ . This implies $y’\leq y$

for any $y\in E_{x}$ . Since $E$ is Dedkind complete, operator $p(x)= \inf\{y|y\in E_{x}\}$ is well defined.
Then $p(x)$ is sublinear. By Lemma 3.2, there exists a linear mapping $f$ fmm $X$ to $E$ such that
$f(x)\leq p(x)$ for all $x\in X$ . Then for any $(x_{1}, y_{1})\in A,$ $(x_{2}, y_{2})\in B$ , take $x=x_{1}-x_{2}$ , we have

$f(x_{1}-x_{2})\leq p(x_{1}-x_{2})\leq y_{1}-y_{2}$ .
Therefore,

$f(x_{1})-y_{1}\leq f(x_{2})-y_{2}$ .
Since $E$ is Dedekind complete, there exists a $y_{0}\in E$ such that

$f(x_{1})-y_{1}\leq y_{0}\leq f(x_{2})-y_{2}$

for any $(x_{1}, y_{1})\in A,$ $(x_{2}, y_{2})\in B$ . Thus the affine manifold $H$ separates $A$ and B. 口
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