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Abstract

In the previous paper [4] we show Thkahashi’s and Fan-Browder’s fixed point the-
orems in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff $s$

fixed point theorem using Fan-Browder $s$ fixed point theorem. The purpose of this
paper is to introduce a topoloy in a vector lattice and to show a fixed point theorem
for a nonexpansive mapping and alSo common fixed point theorems for commutative
family of nonexpansive mappings in a vector lattice.

1 Introduction
There are many fixed point theorems in a topological vector space, for instance, Kirk $s$

fixed point theorem in a Banach space, and so on; see for example [8].
In this paper we consider fixed point theorems in a vector lattice. As known well every

topological vector space has a linear topoloy. On the other hand, although every vector
lattice does not have a topoloy, it has two lattice operators, which are the supremum V
and the in$fimum\wedge$ , and also an order is introduced from these operators; see also [6, 9]
about vector lattices. There are some methods how to introduce a topoloy to a vector
lattice. One method is to assume that the vector lattice has a linear topoloy [1]. On the
other hand, there is another method to make up a topoloy in a vector lattice, for instance,
in [2] one method is introduced in case of the vector lattice with unit.

In the previous paper [4] we show Takahashi $s$ and Fan-Browder’s fixed point theorems
in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff $s$ fixed point
theorem using Fan-Browder’s fixed point theorem. The purpose of this paper is to introduce
a topoloy in a vector lattice and to show a fixed point theorem for a nonexpansive mapping
and also common fixed point theorems for commutative family of nonexpansive mappings
in a vector lattice.

2 Topology in a vector lattice
First we introduce a topology in a vector lattice introduced by [2]; see also [4, 5].
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Let $X$ be a vector lattice. $e\in X$ is said to be an unit if $e\wedge x>0$ for any $x\in X$ with
$x>0$ . Let $\mathcal{K}_{X}$ be the class of units of $X$ . In case where $X$ is the set of real numbers $R$,
$\mathcal{K}_{R}$ is the set of positive real numbers. Let $X$ be a vector lattice with unit and let $Y$ be a
subset of X. $Y$ is said to be open if for any $x\in Y$ and for any $e\in \mathcal{K}_{X}$ there exists $\epsilon\in \mathcal{K}_{R}$

such that $[x- ee, x+\epsilon e]\subset$ Y. Let $\mathcal{O}_{X}$ be the class of open subsets of X. $Y$ is said to be
closed if $Y^{C}\in \mathcal{O}_{X}$ . For $e\in \mathcal{K}_{X}$ and for an interval $[a, b]$ we consider the following subset

$[a, b]^{e}=$ {$x|$ there exists some $\epsilon\in \mathcal{K}_{R}$ such that $x-a\geq\epsilon e$ and $b-x\geq\epsilon e$}.

By the definition of $[a, b]^{e}$ it is easy to see that $[a, b]^{e}\subset[a, b]$ . Every mapping from $X\cross \mathcal{K}_{X}$

into $(0, \infty)$ is said to be a gauge. Let $\Delta_{X}$ be the class of gauges in $X$ . For $x\in X$ and
$\delta\in\Delta_{X},$ $O(x, \delta)$ is defined by

$O(x, \delta)=\bigcup_{e\in \mathcal{K}_{X}}[x-\delta(x, e)e, x+\delta(x, e)e]^{e}$
.

$O(x, \delta)$ is said to be a $\delta$-neighborhood of $x$ . Suppose that for any $x\in X$ and for any
$\delta\in\Delta_{X}$ there exists $U\in \mathcal{O}_{X}$ such that $x\in U\subset O(x, \delta)$ .

For a subset $Y$ of $X$ we denote by cl $(Y)$ and int(Y), the closure and the interior of $Y$ ,
respectively. Let $X$ and $Y$ be vector lattices with unit, $x_{0}\in Z\subset X$ and $f$ a mapping from
$Z$ into Y. $f$ is said to be continuous in the sense of topology at $x_{0}$ if for any $V\in \mathcal{O}_{Y}$ with
$f(x_{0})\in V$ there exists $U\in \mathcal{O}_{X}$ with $x_{0}\in U$ such that $f(U\cap Z)\subset V$ .

Let $X$ be a vector lattice with unit. $X$ is said to be Hausdorff if for any $x_{1},$ $x_{2}\in X$

with $x_{1}\neq x_{2}$ there exists $O_{1},$ $O_{2}\in \mathcal{O}_{X}$ such that $x_{1}\in O_{1},$ $x_{2}\in O_{2}$ and $O_{1}\cap O_{2}=\emptyset$ .
A subset $Y$ of $X$ is said to be compact if for any open covering of $Y$ there exists a finite
sub-covering. A subset $Y$ of $X$ is said to be normal if for any closed subsets $F_{1}$ and $F_{2}$ with
$F_{1}\cap F_{2}\cap Y=\emptyset$ there exists $O_{1},$ $O_{2}\in \mathcal{O}_{X}$ such that $F_{1}\subset O_{1},$ $F_{2}\subset O_{2}$ and $O_{1}\cap O_{2}\cap Y=\emptyset$ .

A vector lattice is said to be Archimedean if it holds that $x=0$ whenever there exists
$y\in X$ with $y\geq 0$ such that $0\leq rx\leq y$ for any $r\in \mathcal{K}_{R}$ .

Let $X$ be a vector lattice with unit and $Y$ a vector lattice, $x_{0}\in Z\subset X$ and $f$ a mapping
from $Z$ into Y. $f$ is said to be continuous at $x_{0}$ if there exists $\{v_{e}|e\in \mathcal{K}_{X}\}$ satisfying the
conditions (Ul), $(U2)^{d}$ and $(U3)^{s}$ such that for any $e\in \mathcal{K}_{X}$ there exists $\delta\in \mathcal{K}_{R}$ such that
for any $x\in Z$ if $|x-x_{0}|\leq\delta e$ , then $|f(x)-f(x_{0})|\leq v_{e}$ ; where

(Ul) $v_{e}\in Y$ with $v_{e}>0$ ;

(U2) $v_{e_{1}}\geq v_{e_{2}}$ if $e_{1}\geq e_{2}$ ;

(U3) For any $e\in \mathcal{K}_{X}$ there exists $\theta(e)\in \mathcal{K}_{R}$ such that $v_{\theta(e)e} \leq\frac{1}{2}v_{e}$ .

Let $X$ be an Archimedean vector lattice. Then there exists a positive homomorphism
$f$ from $X$ into $R$, that is, $f$ satisfies the following conditions:

(Hl) $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ for any $x,$ $y\in X$ and for any $\alpha,\beta\in R$;

(H2) $f(x)\geq 0$ for any $x\in X$ with $x\geq 0$ ;
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see [5, Example 3.1]. Suppose that there exists a homomorphism $f$ from $X$ into $R$ satisfying
the following condition instead of (H2):

(H2) $f(x)>0$ for any $x\in X$ with $x>0$ .
Example 2.1. We consider of a sufficient condition to satis$\mathfrak{h}r(H2)^{\epsilon}$ . Let $X$ be a Hilbert
lattice with unit, that is, $X$ has an inner product $\langle\cdot,$ $\cdot\rangle$ and for any $x,$ $y\in X$ if $|x|\leq|y|$ , then
$\langle x,$ $x\rangle\leq\langle y,$ $y\rangle$ . For any $e\in \mathcal{K}_{X}$ let $f$ be a function ffom $X$ into $R$ defined by $f(x)=\langle x,$ $e\rangle$ .
Then $f$ satisfies (Hl) and $(H2)^{8}$ clearly.

3 Fixed point theorem for a nonexpansive mapping
Let $X$ be a vector lattice and $Y$ a subset of $X$ . A mapping $f$ from $Y$ into $Y$ is said to

be nonexpansive if $|f(x)-f(y)|\leq|x-y|$ for any $x,y\in Y$ . In this section we consider a
fixed point theorem for a nonexpansive mapping.

Lemma 3.1. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $K$ a non-
empty compact convex subset of X. Then

$c(K)=\{xx\in K,\vee y\in K|x-y|=\wedge\vee x\in Ky\in K|x-y|\}$

is non-empty compact convex.

Proof. For any $x\in K$ and for any $e\in \mathcal{K}_{X}$ let

$F(x,e)=\{yy\in K,$ $|x-y|\leq x\in Ky\in K\wedge\vee|x-y|+e\}$ .

Then $F(x, e)$ is non-empty compact convex. Let $C(e)= \bigcap_{x\in K}F(x, e)$ . Since $\bigcap_{1=1}^{n}F(x_{i},e)\neq$

$\emptyset$ for any $x_{1},$ $\cdots,$ $x_{n}\in K,$ $C(e)$ is non-empty compact convex. Since $C(e_{1})\supset C(e_{2})$

for any $e_{1},$ $e_{2}\in \mathcal{K}_{X}$ with $e_{1}\geq e_{2},$ $\bigcap_{e\in \mathcal{K}_{X}}C(e)$ is non-empty compact convex. Moreover
$c(K)= \bigcap_{e\in \mathcal{K}_{X}}C(e)$ . Indeed $c(K) \subset\bigcap_{e\in \mathcal{K}_{X}}C(e)$ is clear. Let $x\in C(e)$ for any $e\in \mathcal{K}_{X}$ .
Then

$|x-y|\leq\wedge\vee|x-y|+ex\in Ky\in K$

for any $y\in K$ . Therefore

$V|x-y|\leq\wedge$ $V|x-y|+$ $\wedge$ $e=\wedge$ $\vee|x-y|$ .
$y\in K$ $x\in Ky\in K$ $e\in \mathcal{K}_{X}$ $x\in Ky\in K$

By definition

$\nu\in x\in Ky\in Kv_{K}|x-y|\geq\wedge\vee|x-y|$
.
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Therefore

$y \in x\in Ky\in K\bigvee_{K}|x-y|=\wedge\vee|x-y|$
,

that is, $x\in c(K)$ . $\square$

Let $X$ be a Hausdorff Archimedean vector lattice with unit and $Y$ a subset of $X$ . We
say that $Y$ has the normal structure if for any compact convex subset $K$ , which contains
two points at least, of $Y$ there exists $x\in K$ such that

$y\in K\vee|x-y|<\vee|x-y|x,y\in K^{\cdot}$

Lemma 3.2. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $K$ a non-
empty compact convex subset, which contains two points at least, of X. Suppose that $K$

has the nomal structure. Then

$x,y\in c(K)|x-y|<\vee|x-y|x,y\in K^{\cdot}$

Proof. Since $K$ has the normal structure, there exists $z\in K$ such that

$|x-y| \leq_{y\in x\in Ky\in K}\bigvee_{K}|x-y|=\wedge\vee|x-y|\leq\vee|z-y|y\in K<\vee|x-y|x,y\in K$

for any $x,$ $y\in c(K)$ . Therefore

$x,y\in c(K)\vee|x-y|<\vee|x-y|x,y\in K^{\cdot}$

$\square$

Theorem 3.3. Let $X$ be a Hausdorff Archimedean vector lattice with unit and $K$ a non-
empty compact convex subset of X. Suppose that $K$ has the normal structure. Then every
nonexpansive mapping from $K$ into $K$ has a fixed point.

Proof. Let $f$ be a nonexpansive mapping from $K$ into $K$ and $\{K_{\lambda}|\lambda\in\Lambda\}$ the family of
non-empty compact convex subsets of $K$ satisfying that $f(K_{\lambda})\subset K_{\lambda}$ . By Zorn’s lemma
there exists a minimal element $K_{0}$ of $\{K_{\lambda}|\lambda\in\Lambda\}$ . Assume that $K_{0}$ contains two points at
least. By Lemma 3.1 $c(K_{0})$ is non-empty compact convex. Let $x\in c(K_{0})$ . For any $y\in K_{0}$

$|f(x)-f(y)|\leq|x-y|\leq\vee|x-y|=\wedge\vee|x-y|y\in K_{0}x\in K0y\in K_{0}^{\cdot}$

Let

$M=\{yy\in K,$ $|f(x)-y|\leq\wedge\vee|x-y|x\in K0y\in K_{0}\}$ .
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Then $f(K_{0})\subset M$ and hence $f(K_{0}\cap M)\subset K_{0}\cap M$ . Since $K_{0}$ is a minimal element, it
holds that $K_{0}\subset M$ . Therefore

$y\in K_{0}x\in\kappa_{0y\in K_{0}}\vee|f(x)-y|\leq\wedge|x-y|$
.

By definition

$y \in K_{0}y\in K_{O}\vee|f(x)-y|\geq\bigwedge_{x\in K_{0}}\vee|x-y|$
.

Therefore

$y \in K_{0}y\in K_{0}\vee|f(x)-y|=\bigwedge_{x\in K_{0}}|x-y|$
,

that is, $f(x)\in c(K_{0})$ . Since $K_{0}$ is a minimal element, it holds that $c(K_{0})=K_{0}$ and hence

$x,y\in c(K_{0})x,y\in K_{0}|x-y|=\vee|x-y|$
.

However by Lemma 3.2

$x,y\in c(K_{0})x,y\in K_{0}\vee|x-y|<|x-y|$
.

It is a contradiction. Therefore $K_{0}$ only contains a unique point. The point is a fixed
point. $\square$

4 Fixed point theorem for the commutative family
of nonexpansive mappings

For any nonexpansive mapping $f$ from $K$ into $K$ let $F_{K}(f)$ be the set of fixed points of
$f$ .

Lemma 4.1. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $Y$ a subset of $X$

and $f$ a nonexpansive mapping from $Y$ into Y. Suppose that there exists a homomorphism
from $X$ into $R$ satisfying the condition $(H2)^{\epsilon}$ . Then $F_{Y}(f)$ is closed.

Proof. Assume that $F_{Y}(f)$ is not closed. Then for any $\delta\in\Delta_{X}$ there exists $x\in F_{Y}(f)^{C}$

such that $O(x, \delta)\not\subset F_{Y}(f)^{C}$ . Take $y_{\delta}\in O(x, \delta)\cap F_{Y}(f)$ . Then $f(y_{\delta})=y_{\delta}$ . Note that every
nonexpansive mapping is continuous and hence by [5, Lemma 3.2] it is also continuous in
the sense of topology. Since $\{y_{\delta}|\delta\in\Delta_{X}\}$ is convergent to $x$ in the sense of topology,
$\{f(y_{\delta})|\delta\in\Delta_{X}\}$ is convergent to $f(x)$ in the sense of topology. Since $X$ is Hausdorff,
$f(x)=x$. It is a contradiction. Therefore $F_{Y}(f)$ is closed. $\square$
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Lemma 4.2. Let $X$ be a vector lattice. If $|x-z|=|x-w|,$ $|y-z|=|y-w|$ and
$\ovalbox{\tt\small REJECT} x-z|+|y-z|=x-y|$ , then $z=w$ .

Proof. Note that $|a+b|=|a-b|$ if and only if $|a|\wedge|b|=0$ . Since

$|x-z|=|x- \frac{1}{2}(z+w)-\frac{1}{2}(z-w)|$

and

$|x-w|=|x- \frac{1}{2}(z+w)+\frac{1}{2}(z-w)|$ ,

it holds that $|x- \frac{1}{2}(z+w)|\wedge\frac{1}{2}|z-w|=0$ . In the same way it holds that $|y- \frac{1}{2}(z+w)|$ A
$\frac{1}{2}|z-w|=0$ . Note that $(a+b)\wedge c\leq a\wedge c+b\wedge c$ for any $a,$ $b,$ $c\geq 0$ . Therefore

$|x-y| \wedge\frac{1}{2}|z-w|$ $\leq$ $(|x- \frac{1}{2}(z-w)|+|\frac{1}{2}(z-w)-y|)\wedge\frac{1}{2}|z-w|$

$\leq$ $|x- \frac{1}{2}(z-w)|\wedge\frac{1}{2}|z-w|+|y-\frac{1}{2}(z+w)|\wedge\frac{1}{2}|z-w|$

$=$ $0$ .

Assume that $z\neq w$ . Note that, if $|b|\wedge|c|=0$ , then $||a|-|b||\wedge|c|=|a|\wedge|c|$ . Therefore

$(|x-z|+|y-z|) \wedge\frac{1}{2}|z-w|$ $\geq$ $|x-z| \wedge\frac{1}{2}|z-w|$

$\geq$ $\Vert x-\frac{1}{2}|z-w||-\frac{1}{2}|z-w||\wedge\frac{1}{2}|z-w|$

$=$ $\frac{1}{2}|z-w|>0$ .

It is a contradiction. Therefore $z=w$ . $\square$

Lemma 4.3. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $Y$ a subset of $X$

and $f$ a nonexpansive mapping from $Y$ into Y. Then $F_{Y}(f)$ is convex.

Proof. Let $x,$ $y\in F_{Y}(f)$ and $0\leq\alpha\leq 1$ . Then

$|x-f((1-\alpha)x+\alpha y)|$ $=$ $|f(x)-f((1-\alpha)x+\alpha y)|$

$\leq$ $|x-((1-\alpha)x+\alpha y)|=\alpha|x-y|$ ,
$|y-f((1-\alpha)x+\alpha y)|$ $=$ $|f(y)-f((1-\alpha)x+\alpha y)|$

$\leq$ $|y-((1-\alpha)x+\alpha y)|=(1-\alpha)|x-y|$ .

Since

$|x-y|$ $\leq$ $|x-f((1-\alpha)x+\alpha y)|+|y-f((1-\alpha)x+\alpha y)|$

$\leq$ $|x-((1-\alpha)x+\alpha y)|+|y-((1-\alpha)x+\alpha y)|=|x-y|$ ,
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it holds that
$|x-f((1-\alpha)x+\alpha y)$ I $=$ $|x-((1-\alpha)x+\alpha y)|$ ,
$|y-f((1-\alpha)x+\alpha y)|$ $=$ $|y-((1-\alpha)x+\alpha y)|$ ,

and hence

$|x-f((1-\alpha)x+\alpha y)|+|y-f((1-\alpha)x+\alpha y)|=|x-y|$ .

By Lemma 4.2 $f((1-\alpha)x+\alpha y)=(1-\alpha)x+\alpha y,$ that $\cdot$ is, $F_{Y}(f)$ is convex. $\square$

Theorem 4.4. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $K$ a compact
convex subset of $X$ and $\{f_{i}|i=1, \cdots, n\}$ the finite commutative family of nonexpansive
mappings from $K$ into K. Suppose that there eststs a homomorphism from $X$ into $R$

satisfying the condition $(H2)^{s}$ and $K$ has the nomal structure. Then $\bigcap_{i=1}^{n}F_{K}(f_{8})$ is non-
empty.

Proof. Let $\{K_{\lambda}|\lambda\in\Lambda\}$ be the family of non-empty compact convex subsets of $K$ satisfying
that $f_{i}(K_{\lambda})\subset K_{\lambda}$ for any $i$ . By Zorn’s lemma there exists a minimal element $K_{0}$ of $\{K_{\lambda}|$

$\lambda\in\Lambda\}$ . Assume that $K_{0}$ contains two points at least. By Theorem 3.3 $F_{K_{0}}(f_{1}o\cdots of_{n})$ is
non-empty. Moreover by Lemma 4.1 and Lemma 4.3 $F_{K_{0}}(f_{1}\circ\cdots of_{n})$ is compact convex.
It holds that $f(F_{K_{O}}(f_{1}o\cdots of_{n}))=F_{K_{0}}(f_{1}o\cdots of_{n})$ for any $i$ . It is shown as follows. Let
$x\in F_{K_{0}}(f_{1}o\cdots of_{n})$ . Since

$f_{i}(x)=f_{i}((f_{1}o\cdots\circ f_{n})(x))=(f_{1}o\cdots of_{n})(f_{i}(x))$

for any $i,$ $f_{i}(x)\in F_{K_{0}}(f_{1}o\cdots of_{n})$, that is, $f_{1}(F_{K_{0}}(f_{1}o\cdots of_{n}))\subset F_{K_{0}}(f_{1}o\cdots of_{n})$ . Next
let $x_{i}=(f_{1}o\cdots of_{i-1}of_{\dot{*}+1}o\cdots of_{n})(x)$ . Since

$(f_{1}o\cdots of_{n})(x_{1})=(f_{1}\circ\cdots of_{i-1}of_{i+1}\circ\cdots of_{n})(x)=x_{i}$ ,

it holds that $x_{i}\in F_{K_{0}}(f_{1}o\cdots of_{n})$ . Moreover $f_{t}(x_{i})=x$ . Therefore $F_{K_{0}}(f_{1}\circ\cdots of_{n})\subset$

$f_{i}(F_{K_{O}}(f_{1}o\cdots of_{n}))$ . Since $K$ has the normal structure, there exists $x_{0}\in K_{0}$ such that

$y\in K_{0}x,y\in K_{0}\vee|x_{0}-y|<|x-y|$
.

Let

$A=\{x|x\in K_{0_{y\in F_{K_{0}}(f_{1}o\cdots of_{n})}},|x-y|\leq V_{1}|x_{0}-y|y\in F_{K_{0}}(fo\cdots of_{\hslash})\}\cdot$

$A$ is non-empty and convex clearly. Moreover since $X$ is Archimedean, $A$ is closed and
hence compact. Let $x\in A$ . Then for any $i$ and for any $y\in F_{K_{0}}(f_{1}o\cdots of_{n})$

$|f_{1}(x)-y|=|f_{1}(x)-f_{1}(y_{i})|$ $\leq$ $|x-y_{i}|$

$\leq y\in F_{K_{O}}(fo\cdots of_{n})V_{1}|x-y|$

$\leq$

$y\in F_{K_{0}(f_{1}o\cdots of_{n})}^{\vee|x_{0}-y|}$
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and hence $f_{i}(a)\in A$ , that is, $f_{i}(A)\subset A$ . Since $K_{0}$ is minimal, $A=K_{0}$ . Therefore

$\vee$ $|X-y|\leq$ $\vee$ $|x_{0}-y|<$ $\vee$ $|X-y|$ .
$x,y\in F_{K_{0}}(f_{1}\circ\cdots of_{n})$ $y\in F_{K_{0}}(f_{1}o\cdots of_{n})$ $x,y\in F_{K_{0}}(f_{1}o\cdots of_{n})$

It is a contradiction. Therefore $K_{0}$ only contains a unique point. The point is a common
fixed point of $\{f_{i}|i=1, \cdots, n\}$ . 口

Theorem 4.5. Let $X$ be a Hausdorff Archimedean vector lattice with unit, $K$ a compact
convex subset of $X$ and $\{f_{i}|i\in I\}$ the commutative family of nonexpansive mappings
from $K$ into K. Suppose that there exists a homomorphism from $X$ into $R$ satisfying the
condition $(H2)^{\epsilon}$ and $K$ has the normal structure. Then $\bigcap_{i\in I}F_{K}(f_{i})$ is non-empty.

Proof. By Theorem 4.4 $\bigcap_{k=1}^{n}F_{K}(f_{i_{k}})$ is non-empty for any finite set $i_{1},$ $\cdots,$ $i_{n}\in I$ . Since
$K$ is compact, $\bigcap_{i\in I}F_{K}(f_{i})$ is non-empty. 口
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