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A topology in a vector lattice and
fixed point theorems for nonexpansive mappings
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(Toshiharu Kawasaki, toshiharu.kawasaki@nifty.ne.jp)

Abstract

In the previous paper [4] we show Takahashi’s and Fan-Browder’s fixed point the-
orems in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff’s
fixed point theorem using Fan-Browder’s fixed point theorem. The purpose of this
paper is to introduce a topology in a vector lattice and to show a fixed point theorem
for a nonexpansive mapping and also common fixed point theorems for commutative
family of nonexpansive mappings in a vector lattice.

1 Introduction

There are many fixed point theorems in a topological vector space, for instance, Kirk’s
fixed point theorem in a Banach space, and so on; see for example [8].

In this paper we consider fixed point theorems in a vector lattice. As known well every
topological vector space has a linear topology. On the other hand, although every vector
lattice does not have a topology, it has two lattice operators, which are the supremum V
and the infimum A, and also an order is introduced from these operators; see also [6, 9]
about vector lattices. There are some methods how to introduce a topology to a vector
lattice. One method is to assume that the vector lattice has a linear topology [1]. On the
other hand, there is another method to make up a topology in a vector lattice, for instance,
in [2] one method is introduced in case of the vector lattice with unit.

In the previous paper [4] we show Takahashi’s and Fan-Browder’s fixed point theorems
in a vector lattice and in the previous paper [5] we show Schauder-Tychonoff’s fixed point
theorem using Fan-Browder’s fixed point theorem. The purpose of this paper is to introduce
a topology in a vector lattice and to show a fixed point theorem for a nonexpansive mapping
and also common fixed point theorems for commutative family of nonexpansive mappings
in a vector lattice.

2 Topology in a vector lattice

First we introduce a topology in a vector lattice introduced by [2]; see also [4,5].
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Let X be a vector lattice. e € X is said to be an unit if e Az > 0 for any z € X with
z > 0. Let Kx be the class of units of X. In case where X is the set of real numbers R,
Kr is the set of positive real numbers. Let X be a vector lattice with unit and let Y be a
subset of X. Y is said to be open if for any z € Y and for any e € Kx there exists € € Kg
such that [z — e,z + ce] C Y. Let Ox be the class of open subsets of X. Y is said to be
closed if YC € Ox. For e € Kx and for an interval [a, b] we consider the following subset

[a,b]®* = {z | there exists some ¢ € Kg such that £ — a > ce and b — = > ee}.

By the definition of [a, b]° it is easy to see that [a, b]® C [a,b]. Every mapping from X x Kx
into (0, 0) is said to be a gauge. Let Ax be the class of gauges in X. For z € X and
0 € Ax, O(z, ) is defined by

O(z, ) = U [z — d(z,e)e, z + §(z, e)e]®.

ecKx

O(z,9) is said to be a é-neighborhood of z. Suppose that for any z € X and for any
0 € Ax there exists U € Ox such that z € U C O(z, 6).

For a subset Y of X we denote by cl(Y) and int(Y"), the closure and the interior of Y,
respectively. Let X and Y be vector lattices with unit, zo € Z C X and f a mapping from
Z into Y. f is said to be continuous in the sense of topology at zy if for any V € Oy with
f(zo) € V there exists U € Ox with 2y € U such that f(UNZ) C V.

Let X be a vector lattice with unit. X is said to be Hausdorff if for any z,,z, € X
with z; # 5 there exists O;,05 € Ox such that z; € Oy, 22 € Oy and O; N O, = 0.
A subset Y of X is said to be compact if for any open covering of Y there exists a finite
sub-covering. A subset Y of X is said to be normal if for any closed subsets F; and F; with
FiNF,NY = () there exists O;,0, € Ox such that F; C Oy, F; C Oy and O;NO0.NY = 0.

A vector lattice is said to be Archimedean if it holds that £ = 0 whenever there exists
y € X with y > 0 such that 0 < rz < y for any r € K.

Let X be a vector lattice with unit and Y a vector lattice, o € Z C X and f a mapping
from Z into Y. f is said to be continuous at z if there exists {v. | € € Kx} satisfying the
conditions (U1), (U2)¢ and (U3)* such that for any e € Kx there exists § € Kg such that
for any z € Z if |z — x| < de, then |f(z) — f(z0)| < ve; where

(Ul) . v, € Y with v, > 0;
(UZ)d Ve, > Ve, if €1 2 €9,
(U3)* For any e € Kx there exists §(e) € Kg such that vg(e)e < %fve.

Let X be an Archimedean vector lattice. Then there exists a positive homomorphism
f from X into R, that is, f satisfies the following conditions:

(H1) f(az+ By) = af(z) + Bf(y) for any z,y € X and for any o, 8 € R;
(H2) f(z) >0 for any z € X with z > 0;



198

see [5, Example 3.1]. Suppose that there exists a homomorphism f from X into R satisfying
the following condition instead of (H2):

(H2)* f(z) > 0 for any z € X with = > 0.

Ezample 2.1. We consider of a sufficient condition to satisfy (H2)®. Let X be a Hilbert
lattice with unit, that is, X has an inner product (-, -) and for any z,y € X if |z| < |y|, then
(z,z) < (y,y). For any e € Kx let f be a function from X into R defined by f(z) = (z,e).
Then f satisfies (H1) and (H2)® clearly.

3 Fixed point theorem for a nonexpansive mapping

Let X be a vector lattice and Y a subset of X. A mapping f from Y into Y is said to
be nonexpansive if |f(z) — f(y)| < |z — y| for any z,y € Y. In this section we consider a
fixed point theorem for a nonexpansive mapping.

Lemma 3.1. Let X be a Hausdorff Archimedean vector lattice with unit and K a non-
empty compact convex subset of X. Then

cek\lz—vl= \ le—yl}

yeK zeK yeK

c(K) = {:L'

s non-empty compact convez.

Proof. For any z € K and for any e € Kx let

yc—:K,|z—y|s/\V|x—y|+e}.

z€K yeK

F(z,e) = {y

Then F(z, e) is non-empty compact convex. Let C(e) =,k F(z,e). Since (i, F(z:, €) #
@ for any z,--- ,z, € K, C(e) is non-empty compact convex. Since C(e;) D C(ey)
for any e, e; € Kx with e; > e, (., C(€) is non-empty compact convex. Moreover
oK) = Neex, C(€). Indeed c(K) C .k, C(e) is clear. Let z € C(e) for any e € Kx.

Then
lz-yl< A Vie-yl+e
z€K yeK

for any y € K. Therefore
Viz-=y< A Vie-gyl+ Ae=A ViIz—ul
yeK z€K yeK eeKx zeK yeK

By definition

Vig=v2 A ViIz-yl

yeK ze€K yeK
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Therefore

Vie-vl= A Viz-ul

yEK zeK yeK
that is, z € ¢(K). O

Let X be a Hausdorff Archimedean vector lattice with unit and Y a subset of X. We
say that Y has the normal structure if for any compact convex subset K, which contains
two points at least, of Y there exists z € K such that

Vig-yl< \ le—yl
yeK z,yeK

Lemma 3.2. Let X be a Hausdorff Archimedean vector lattice with unit and K a non-
empty compact conver subset, which contains two points at least, of X. Suppose that K
has the normal structure. Then

V le-v< \ lz—yl
z,yc€c(K) T, yeK
Proof. Since K has the normal structure, there exists z € K such that
e-y<Vie—vl=AVik-v<VlIz-v< V lz-y
yeK zeK yeK yeK z,yeK
for any z,y € ¢(K). Therefore
V le-yl< V lz—yl
z,y€c(K) z,ycK

a

Theorem 3.3. Let X be a Hausdorff Archimedean vector lattice with unit and K a non-
empty compact convex subset of X. Suppose that K has the normal structure. Then every
nonezrpansive mapping from K into K has a fized point.

Proof. Let f be a nonexpansive mapping from K into K and {K) | A € A} the family of
non-empty compact convex subsets of K satisfying that f(K,) C K,. By Zorn’s lemma
there exists a minimal element Kj of {K | A € A}. Assume that K, contains two points at
least. By Lemma 3.1 ¢(Kj) is non-empty compact convex. Let = € ¢(Kj). For any y € Ko

If@) - f@)I<le—y< VIe-yl= A\ V le—ul

y€Ko z€Ko y€Ko
Let
M = {y

yeKl|f@)-y< AV Iw—yl}-

z€Ko yeKo




200

Then f(Kjp) C M and hence f(KoN M) C KoN M. Since K is a minimal element, it
holds that Ky C M. Therefore

Vif@-v<s AV le-yl

y€Kop z€Ko yeKo

By definition

Vif@ -y A V le-yl

yEKo zeKo yeKo

Therefore

Vif@-vi= AV lz-yl,

y€Ko z€Ko y€Ko

that is, f(x) € ¢(Kp). Since Kj is a minimal element, it holds that ¢(X,) = Ky and hence

V k-y=V lz-yl

z,y€c(Ko) z,y€Ko

However by Lemma 3.2

V lke-v< V lz-yl

z,y€c(Ko) z,y€Kp

It is a contradiction. Therefore Ky only contains a unique point. The point is a fixed
point. O

4 Fixed point theorem for the commutative family
of nonexpansive mappings

For any nonexpansive mapping f from K into K let Fx(f) be the set of fixed points of
f.

Lemma 4.1. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset of X
and f a nonezpansive mapping from'Y into Y. Suppose that there exists a homomorphism
Jrom X into R satisfying the condition (H2)*. Then Fy(f) is closed.

Proof. Assume that Fy(f) is not closed. Then for any § € Ax there exists z € Fy(f)°
such that O(z,8) ¢ Fy(f)C. Take ys € O(z,8) N Fy(f). Then f(ys) = ys. Note that every
nonexpansive mapping is continuous and hence by [5, Lemma 3.2] it is also continuous in
the sense of topology. Since {ys | 6 € Ax} is convergent to z in the sense of topology,
{f(ys) | 6 € Ax} is convergent to f(z) in the sense of topology. Since X is Hausdorff,
f(z) = z. It is a contradiction. Therefore Fy(f) is closed. O
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Lemma 4.2. Let X be a vector lattice. If |zt — 2| = |z —w|, |y — 2| = |y — w| and
|z — 2|+ |y — 2| = |z — |, then z = w.

Proof. Note that |a + b| = |a — b if and only if |a| A [b] = 0. Since

|z — 2| = x—-;-(z+w)—%(z-w)’

and

1 1
o= ul = o= 3+ 0)+ 36— w)]

2

it holds that |z — (2 + w)| A 2|z —w| = 0. In the same way it holds that |y — 1(z + w)| A
3]z —w| = 0. Note that (a +b) Ac < aAc+bAc for any a,b,c > 0. Therefore

/\1|z w
2

1 1 1 1
a:——§(z—w)‘/\§|z—w|+)y—é(z-f—w){/\ﬁlz—uﬂ
= O.

%(z—w)—y

1
$—§(Z—U))’+

1
e-singls-ul < (

<

Assume that z # w. Note that, if [b| A |c| = 0, then |la| — [b]| A |c| = |a| A |¢|. Therefore

1 1
(o=l +ly— 2D Agle—ul 2 |o—2A3l—ul

1 1 1
> —_ =l - —_— |y — |z —
> ||z 2,2 wl} 2|z w|‘/\2lz w|

- %|'z-w|>o.

It is a contradiction. Therefore z = w. O

Lemma 4.3. Let X be a Hausdorff Archimedean vector lattice with unit, Y a subset of X
and f a nonezpansive mapping from'Y into Y. Then Fy(f) is convez.

Proof. Let z,y € Fy(f) and 0 < a < 1. Then

|z — f((1 - )z + ay)| |f(z) — f((1 — @)z + ay)|

jz — ((1 - )z +ay)| = alz -y,

\f(y) — F((1 — o)z +ay)|

ly— (1 -a)z+ay)|=(1—-a)lz—yl|

ly — f((1 - &)z + ay)|

IA 1 IA

Since

|z — f(1—a)z+ay)| + |y — F((1 - @)z + ay)|
Iz~ ((1-a)z+ay)|+ |y - (1 - )z + ay)| = |z — 9],

|z — 9]

IA A
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it holds that

lz - f(1-a)z+ay)| = |z—-((1-a)z+ay),
ly—f(1-a)z+oy)| = ly—((1-a)z+o0y),
and hence
lz— f(1-a)z+ay)l+ |y — f((1 - )z + ay)| = |z — y].
By Lemma 4.2 f((1 — a)z + ay) = (1 — a)z + ay, that is, Fy(f) is convex. O
Theorem 4.4. Let X be a Hausdorff Archimedean vector lattice with unit, K a compact
convez subset of X and {f; | i=1,--- ,n} the finite commutative family of nonerpansive

mappings from K into K. Suppose that there exists a homomorphism from X into R
satisfying the condition (H2)* and K has the normal structure. Then (.., Fx(f:) is non-
empty.

Proof. Let {K | A € A} be the family of non-empty compact convex subsets of K satisfying
that f;(K\) C K, for any i. By Zorn’s lemma there exists a minimal element Kj of {K |
A € A}. Assume that K contains two points at least. By Theorem 3.3 Fx,(fi0:--0 f,) is
non-empty. Moreover by Lemma 4.1 and Lemma 4.3 Fk,(f1 0---o f,) is compact convex.
It holds that f(Fk,(fio- -0 fn)) = Fx,(fio-:-o f,) for any i. It is shown as follows. Let
z € Fgy(fio---o f,). Since

fi@) = fil((fro -0 fo)(2)) = (fro - o fu)(fi(2))

for any i, fi(z) € Fx,(fio-- o fn), that is, fi(Fi,(fio---0 fa)) C Fx,(fio---o fa). Next
let z; = (fi0---0 fiiy0 fiys0---0 fu)(z). Since

(fror-ro fa)(@) = (fro -0 fim10 fiy1 0+ 0 f)(z) = z;,
it holds that z; € Fi,(fi0--- o f,). Moreover fi(z;) = z. Therefore Fx,(fio---0 fa) C
fi(Fk,(fio--- 0o f,)). Since K has the normal structure, there exists zo € K, such that

V lzo —yl < V |z —yl.
A={x

yeKO zfyeKO
A is non-empty and convex clearly. Moreover since X is Archimedean, A is closed and
hence compact. Let z € A. Then for any ¢ and for any y € Fi,(fio--- 0 fa)

Let

zek, \/ le-ys Iwo—yl}.
)

yeFKo(flo"'ofn) yGFKO(flo---ofn

|fi(z) —yl = |fi(z) = i)l < |z -yl
< V  lz—yl
YEFK (fro-0fn)
< V o — v

UEFKO(flo'“Ofn)
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and hence f;(a) € A, that is, f;(A) C A. Since Kj is minimal, A = K. Therefore

V e-yl< \/  le-wl< V |z —yl.

wyyeFKo(.flo"'ofﬂ) yEFKO(_ﬁO'“Ofn) z,yGFK'o(flo"'ofn)

It is a contradiction. Therefore Ky only contains a unique point. The point is a common
fixed point of {f;]i=1,---,n}. O

Theorem 4.5. Let X be a Hausdorff Archimedean vector lattice with unit, K a compact
convez subset of X and {f; | ¢ € I} the commutative family of nonezpansive mappings
from K into K. Suppose that there exists a homomorphism from X into R satisfying the
condition (H2)* and K has the normal structure. Then (\;c; Fx(fi) is non-empty.

Proof. By Theorem 4.4 (;_, Fk(fi,) is non-empty for any finite set 4;,--- ,4, € I. Since
K is compact, (),c; Fx(f;) is non-empty. O
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