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Abstract
In the paper, we introduce five types of concepts for saddle points of set-valued

maps and show existence theorems for these saddle points by using nonlinear scalar-
izing functions for sets introduced by Kuwano, Tanaka, and Yamada in 2009.

1 Introduction

Let X and Y be two real topological vector spaces, F' a map on X x Y. In real-valued
case, (Zo,y0) € X x Y is a saddle point of F' if

F(zo,y) < F(zo,%0) < F(z,90)

for any £ € X and y € Y. In vector-valued case, a saddle point (z9,%0) € X x Y with
respect to partial ordering <¢ induced by a convex cone C is defined by

F(z,y0) £c F(zo0,%0) £c F(zo,y)

for any z € X and y € Y, and it is called C-saddle point of F. Many researchers have
been investigated existence theorems for saddle points and C-saddle points. In [7] and
(8], we consider five types of generalizations for C-saddle points and investigate sufficient
conditions for the existence of these saddle points by using nonlinear scalarization methods
for sets proposed in [4].

The aim of the paper is to introduce three types of existence theorems for cone saddle
points of set-valued maps.

The organization of the paper is as follows. In Section 2, we review mathematical
methodology proposed in [3] on comparison between two sets in an ordered vector space
and some basic concepts of set-valued optimization. In Section 3, we consider two types
of nonlinear scalarizing functions for sets proposed by the unified approach in [4], and
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investigate their properties. In Section 4, we introduce five types of concepts for cone
saddle points of set-valued maps, and three types of existence theorems for these saddle
points proved in [7, 8].

2 Mathematical Preliminaries

Throughout the paper, X and Y are two real topological vector spaces and C is a proper
closed convex cone in Y (that is, C #Y, C+ C = C and A\C C C for all A > 0) with
nonempty topological interior. We define a partial ordering <¢ on Y as follows:

z<lcy if y—xze€C for z,ycY.

Let F be a set-valued map from S C X into 2¥ where S := {z € X|F(x) # 0} and
assume that S is a convex set. For A € 2Y \ {0}, we denote the topological interior
of A by intA. Also, we denote the algebraic sum, algebraic difference of A and C by
A+ C:=4eala+C), A~ C:=J,cs(a - C), respectively. In addition, we denote the
composite function of two functions f and g by go f. When z <¢ y for z,y € Y, we define
the order interval between = and y by [z,y] := {z € Y|z <¢ zand z <¢ y}.

At first, we review some basic concepts of set-relation.

Definition 2.1. (See Ref. [3].) For any A, B € 2¥ \ {0} and convex cone C in Y, we write

A< Bby ACyep(b—C), equivalently B C ,c4(a +C),
A< Bby AN (Nep(d - C)) #0,

A<® BbyBc (A+0),

A<E Bby (Neeala+C)NB#Y,

A<® By Ac (B-0),

A gg‘) B by An(B — C) # 0, equivalently (A + C)N B # 0.

Proposition 2.1. (See [3].) For any A, B € 2¥ \ {0}, the following statements hold:

A S(cl,) B implies A gg) B, A 58) B implies A Sg) B,
A gg) B implies A 3(03) B, A Sg) B implies A S(Cs) B,
A< B implies A<® B, A<D B implies A <9 B.
Proposition 2.2. (See [4].) For any A, B € 2 \ {0}, the following statements hold:
(i) For each j =1,...,6,
A g(cj) B implies (A + y) Sg) (B+y) foryeY, and
A Sg) B implies a A Sg) aB fora > 0.
(ii) For each j =1,...,5, gg) is transitive.
(iii) For each j = 3,5,6, < is reflezive.
From (b) and (c) of Proposition 2.2, SS‘ ) is difficult to say as order. Hence, we consider

mainly the cases of j = 1,...,5 in the paper.
By using the set-relations defined in Definition 2.1, we consider the following five kinds
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of set-valued optimization problems with j =1,...,5:

: j-Optimize F(z)
(5-SVOP) { Subject to z € S.

Then, we introduce some concepts of solutions for (j-SVOP). Let zo € S. For each
j=1,...,5, zo is a minimal solution of (j-SVOP) if for any z € S\ {zo},

F(z) <¥ F(zo) implies F(xo) < F(x); (2.1)

and z¢ is a mazimal solution of (j-SVOP) if for any z € S\ {zo},

F(zo) <% F(z) implies F(z) <9 F(z). (2.2)

If C is replaced by intC, then zg is a weak minimal solution (resp., weak mazimal solution)
of (j-SVOP). We denote the family of sets satisfying (2.1) (resp., (2.2)) by Min; F(S)
(resp., Max(;)F'(S)) and the case of weak minimal (resp., weak maximal) by WMin;)F(S)
(resp., WMax(;)F(S)) where F(S) = {F(z)|z € S}. It is clear that if zo is a minimal
(resp., maximal) solution of (j-SVOP) then z, is a weak minimal (resp., weak maximal)
solution of (j-SVOP).

Let us recall some definitions of C-notions (see [2].) A subset A of Y is said to be
C-convez (resp., C-closed) if A+ C is convex (resp., closed). Moreover, we say that F is
C-notion on S if F(z) has the property C-notion for every x € S.

Next, we introduce several definitions of C-convexity and C-continuity for set-valued
maps. These notions are used in Sections 3 and 4.

Definition 2.2. (See [4].) For each j =1,...,5,

(i) F is called a type (j) naturally quasi C-convez function if for each z,y € S and
A € (0,1), there exists u € [0,1] such that

FOz+ (1-Ny) <@ pF(z) + (1 - w)F(y).

(i) F is called a type (j) naturally quasi C-concave function if for each z,y € S and
A € (0,1), there exists p € [0, 1] such that

wF(z) + (1 — p)F(y) <@ F(rz + (1 - Ay).

Definition 2.3. (See [8].) For each j =1,...,5,

(i) F is called a type (j) C-convezlike function if for every z,y € S and A € (0,1), there
exists z € S such that

F(z) <@ AF(z) + (1 - MF(y).

(ii) F is called a type (j) C-concavelike function if for every z,y € S and X € (0,1),
there exists 2z € S such that

AF(z) + (1 - NF(y) <& F(2).
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Definition 2.4. (See [2].) Let x € S. Then,

(i) F is called C-lower continuous at z if for every open set V with F(z) NV # ), there
exists an open neighborhood U of = such that F(y) N (V +C) # 0 for all y € U.
We shall say that F' is C-lower continuous on S if it is C-lower continuous at every
point x € S,

(ii) F is called C-upper continuous at z if for every open set V with F(z) C V, there
exists an open neighborhood U of z such that F(y) C V+C for all y € U. We shall
say that F' is C-upper continuous on S if it is C-upper continuous at every point
z€S.

3 Unified Types of Scalarizing Functions for Sets

In [4], we propose the following nonlinear scalarizing functions for sets: Let V, V' € 2Y'\
{0}, and direction k € intC. For each j = 1,...,5, we define I,g{‘),—, : 2Y\ {0} - RU {£o0}
by

I8,V := inf {t eR l V<@ (tk+ V') } .

In this section, we introduce some properties of these functions and several sufficient
conditions for the existence of solutions of (j-SVOP).

Proposition 3.1. (See [6].) Let A, B € 2¥ \ {0}. Then, the following statements hold:
(1) If A 58) B, A is (—C)-closed and B is C-closed then

1.4 < I,.(B).

(i) For each j=2,3, if A<Y), B and B is C-closed then

1), (4) < I¥),.(B).
(iii) For each j =4,5, if A gi‘,{'ZC B and A is (—C)-closed then
IZL.(A) < I9),.(B).

Next, we introduce certain inherited properties on cone-convexity and cone-continuity
of set-valued maps proved in (4, 5, 8, 10].

Lemma 3.1. (See [4,5].) Letk € intC and V' € 2¥\{0}. Then, the following statements
hold:

(i) For each j =1,2,3, if F is type (j) naturally quasi C-convez, then I ()

P oF is quast
convez. Moreover, if F is type (j) naturally quasi C-concave, then I ,S{‘),, oF is quasi
concave.

(ii) For each j = 4,5, if F is type (§) naturally quasi C-conver and V' is (—C)-convez,
then I ,g”%,, o F' is quasi convex. Moreover, if F is type (j) naturally quasi C-concave

and V' is (—C)-convez, then I ,g"),, o F is quasi concave.
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Lemma 3.2. (See [8].) Let k € intC and V' € 2Y \ {0}. Then, the following statements
hold:
(i) For each j =1,2,3, if F is type (j) C-convezlike and V' is C-convez, then I,g‘),, oF
is conveclike. )
(i) For each j = 4,5, if F is type (j) C-convezlike and V' is (—C)-convez, then I,gf‘),,oF
s conveczlike.

Lemma 3.3. (See [8].) Let k € intC and V' € 2Y \ {0}. Then, the following statements
hold:

(i) For eachj=1,2,3, if F is type (j) C-concavelike and V' is C-convez, then I,g’},, oF
is concavelike.
(ii) For each j = 4,5, if F is type (j) C-concavelike and V' is (—C)-convez, then

I,E{%,, o F is concavelike.

Lemma 3.4. (See [10].) Let k € intC and V' € 2¥ \ {0}. Then, the following statements
hold:
j)

(i) For each j =1,4,5, if F is C-lower continuous on S then I,f:v, o F is lower semi-

continuous on S. Moreover, if F' is (—C)-upper continuous on S then I,g%,, oF is
upper semicontinuous on S. .
(ii) For each j = 2,3, if F is (—C)-lower continuous on S then I,Ef‘),, o F' is upper
semicontinuous on S. Moreover, if F' is C-upper continuous on S then I ,(cj,z,, oF is
lower semicontinuous on S.
Let V' € 2¥\ {0} and direction k € intC. To show sufficient conditions for the existence
of solutions of (j-SVOP) by using properties of I ,(c”‘),., we consider the following two kinds
of scalar optimization problems:

inf (19, o F)(z) and 222(1,2{2,, o F)(z).

Lemma 3.5. (See [7].) Assume that F is C-closed on S and zo € S. Let k € intC. For
each j = 1,2,3, the following statements hold:

(i) If zo is a solution of ilelg (I,gj‘),, o F)(z), then zo is a weak minimal solution of
] y

(5-SVOP). ‘
(ii) If zo is a solution of sup(I,(c’%,, o F)(z), then zo is a weak mazimal solution of
zesS
(5-SVOP).

Lemma 3.6. (See [7].) Assume that F is (—C)-closed on S and zo € S. Let k € intC.
For each j = 4,5, the following statements hold:

(i) If zo is a solution of irelg (I,g{‘),, o F)(z), then zo is a weak minimal solution of
(7-SVOP). .

(ii) If zo is a solution of sup(I,f,’%,, o F)(z), then z¢ is a weak mazimal solution of
z€S '

(j-SVOP).
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4 Existence Theorems for Saddle Points of Set-Valued Maps

At first, we introduce definitions of saddle points for set-valued maps proposed in [8].
For each j =1,...,5, if (zo,y0) € X X Y satisfies the following properties:

(i) F(z,y0) <9 F(zo,y0) implies F(zo,%0) <9 F(z,y0),

(i) F(z0,90) <& F(ao,y) implies F(zo,y) <& F(o,y0),
for any x € X and y € Y, then we call it type (j) C-saddle point of F'. 1t is equivalent to

F(zo, yo) € {Min(j)F(X, yo)} N {Ma.x(j)F(a:O, Y)}

If C is replaced by intC then we call it type (j) weak C-saddle point of F.

In this section, we give three types of existence theorems for type () cone saddle points
of set-valued maps. At first, we introduce the first existence theorems which are natural
extensions of Sion’s minimax theorem (see [9]).

Theorem 4.1. (See [7].) Let X and Y be nonempty compact convezr subsets of two real
topological vector spaces, respectively, Z a real topological vector space with the partial
ordering <c¢, k € intC, V' a nonempty subset of Z and F : X x Y — 2% \ {#}. Assume
that F is C-closed and (—C)-closed on X x Y. If F satisfies the following conditions:

(i) z = F(z,y) is C-lower continuous and type (1) naturally quasi C-convex on X for
everyy ey,

(i) z = F(z,y) is (—C)-upper continuous and type (1) naturally quasi C-concave on
Y for every x € X,

then F' has at least one type (1)-weak saddle point.

Theorem 4.2. (See [7].) Let X and Y be nonempty compact convex subsets of two real
topological vector spaces, respectively, Z a real topological vector space with the partial
ordering <c, k € intC, V' a nonempty subset of Z and F : X x Y — 2% \ {0}. Assume
that F' is C-closed on X x Y. For each j = 2,3, if F satisfies that

(i) z = F(z,y) is C-upper continuous and type (j) naturally quasi C-convez on X for
everyy €Y, ’

(i) ¢ = F(z,y) is (—C)-lower continuous and type (j) naturally quasi C-concave on Y
for everyz € X,

then F' has at least one type (j)-weak saddle point.

Theorem 4.3. (See [7].) Let X and Y be nonempty compact convezr subsets of two real
topological vector spaces, respectively, Z a real topological vector space with the partial
ordering <c, k € intC, V' a nonempty subset of Z and F : X x Y — 2% \ {#}. Assume
that F is (—C)-closed on X x Y and V' is (—C)-convex. For each j = 4,5, if F' satisfies
that

(i) z = F(z, y) is C-lower continuous and type (j) naturally quasi C-conver on X for
everyy €Y, '

(ii) z — F(z, y) is (—C)-upper continuous and type (j) naturally quasi C-concave on
Y for every x € X,
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then F' has at least one type (j)-weak saddle point.

Next, we introduce the second existence theorems which are natural extensions of Fan
type minimax theorem (see [1]).

Theorem 4.4. (See [8].) Let X be a nonempty compact subset of real topological space,
Y any space, Z a real topological vector space with the partial ordering <¢, k € intC,
V' a nonempty subset of Z and F : X x Y — 2%\ {0}. Assume that F is C-closed and
(—=C)-closed on X x Y. If F satisfies that

(i) z — F(z, y) is type (1) C-convezlike on X for everyy €Y,
(i) z = F(=z, y) is (—C)-upper continuous and type (1) C-concavelike on 'Y for every
e X,

then F has at least one type (1)-weak saddle point.

Theorem 4.5. (See [8].) Let X be a nonempty compact subset of real topological space,
Y any space, Z a real topological vector space with the partial ordering <c, k € intC, V'
a nonempty subset of Z and F : X xY — 2%\ {0}. Assume that F is C-closed on X xY.
For each j = 2,3, if F satisfies that

(1) z = F(z, y) is type (j) C-convezlike on X for everyy €Y,
(i) £ — F(z, y) is (—C)-lower continuous and type (j) C-concavelike on Y for every
e X,

then F' has at least one type (j)-weak saddle point.

Theorem 4.6. (See [8].) Let X be a nonempty compact subset of real topological space,
Y any space, Z a real topological vector space with the partial ordering <c¢, k € intC, V'
a nonempty subset of Z and F : X x Y — 2%\ {0}. Assume that F is (—C)-closed on
X xY. For each j = 4,5, if F' satisfies that

(i) z — F(z, y) is type (j) C-convezlike on X for everyy €Y,
(ii) z = F(z, y) is (—C)-upper continuous and type (j) C-concavelike on'Y for every
rze X,

then F has at least one type (j)-weak saddle point.

Finally, we give the third existence theorems for type () cone saddle points of set-valued
maps with separated form.

Theorem 4.7. (See [7].) Let X andY be nonempty compact subsets of two real topological
spaces, respectively, Z a real ordered topological vector space with the partial ordering <¢,
k € intC, V' a nonempty subset of Z and F : X x Y — 2% \ {0}. If F satisfies that

(i) F(z, y) := G1(z) U G2 (),
(ii) G1 is C-closed and C-lower continuous on X,
(iif) Gy is (—C)-closed and (—C)-upper continuous on Y,

where G1 : X — 22\ {0} and G5 : Y — 22\ {0}, then F has at least one type (1) C-saddle
point.

Theorem 4.8. (See [7].) Let X andY be nonempty compact subsets of two real topological
spaces, respectively, Z a real topological vector space with the partial ordering <¢, k € intC,
V' a nonempty subset of Z and F : X x Y — 2% \ {0}. For each j = 2,3, if F satisfies
that
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(i) F(z,y) == Gi(z) U Ga(y),
(i) Gy is C-closed and C-upper continuous on X,
(iif) Gg is C-closed and (—C)-lower continuous on Y,

where Gy : X — 22\ {0} and G2 : Y — 27 \ {0}, then F has at least one type (j) weak
C-saddle point.

Theorem 4.9. (See [7].) Let X andY be nonempty compact subsets of two real topological
spaces, respectively, Z a real topological vector space with the partial ordering <c¢, k € intC,
V' a nonempty subset of Z and F : X x Y — 2% \ {0}. For each j = 4,5, if F satisfies
that

(i) F(z,y) := G1(z) UGa(y),
(ii) Gy is (—C)-closed and C-lower continuous on X,
(ili) G2 is (—C)-closed and (—C)-upper continuous on Y,

where Gy : X — 22\ {0} and G2 : Y — 2% \ {0}, then F has at least one type (j) weak
C-saddle point.
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