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Abstract
In the paper, we introduce five types of concepts for saddle points of set-valued

maps and show existence theorem for these saddle points by using nonlinear scalar-
izing functions for sets introduced by Kuwano, Tanaka, and Yamada in 2009.

1 Introduction
Let $X$ and $Y$ be two real topological vector spaces, $F$ a map on $X\cross$ Y. In real-valued

case, $(x_{0}, y_{0})\in X\cross Y$ is a saddle point of $F$ if

$F(x_{0}, y)\leq F(x_{0},y_{0})\leq F(x,y_{0})$

for any $x\in X$ and $y\in$ Y. In vector-valued case, a saddle point $(x_{0},y_{0})\in X\cross Y$ with
respect to partial ordering $\leq c$ induced by a convex cone $C$ is defined by

$F(x, y_{0})\not\leq c^{F(x_{0},y_{0})}\not\leq_{C}F(x_{0},y)$

for any $x\in X$ and $y\in Y$ , and it is called C-saddle point of $F$. Many researchers have
been investigated existence theorems for saddle points and C-saddle points. In [7] and
[8], we consider five types of generalizations for C-saddle points and investigate sufficient
conditions for the existence of these saddle points by using nonlinear scalarization methods
for sets proposed in [4].

The aim of the paper is to introduce three types of existence theorems for cone saddle
points of set-valued maps.

The organization of the paper is as follows. In Section 2, we review mathematical
methodology proposed in [3] on comparison between two sets in an ordered vector space
and some basic concepts of set-valued optimization. In Section 3, we consider two types
of nonlinear scalarizing functions for sets proposed by the unified approach in [4], and
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investigate their properties. In Section 4, we introduce five types of concepts for cone
saddle points of set-valued maps, and three types of existence theorems for these saddle
points proved in [7, 8].

2 Mathematical Preliminaries
Throughout the paper, $X$ and $Y$ are two real topological vector spaces and $C$ is a proper

closed convex cone in $Y$ (that is, $C\neq Y,$ $C+C=C$ and $\lambda C\subset C$ for all $\lambda\geq 0$) with
nonempty topological interior. We define a partial ordering $\leq c$ on $Y$ as follows:

$x\leq cy$ if $y-x\in C$ for $x,$ $y\in Y$.
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of set-valued optimization problems with $j=1,$ $\ldots,$
$5$ :

(j-SVOP) $\{\begin{array}{l}j- Optimize F(x)Subject to x\in S.\end{array}$

Then, we introduce some concepts of solutions for (j-SVOP). Let $x_{0}\in S$ . For each
$j=1,$ $\ldots,$

$5,$ $x_{0}$ is a minimal solution of (j-SVOP) if for any $x\in S\backslash \{x_{0}\}$ ,

$F(x)\leq_{c}^{(j)}F(x_{0})$ implies $F(x_{0})\leq_{C}^{0)}F(x)$ ; (2.1)

and $x_{0}$ is a maximal solution of (j-SVOP) if for any $x\in S\backslash \{x_{0}\}$ ,

$F(x_{0})\leq_{C}^{(j)}F(x)$ implies $F(x)\leq_{c}^{(j)}F(x_{0})$ . (2.2)

If $C$ is replaced by intC, then $x_{0}$ is a weak minimal solution (resp., weak maximal solution)
of (j-SVOP). We denote the family of sets satisfying (2.1) (resp., (2.2)) by ${\rm Min}_{(j)}F(S)$

(resp., ${\rm Max}_{(j)}F(S)$ ) and the case of weak minimal (resp., weak maximal) by WMin$(j)F(S)$

(resp., WMax$(j)F(S)$ ) where $F(S)=\{F(x)|x\in S\}$ . It is clear that if $x_{0}$ is a minimal
(resp., maximal) solution of (j-SVOP) then $x_{0}$ is a weak minimal (resp., weak maximal)
solution of (j-SVOP).

Let us recall some definitions of C-notions (see [2].) A subset $A$ of $Y$ is said to be
C-convex (resp., C-closed) if $A+C$ is convex (resp., closed). Moreover, we say that $F$ is
C-notion on $S$ if $F(x)$ has the property C-notion for every $x\in S$ .

Next, we introduce several definitions of C-convexity and C-continuity for set-valued
maps. These notions are used in Sections 3 and 4.

Definition 2.2. (See [4].) For each $j=1,$ $\ldots,$
$5$ ,

(i) $F$ is called a type $(j)$ natumlly quasi C-convex function if for each $x,$ $y\in S$ and
$\lambda\in(0,1)$ , there exists $\mu\in[0,1]$ such that

$F(\lambda x+(1-\lambda)y)\leq_{C}^{(j)}\mu F(x)+(1-\mu)F(y)$ .
(ii) $F$ is called a type $(j)$ natumlly quasi C-concave function if for each $x,y\in S$ and

$\lambda\in(0,1)$ , there exists $\mu\in[0,1]$ such that

$\mu F(x)+(1-\mu)F(y)\leq_{C}^{(j)}F(\lambda x+(1-\lambda)y)$ .
Definition 2.3. (See [8].) For each $j=1,$ $\ldots,$

$5$ ,
(i) $F$ is called a type $(j)$ C-convexlike function if for every $x,$ $y\in S$ and $\lambda\in(0,1)$ , there

exists $z\in S$ such that

$F(z)\leq_{C}^{(j)}\lambda F(x)+(1-\lambda)F(y)$ .
(ii) $F$ is called a type $(j)$ C-concavelike function if for every $x,$ $y\in S$ and $\lambda\in(0,1)$ ,

there exists $z\in S$ such that

$\lambda F(x)+(1-\lambda)F(y)\leq_{c}^{(j)}F(z)$ .
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Definition 2.4. (See [2].) Let $x\in S$ . Then,

(i) $F$ is called C-lower continuous at $x$ if for every open set $V$ with $F(x)\cap V\neq\emptyset$ , there
exists an open neighborhood $U$ of $x$ such that $F(y)\cap(V+C)\neq\emptyset$ for all $y\in U$ .
We shall say that $F$ is C-lower continuous on $S$ if it is C-lower continuous at every
point $x\in S$ ,

(ii) $F$ is called C-upper continuous at $x$ if for every open set $V$ with $F(x)\subset V$ , there
exists an open neighborhood $U$ of $x$ such that $F(y)\subset V+C$ for all $y\in U$ . We shall
say that $F$ is C-upper continuous on $S$ if it is C-upper continuous at every point
$x\in S$ .

3 Unified Types of Scalarizing Functions for Sets
In [4], we propose the following nonlinear scalarizing functions for sets: Let $V,$ $V’\in 2^{Y}\backslash$

$\{\emptyset\}$ , and direction $k\in$ int$C$ . For each $j=1,$ $\ldots,$
$5$ , we define $I_{k,V}^{(j)}$ , : $2^{Y}\backslash \{\emptyset\}arrow$ Ru $\{\pm\infty\}$

by
$I_{k,V}^{(j)},(V)$ $:= \inf\{t\in \mathbb{R}|V\leq c(j)(tk+V’)\}$ .

In this section, we introduce some properties of these functions and several sufficient
conditions for the existence of solutions of (j-SVOP).

Proposition 3.1. (See [6].) Let $A,$ $B\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements hold:

(i) If $A\leq c(1)B,$ $A$ is $(-C)$ -closed and $B$ is C-closed then

$I_{k,V’}^{(1)}(A)<I_{k,V’}^{(1)}(B)$ .

(ii) For each $j=2,3$, if $A\leq_{intC}^{(j)}B$ and $B$ is C-closed then

$I_{k,V’}^{(j)}(A)<I_{k,V’}^{(j)}(B)$ .

(iii) For each $j=4,5$ , if $A\leq_{intC}^{(j)}B$ and $A$ is $(-C)$ -closed then

$I_{k,V’}^{(j)}(A)<I_{k,V’}^{(j)}(B)$ .
Next, we introduce certain inherited properties on cone-convexity and cone-continuity

of set-valued maps proved in [4, 5, 8, 10].

Lemma 3.1. (See [4, 5].) Let $k\in$ int$C$ and $V’\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements
hold:

(i) For each $j=1,2,3$, if $F$ is type $(j)$ natumlly quasi C-convex, then $I_{k,V}^{(j)},$ $oF$ is quasi

convex. Moreover, if $F$ is type $(j)$ naturally quasi C-concave, then $I_{k,V}^{(j)},$ $oF$ is quasi
$con$じののど．

(ii) For each $j=4,5$, if $F$ is type $(j)$ natumlly quasi C-convex and $V’$ is $(-C)$ -convex,
then $I_{k,V}^{(j)},$ $oF$ is quasi convex. Moreover, if $F$ is type $(j)$ natumlly quasi C-concave
and $V’$ is $(-C)$ -convex, then $I_{k,V}^{(j)},$ $oF$ is quasi concave.
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Lemma 3.2. (See [8].) Let $k\in intC$ and $V’\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements
hold:

(i) For each $j=1,2,3$ , if $F$ is type $(j)$ C-convexlike and $V’$ is C-convex, then $I_{k,V}^{(j)},$ $oF$

is convexlike.
(ii) For each $j=4,5$ , if $F$ is type $(j)$ C-convexlike and $V’$ is $(-C)$ -convex, then $I_{k,V}^{(j)},$ $oF$

is convexlike.

Lemma 3.3. (See [8].) Let $k\in intC$ and $V’\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements
hold:

(i) For each $j=1,2,3$, if $F$ is type $(j)$ C-concavelike and $V’$ is C-convex, then $I_{k,V}^{(j)},$ $oF$

is concavelike.
(ii) For each $j=4,5$, if $F$ is type $(j)$ C-concavelike and $V’$ is $(-C)$ -convex, then

$I_{k,V}^{(j)}$ , $oF$ is concavelike.

Lemma 3.4. (See [10].) Let $k\in$ int$C$ and $V’\in 2^{Y}\backslash \{\emptyset\}$ . Then, the following statements
hold:

(i) For each $j=1,4,5$ , if $F$ is C-lower continuous on $S$ then $I_{k,V}^{(j)},$ $oF$ is lower semi-
continuous on S. Moreover, if $F$ is $(-C)$ -upper continuous on $S$ then $I_{k,V}^{(j)},$ $oF$ is
upper semicontinuous on $S$ .

(ii) For each $j=2,3$, if $F$ is $(-C)$ -lower continuous on $S$ then $I_{k,V}^{(j)},$ $oF$ is upper
semicontinuous on S. Moreover, if $F$ is C-upper continuous on $S$ then $I_{k,V}^{(j)},$ $oF$ is
lower semicontinuous on $S$ .

Let $V’\in 2^{Y}\backslash \{\emptyset\}$ and direction $k\in$ int$C$. To show sufficient conditions for the existence
of solutions of (j-SVOP) by using properties of $I_{k,V^{l}}^{(j)}$ , we consider the following two kinds
of scalar optimization problems:

$x\in Sf(I_{k,V}^{(j)}, oF)(x)$ and $\sup_{x\in S}(I_{k,V}^{(j)}, oF)(x)$ .

Lemma 3.5. (See [7].) Assume that $F$ is C-closed on $S$ and $x_{0}\in S$ . Let $k\in intC$ . For
each $j=1,2,3$, the following statements hold:

(i) If $x_{0}$ is a solution of $\inf_{x\in S}(I_{k,V}^{(j)}, oF)(x)$ , then $x_{0}$ is a weak minimal solution of
(j-SVOP).

(ii) If $x_{0}$ is a solution of $\sup_{x\in S}(I_{k,V^{l}}^{(j)}oF)(x)$ , then $x_{0}$ is a weak maximal solution of
(j-SVOP).

Lemma 3.6. (See [7].) Assume that $F$ is $(-C)$ -closed on $S$ and $x_{0}\in S$ . Let $k\in$ int$C$ .
For each $j=4,5$ , the following statements hold:

(i) If $x_{0}$ is a solution of $\inf_{x\in S}(I_{k,V}^{(j)}, oF)(x)$ , then $x_{0}$ is a weak minimal solution of
(j-SVOP).

(ii) If $x_{0}$ is a solution of $\sup_{x\in S}(I_{k,V}^{(j)}, oF)(x)$ , then $x_{0}$ is a weak maximal solution of
(j-SVOP).
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4 Existence Theorems for Saddle Points of Set-Valued Maps
At first, we introduce definitions of saddle points for set-valued maps proposed in [8].

For each $j=1,$ $\ldots,$
$5$ , if $(x_{0}, y_{0})\in X\cross Y$ satisfies the following properties:

(i) $F(x, y_{0})\leq_{c}^{(j)}F(x_{0}, y_{0})$ implies $F(x_{0}, y_{0})\leq_{C}^{(j)}F(x, y_{0})$ ,

(ii) $F(x_{0}, y_{0})\leq_{c}^{(j)}F(x_{0}, y)$ implies $F(x_{0}, y)\leq^{(}c^{j)}F(x_{0}, y_{0})$ ,

for any $x\in X$ and $y\in Y$ , then we call it type $(j)$ C-saddle point of $F$ . It is equivalent to

$F(x_{0}, y_{0})\in\{{\rm Min}_{(j)}F(X, y_{0})\}\cap\{{\rm Max}_{(j)}F(x_{0}, Y)\}$ .
If $C$ is replaced by int$C$ then we call it type $(j)$ weak C-saddle poin$t$ of $F$ .

In this section, we give three types of existence theorems for type $(j)$ cone saddle points
of set-valued maps. At first, we introduce the first existence theorems which are natural
extensions of Sion’s minimax theorem (see [9]).

Theorem 4.1. (See [7].) Let $X$ and $Y$ be nonempty compact convex subsets of two real
topological vector spaces, $respectively$, $Z$ a real topological vector spaじ$e$ with the partial
ordering $\leq c,$ $k\in intC,$ $V’$ a nonempty subset of $Z$ and $F:X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . Assume
that $F$ is C-closed and $(-C)$ -closed on $X\cross$ Y. If $F$ satisfies the following conditions:

(i) $xarrow F(x, y)$ is C-lower continuous and type (1) natumlly quasi C-convex on $X$ for
every $y\in Y$ ,

(ii) $xarrow F(x, y)$ is $(-C)$ -upper continuous and type (1) natumlly quasi C-concave on
$Y$ for every $x\in X$ ,

then $F$ has at least one type (1)-weak saddle point.

Theorem 4.2. (See [7].) Let $X$ and $Y$ be nonempty compact convex subsets of two real
topological vector spaces, respectively, $Z$ a real topological vector space with the partial
ordering $\leq c,$ $k\in$ int$C,$ $V’$ a nonempty subset of $Z$ and $F:X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . Assume
that $F$ is C-closed on $X\cross$ Y. For each $j=2,3$ , if $F$ satisfies that

(i) $xarrow F(x, y)$ is C-upper continuous and type $(j)$ natumlly quasi C-convex on $X$ for
every $y\in Y$ ,

(ii) $xarrow F(x, y)$ is $(-C)$ -lower continuous and type $(j)$ natumlly quasi C-concave on $Y$

for every $x\in X$ ,

then $F$ has at least one type $(j)$ -weak saddle point.

Theorem 4.3. (See [7].) Let $X$ and $Y$ be nonempty compact convex subsets of two real
topological vector spaces, respectively, $Z$ a real topological vector space with the partial
ordering $\leq c,$ $k\in intC,$ $V’$ a nonempty subset of $Z$ and $F:X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . Assume
that $F$ is $(-C)$ -closed on $X\cross Y$ and $V’$ is $(-C)$ -convex. For each $j=4,5$ , if $F$ satisfies
that

(i) $xarrow F(x, y)$ is C-lower continuous and type $(j)$ natumlly quasi C-convex on $X$ for
every $y\in Y$ ,

(ii) $xarrow F(x, y)$ is $(-C)$ -upper continuous and type $(j)$ natumlly quasi C-concave on
$Y$ for every $x\in X$ ,
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then $F$ has at least one type $(j)$ -weak saddle point.

Next, we introduce the second existence theorems which are natural extensions of Fan
type minimax theorem (see [1]).

Theorem 4.4. (See [8].) Let $X$ be a nonempty compact subset of real topological space,
$Y$ any space, $Z$ a real topological vector space with the partial ordering $\leq c,$ $k\in C$ ,
$V’$ a nonempty subset of $Z$ and $F:X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . Assume that $F$ is C-closed and
$(-C)$ -closed on $X\cross$ Y. If $F$ satisfies that

(i) $xarrow F(x, y)$ is type (1) C-convexlike on $X$ for every $y\in Y$ ,
(ii) $xarrow F(x, y)$ is $(-C)$ -upper continuous and type (1) C-concavelike on $Y$ for every

$x\in X$ ,

then $F$ has at least one type (1)-weak saddle point.

Theorem 4.5. (See [8].) Let $X$ be a nonempty compact subset of real topological space,
$Y$ any space, $Z$ a real topological vector space with the partial ordering $\leq c,$ $k\in$ int$C,$ $V’$

a nonempty subset of $Z$ and $F:X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . Assume that $F$ is C-closed on $X\cross$ Y.
For each $j=2,3$ , if $F$ satisfies that

(i) $xarrow F(x, y)$ is type $(j)$ C-convexlike on $X$ for every $y\in Y$ ,
(ii) $xarrow F(x, y)$ is $(-C)$ -lower continuous and type $(j)$ C-concavelike on $Y$ for every

$x\in X$ ,
then $F$ has at least one type $(j)$ -weak saddle point.

Theorem 4.6. (See [8].) Let $X$ be a nonempty compact subset of real topological space,
$Y$ any space, $Z$ a real topological vector space with the partial ordering $\leq c,$ $k\in$ int$C,$ $V’$

a nonempty subset of $Z$ and $F$ : $X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . Assume that $F$ is $(-C)$ -closed on
$X\cross$ Y. For each $j=4,5$ , if $F$ satisfies that

(i) $xarrow F(x, y)$ is type $(j)$ C-convexlike on $X$ for every $y\in Y$ ,
(ii) $xarrow F(x, y)$ is $(-C)$ -upper continuous and type $(j)$ C-concavelike on $Y$ for every

$x\in X$ ,
then $F$ has at least one type $(j)$ -weak saddle point.

Finally, we give the third existence theorems for type $(j)$ cone saddle points of set-valued
maps with separated form.

Theorem 4.7. (See [7].) Let $X$ and $Y$ be nonempty compact subsets of two real topological
spaces, respectively, $Z$ a real ordered topological vector space with the partial ordering $\leq c$ ,
$k\in$ int$C,$ $V’$ a nonempty subset of $Z$ and $F$ : $X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . If $F$ satisfies that

(i) $F(x, y)$ $:=G_{1}(x)\cup G_{2}(y)$ ,
(ii) $G_{1}$ is C-closed and C-lower continuous on $X$ ,
(iii) $G_{2}$ is $(-C)$ -closed and $(-C)$ -upper continuous on $Y$ ,

where $G_{1}$ : $Xarrow 2^{Z}\backslash \{\emptyset\}$ and $G_{2}:Yarrow 2^{Z}\backslash \{\emptyset\}$ , then $F$ has at least one type (1) C-saddle
point.

Theorem 4.8. (See [7].) Let $X$ and $Y$ be nonempty compact subsets of two real topological
spaces, respectively, $Z$ a real topological vector space with the partial ordenng $\leq c,$ $k\in$ int$C$ ,
$V’$ a nonempty subset of $Z$ and $F$ : $X\cross Yarrow 2^{Z}\backslash t\emptyset$ }. For each $j=2,3$, if $F$ satisfies
that
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(i) $F(x, y):=G_{1}(x)\cup G_{2}(y)$ ,
(ii) $G_{1}$ is C-closed and C-upper continuous on $X$ ,
(iii) $G_{2}$ is C-closed and $(-C)$ -lower continuous on $Y$ ,

where $G_{1}$ : $Xarrow 2^{Z}\backslash \{\emptyset\}$ and $G_{2}$ : $Yarrow 2^{Z}\backslash \{\emptyset\}$ , then $F$ has at least one type $(j)$ weak
C-saddle point.

Theorem 4.9. (See [7].) Let $X$ and $Y$ be nonempty compact subsets of two real topological
spaces, respectively, $Z$ a real topological vector space with the partial ordering $\leq c,$ $k\in$ int$C$,
$V’$ a nonempty subset of $Z$ and $F:X\cross Yarrow 2^{Z}\backslash \{\emptyset\}$ . For each $j=4,5$, if $F$ satisfies
that

(i) $F(x, y):=G_{1}(x)\cup G_{2}(y)$ ,
(ii) $G_{1}$ is $(-C)$ -closed and C-lower continuous on $X$ ,

(iii) $G_{2}$ is $(-C)$ -closed and $(-C)$ -upper continuous on $Y$ ,

where $G_{1}$ : $Xarrow 2^{Z}\backslash \{\emptyset\}$ and $G_{2}$ : $Yarrow 2^{Z}\backslash \{\emptyset\}$ , then $F$ has at least one type $(j)$ weak
C-saddle point.
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