EXISTENCE THEOREMS FOR SADDLE POINTS OF SET-VALUED MAPS VIA NONLINEAR SCALARIZATION METHODS*

Issei Kuwano, Tamaki Tanaka, Syuuji Yamada†
Graduate School of Science and Technology,
Niigata University, Japan

Abstract

In the paper, we introduce five types of concepts for saddle points of set-valued maps and show existence theorems for these saddle points by using nonlinear scalarizing functions for sets introduced by Kuwano, Tanaka, and Yamada in 2009.

1 Introduction

Let X and Y be two real topological vector spaces, F a map on $X \times Y$. In real-valued case, $(x_0, y_0) \in X \times Y$ is a saddle point of F if

$$F(x_0, y) \leq F(x_0, y_0) \leq F(x, y_0)$$

for any $x \in X$ and $y \in Y$. In vector-valued case, a saddle point $(x_0, y_0) \in X \times Y$ with respect to partial ordering \leq_C induced by a convex cone C is defined by

$$F(x, y_0) \not\leq_C F(x_0, y_0) \not\leq_C F(x_0, y)$$

for any $x \in X$ and $y \in Y$, and it is called C-saddle point of F. Many researchers have been investigated existence theorems for saddle points and C-saddle points. In [7] and [8], we consider five types of generalizations for C-saddle points and investigate sufficient conditions for the existence of these saddle points by using nonlinear scalarization methods for sets proposed in [4].

The aim of the paper is to introduce three types of existence theorems for cone saddle points of set-valued maps.

The organization of the paper is as follows. In Section 2, we review mathematical methodology proposed in [3] on comparison between two sets in an ordered vector space and some basic concepts of set-valued optimization. In Section 3, we consider two types of nonlinear scalarizing functions for sets proposed by the unified approach in [4], and

* This work is based on research 21540121 supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science.
† E-mail: kuwano@sc.niigata-u.ac.jp, {tamaki,yamada}@math.sc.niigata-u.ac.jp
2000 Mathematics Subject Classification. 49J53, 54C60, 90C46, 90C47.
Key words and phrases. Set-valued analysis, set-valued optimization, nonlinear scalarization, minimax theorems.
investigate their properties. In Section 4, we introduce five types of concepts for cone saddle points of set-valued maps, and three types of existence theorems for these saddle points proved in [7, 8].

2 Mathematical Preliminaries

Throughout the paper, X and Y are two real topological vector spaces and C is a proper closed convex cone in Y (that is, $C \neq Y$, $C + C = C$ and $\lambda C \subset C$ for all $\lambda \geq 0$) with nonempty topological interior. We define a partial ordering \leq_c on Y as follows:

$$x \leq_c y \quad \text{if} \quad y - x \in C \quad \text{for} \quad x, y \in Y.$$

Let F be a set-valued map from $S \subset X$ into 2^Y where $S := \{x \in X | F(x) \neq \emptyset\}$ and assume that S is a convex set. For $A \in 2^Y \setminus \{\emptyset\}$, we denote the topological interior of A by $\text{int} A$. Also, we denote the algebraic sum, algebraic difference of A and C by $A + C := \bigcup_{a \in A} (a + C)$, $A - C := \bigcup_{a \in A} (a - C)$, respectively. In addition, we denote the composite function of two functions f and g by $g \circ f$. When $x \leq_c y$ for $x, y \in Y$, we define the order interval between x and y by $[x, y] := \{z \in Y | x \leq_c z \text{ and } z \leq_c y\}$.

At first, we review some basic concepts of set-relation.

Definition 2.1. (See Ref. [3].) For any $A, B \in 2^Y \setminus \{\emptyset\}$ and convex cone C in Y, we write

$$A \leq^{(1)}_C B \text{ by } A \subset \bigcap_{b \in B} (b - C), \text{ equivalently } B \subset \bigcap_{a \in A} (a + C),$$

$$A \leq^{(2)}_C B \text{ by } A \cap \left(\bigcap_{b \in B} (b - C) \right) \neq \emptyset,$$

$$A \leq^{(3)}_C B \text{ by } B \subset (A + C),$$

$$A \leq^{(4)}_C B \text{ by } \left(\bigcap_{a \in A} (a + C) \right) \cap B \neq \emptyset,$$

$$A \leq^{(5)}_C B \text{ by } A \subset (B - C),$$

$$A \leq^{(6)}_C B \text{ by } A \cap (B - C) \neq \emptyset, \text{ equivalently } (A + C) \cap B \neq \emptyset.$$

Proposition 2.1. (See [3].) For any $A, B \in 2^Y \setminus \{\emptyset\}$, the following statements hold:

$$A \leq^{(1)}_C B \text{ implies } A \leq^{(2)}_C B,$$

$$A \leq^{(1)}_C B \text{ implies } A \leq^{(4)}_C B,$$

$$A \leq^{(2)}_C B \text{ implies } A \leq^{(3)}_C B,$$

$$A \leq^{(4)}_C B \text{ implies } A \leq^{(5)}_C B,$$

$$A \leq^{(3)}_C B \text{ implies } A \leq^{(6)}_C B,$$

$$A \leq^{(5)}_C B \text{ implies } A \leq^{(6)}_C B.$$

Proposition 2.2. (See [4].) For any $A, B \in 2^Y \setminus \{\emptyset\}$, the following statements hold:

(i) For each $j = 1, \ldots, 6$,

$$A \leq^{(j)}_C B \text{ implies } (A + y) \leq^{(j)}_C (B + y) \text{ for } y \in Y, \text{ and}$$

$$A \leq^{(j)}_C B \text{ implies } \alpha A \leq^{(j)}_C \alpha B \text{ for } \alpha \geq 0.$$

(ii) For each $j = 1, \ldots, 5$, $\leq^{(j)}_C$ is transitive.

(iii) For each $j = 3, 5, 6$, $\leq^{(j)}_C$ is reflexive.

From (b) and (c) of Proposition 2.2, $\leq^{(6)}_C$ is difficult to say as order. Hence, we consider mainly the cases of $j = 1, \ldots, 5$ in the paper.

By using the set-relations defined in Definition 2.1, we consider the following five kinds
of set-valued optimization problems with $j = 1, \ldots, 5$:

$$(j\text{-SVOP}) \quad \begin{cases} \text{j-Optimize } F(x) \\ \text{Subject to } x \in S. \end{cases}$$

Then, we introduce some concepts of solutions for $(j\text{-SVOP})$. Let $x_0 \in S$. For each $j = 1, \ldots, 5$, x_0 is a \textit{minimal solution} of $(j\text{-SVOP})$ if for any $x \in S \setminus \{x_0\}$,

$$F(x) \leq_C^{(j)} F(x_0) \quad \text{implies} \quad F(x_0) \leq_C^{(j)} F(x);$$

and x_0 is a \textit{maximal solution} of $(j\text{-SVOP})$ if for any $x \in S \setminus \{x_0\}$,

$$F(x_0) \leq_C^{(j)} F(x) \quad \text{implies} \quad F(x) \leq_C^{(j)} F(x_0).$$

If C is replaced by $\text{int}C$, then x_0 is a \textit{weak minimal solution} (resp., \textit{weak maximal solution}) of $(j\text{-SVOP})$. We denote the family of sets satisfying (2.1) (resp., (2.2)) by $\text{Min}_{(j)} F(S)$ (resp., $\text{Max}_{(j)} F(S)$) and the case of weak minimal (resp., weak maximal) by $\text{WMin}_{(j)} F(S)$ (resp., $\text{WMax}_{(j)} F(S)$) where $F(S) = \{F(x) \mid x \in S\}$. It is clear that if x_0 is a minimal (resp., maximal) solution of $(j\text{-SVOP})$ then x_0 is a weak minimal (resp., weak maximal) solution of $(j\text{-SVOP})$.

Let us recall some definitions of C-notions (see [2].) A subset A of Y is said to be C-convex (resp., C-closed) if $A + C$ is convex (resp., closed). Moreover, we say that F is C-\textit{notion} on S if $F(x)$ has the property C-notion for every $x \in S$.

Next, we introduce several definitions of C-convexity and C-continuity for set-valued maps. These notions are used in Sections 3 and 4.

\textbf{Definition 2.2.} (See [4].) For each $j = 1, \ldots, 5$,

(i) F is called a \textit{type (j) naturally quasi C-convex function} if for each $x, y \in S$ and $\lambda \in (0, 1)$, there exists $\mu \in [0, 1]$ such that

$$F(\lambda x + (1 - \lambda)y) \leq_C^{(j)} \mu F(x) + (1 - \mu) F(y).$$

(ii) F is called a \textit{type (j) naturally quasi C-concave function} if for each $x, y \in S$ and $\lambda \in (0, 1)$, there exists $\mu \in [0, 1]$ such that

$$\mu F(x) + (1 - \mu) F(y) \leq_C^{(j)} F(\lambda x + (1 - \lambda)y).$$

\textbf{Definition 2.3.} (See [8].) For each $j = 1, \ldots, 5$,

(i) F is called a \textit{type (j) C-convexlike function} if for every $x, y \in S$ and $\lambda \in (0, 1)$, there exists $z \in S$ such that

$$F(z) \leq_C^{(j)} \lambda F(x) + (1 - \lambda) F(y).$$

(ii) F is called a \textit{type (j) C-concavetype function} if for every $x, y \in S$ and $\lambda \in (0, 1)$, there exists $z \in S$ such that

$$\lambda F(x) + (1 - \lambda) F(y) \leq_C^{(j)} F(z).$$
Definition 2.4. (See [2].) Let \(x \in S \). Then,

(i) \(F \) is called \(C \)-lower continuous at \(x \) if for every open set \(V \) with \(F(x) \cap V \neq \emptyset \), there exists an open neighborhood \(U \) of \(x \) such that \(F(y) \cap (V + C) \neq \emptyset \) for all \(y \in U \). We shall say that \(F \) is \(C \)-lower continuous on \(S \) if it is \(C \)-lower continuous at every point \(x \in S \).

(ii) \(F \) is called \(C \)-upper continuous at \(x \) if for every open set \(V \) with \(F(x) \subset V \), there exists an open neighborhood \(U \) of \(x \) such that \(F(y) \subset V + C \) for all \(y \in U \). We shall say that \(F \) is \(C \)-upper continuous on \(S \) if it is \(C \)-upper continuous at every point \(x \in S \).

3 Unified Types of Scalarizing Functions for Sets

In [4], we propose the following nonlinear scalarizing functions for sets: Let \(V, V' \in 2^Y \setminus \{\emptyset\} \), and direction \(k \in \text{int} C \). For each \(j = 1, \ldots, 5 \), we define \(I_{k,V}^{(j)} : 2^Y \setminus \{\emptyset\} \rightarrow \mathbb{R} \cup \{-\infty, \infty\} \) by

\[
I_{k,V}^{(j)}(V) := \inf \{ t \in \mathbb{R} \mid V \leq c(j)(tk + V') \}.
\]

In this section, we introduce some properties of these functions and several sufficient conditions for the existence of solutions of \((j\text{-SVOP})\).

Proposition 3.1. (See [6].) Let \(A, B \in 2^Y \setminus \{\emptyset\} \). Then, the following statements hold:

(i) If \(A \leq_{C}^{(1)} B \), \(A \) is \((-C) \)-closed and \(B \) is \(C \)-closed then

\[I_{k,V}^{(1)}(A) < I_{k,V}^{(1)}(B). \]

(ii) For each \(j = 2, 3 \), if \(A \leq_{\text{int} C}^{(j)} B \) and \(B \) is \(C \)-closed then

\[I_{k,V}^{(j)}(A) < I_{k,V}^{(j)}(B). \]

(iii) For each \(j = 4, 5 \), if \(A \leq_{\text{int} C}^{(j)} B \) and \(A \) is \((-C) \)-closed then

\[I_{k,V}^{(j)}(A) < I_{k,V}^{(j)}(B). \]

Next, we introduce certain inherited properties on cone-convexity and cone-continuity of set-valued maps proved in [4, 5, 8, 10].

Lemma 3.1. (See [4, 5].) Let \(k \in \text{int} C \) and \(V' \in 2^Y \setminus \{\emptyset\} \). Then, the following statements hold:

(i) For each \(j = 1, 2, 3 \), if \(F \) is type \((j) \) naturally quasi \(C \)-convex, then \(I_{k,V'}^{(j)} \circ F \) is quasi convex. Moreover, if \(F \) is type \((j) \) naturally quasi \(C \)-concave, then \(I_{k,V'}^{(j)} \circ F \) is quasi concave.

(ii) For each \(j = 4, 5 \), if \(F \) is type \((j) \) naturally quasi \(C \)-convex and \(V' \) is \((-C) \)-convex, then \(I_{k,V'}^{(j)} \circ F \) is quasi convex. Moreover, if \(F \) is type \((j) \) naturally quasi \(C \)-concave and \(V' \) is \((-C) \)-convex, then \(I_{k,V'}^{(j)} \circ F \) is quasi concave.
Lemma 3.2. (See [8].) Let \(k \in \text{int} C \) and \(V' \in 2^Y \setminus \{\emptyset\} \). Then, the following statements hold:

(i) For each \(j = 1, 2, 3 \), if \(F \) is type \((j) \) \(C \)-convexlike and \(V' \) is \(C \)-convex, then \(I_{k, V}^{(j)}, o F \) is convexlike.

(ii) For each \(j = 4, 5 \), if \(F \) is type \((j) \) \(C \)-convexlike and \(V' \) is \((-C) \)-convex, then \(I_{k, V}^{(j)}, o F \) is convexlike.

Lemma 3.3. (See [8].) Let \(k \in \text{int} C \) and \(V' \in 2^Y \setminus \{\emptyset\} \). Then, the following statements hold:

(i) For each \(j = 1, 2, 3 \), if \(F \) is type \((j) \) \(C \)-concavelike and \(V' \) is \(C \)-convex, then \(I_{k, V}^{(j)}, o F \) is concavelike.

(ii) For each \(j = 4, 5 \), if \(F \) is type \((j) \) \(C \)-concavelike and \(V' \) is \((-C) \)-convex, then \(I_{k, V}^{(j)}, o F \) is concavelike.

Lemma 3.4. (See [10].) Let \(k \in \text{int} C \) and \(V' \in 2^Y \setminus \{\emptyset\} \). Then, the following statements hold:

(i) For each \(j = 1, 4, 5 \), if \(F \) is \(C \)-lower continuous on \(S \) then \(I_{k, V}^{(j)}, o F \) is lower semicontinuous on \(S \). Moreover, if \(F \) is \((-C) \)-upper continuous on \(S \) then \(I_{k, V}^{(j)}, o F \) is upper semicontinuous on \(S \).

(ii) For each \(j = 2, 3 \), if \(F \) is \((-C) \)-lower continuous on \(S \) then \(I_{k, V}^{(j)}, o F \) is upper semicontinuous on \(S \). Moreover, if \(F \) is \(C \)-upper continuous on \(S \) then \(I_{k, V}^{(j)}, o F \) is lower semicontinuous on \(S \).

Let \(V' \in 2^Y \setminus \{\emptyset\} \) and direction \(k \in \text{int} C \). To show sufficient conditions for the existence of solutions of \((j\text{-SVOP})\) by using properties of \(I_{k, V}^{(j)}, \), we consider the following two kinds of scalar optimization problems:

\[
\inf_{x \in S} (I_{k, V}^{(j)}, o F)(x) \quad \text{and} \quad \sup_{x \in S} (I_{k, V}^{(j)}, o F)(x).
\]

Lemma 3.5. (See [7].) Assume that \(F \) is \(C \)-closed on \(S \) and \(x_0 \in S \). Let \(k \in \text{int} C \). For each \(j = 1, 2, 3 \), the following statements hold:

(i) If \(x_0 \) is a solution of \(\inf_{x \in S} (I_{k, V}^{(j)}, o F)(x) \), then \(x_0 \) is a weak minimal solution of \((j\text{-SVOP})\).

(ii) If \(x_0 \) is a solution of \(\sup_{x \in S} (I_{k, V}^{(j)}, o F)(x) \), then \(x_0 \) is a weak maximal solution of \((j\text{-SVOP})\).

Lemma 3.6. (See [7].) Assume that \(F \) is \((-C) \)-closed on \(S \) and \(x_0 \in S \). Let \(k \in \text{int} C \). For each \(j = 4, 5 \), the following statements hold:

(i) If \(x_0 \) is a solution of \(\inf_{x \in S} (I_{k, V}^{(j)}, o F)(x) \), then \(x_0 \) is a weak minimal solution of \((j\text{-SVOP})\).

(ii) If \(x_0 \) is a solution of \(\sup_{x \in S} (I_{k, V}^{(j)}, o F)(x) \), then \(x_0 \) is a weak maximal solution of \((j\text{-SVOP})\).
4 Existence Theorems for Saddle Points of Set-Valued Maps

At first, we introduce definitions of saddle points for set-valued maps proposed in [8]. For each $j = 1, \ldots, 5$, if $(x_0, y_0) \in X \times Y$ satisfies the following properties:

(i) $F(x, y_0) \leq_C^{(j)} F(x_0, y_0)$ implies $F(x_0, y_0) \leq_C^{(j)} F(x, y_0),$

(ii) $F(x_0, y_0) \leq_C^{(j)} F(x_0, y)$ implies $F(x_0, y) \leq_C^{(j)} F(x_0, y_0),$

for any $x \in X$ and $y \in Y$, then we call it type (j) C-saddle point of F. It is equivalent to

$F(x_0, y_0) \in \{\text{Min}_{(j)} F(X, y_0)\} \cap \{\text{Max}_{(j)} F(x_0, Y)\}.$

If C is replaced by $\text{int}C$ then we call it type (j) weak C-saddle point of F.

In this section, we give three types of existence theorems for type (j) cone saddle points of set-valued maps. At first, we introduce the first existence theorems which are natural extensions of Sion's minimax theorem (see [9]).

Theorem 4.1. (See [7].) Let X and Y be nonempty compact convex subsets of two real topological vector spaces, respectively, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. Assume that F is C-closed and $(-C)$-closed on $X \times Y$. If F satisfies the following conditions:

(i) $x \to F(x, y)$ is C-lower continuous and type (1) naturally quasi C-convex on X for every $y \in Y$,

(ii) $x \to F(x, y)$ is $(-C)$-upper continuous and type (1) naturally quasi C-concave on Y for every $x \in X$,

then F has at least one type (1)-weak saddle point.

Theorem 4.2. (See [7].) Let X and Y be nonempty compact convex subsets of two real topological vector spaces, respectively, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. Assume that F is C-closed on $X \times Y$. For each $j = 2, 3$, if F satisfies that

(i) $x \to F(x, y)$ is C-upper continuous and type (j) naturally quasi C-convex on X for every $y \in Y$,

(ii) $x \to F(x, y)$ is $(-C)$-lower continuous and type (j) naturally quasi C-concave on Y for every $x \in X$,

then F has at least one type (j)-weak saddle point.

Theorem 4.3. (See [7].) Let X and Y be nonempty compact convex subsets of two real topological vector spaces, respectively, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. Assume that F is $(-C)$-closed on $X \times Y$ and V' is $(-C)$-convex. For each $j = 4, 5$, if F satisfies that

(i) $x \to F(x, y)$ is C-lower continuous and type (j) naturally quasi C-convex on X for every $y \in Y$,

(ii) $x \to F(x, y)$ is $(-C)$-upper continuous and type (j) naturally quasi C-concave on Y for every $x \in X$,
then F has at least one type (j)-weak saddle point.

Next, we introduce the second existence theorems which are natural extensions of Fan type minimax theorem (see [1]).

Theorem 4.4. (See [8].) Let X be a nonempty compact subset of real topological space, Y any space, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. Assume that F is C-closed and $(-C)$-closed on $X \times Y$. If F satisfies that

(i) $x \to F(x, y)$ is type (1) C-convexlike on X for every $y \in Y$,
(ii) $x \to F(x, y)$ is $(-C)$-upper continuous and type (1) C-concavelike on Y for every $x \in X$,

then F has at least one type (1)-weak saddle point.

Theorem 4.5. (See [8].) Let X be a nonempty compact subset of real topological space, Y any space, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. Assume that F is C-closed on $X \times Y$. For each $j = 2, 3$, if F satisfies that

(i) $x \to F(x, y)$ is type (j) C-convexlike on X for every $y \in Y$,
(ii) $x \to F(x, y)$ is $(-C)$-lower continuous and type (j) C-concavelike on Y for every $x \in X$,

then F has at least one type (j)-weak saddle point.

Theorem 4.6. (See [8].) Let X be a nonempty compact subset of real topological space, Y any space, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. Assume that F is $(-C)$-closed on $X \times Y$. For each $j = 4, 5$, if F satisfies that

(i) $x \to F(x, y)$ is type (j) C-convexlike on X for every $y \in Y$,
(ii) $x \to F(x, y)$ is $(-C)$-upper continuous and type (j) C-concavelike on Y for every $x \in X$,

then F has at least one type (j)-weak saddle point.

Finally, we give the third existence theorems for type (j) cone saddle points of set-valued maps with separated form.

Theorem 4.7. (See [7].) Let X and Y be nonempty compact subsets of two real topological spaces, respectively, Z a real ordered topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. If F satisfies that

(i) $F(x, y) := G_1(x) \cup G_2(y)$,
(ii) G_1 is C-closed and C-lower continuous on X,
(iii) G_2 is $(-C)$-closed and $(-C)$-upper continuous on Y,

where $G_1 : X \to 2^Z \setminus \{\emptyset\}$ and $G_2 : Y \to 2^Z \setminus \{\emptyset\}$, then F has at least one type (1) C-saddle point.

Theorem 4.8. (See [7].) Let X and Y be nonempty compact subsets of two real topological spaces, respectively, Z a real ordered topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \to 2^Z \setminus \{\emptyset\}$. For each $j = 2, 3$, if F satisfies that
(i) $F(x, y) := G_1(x) \cup G_2(y)$,
(ii) G_1 is C-closed and C-upper continuous on X,
(iii) G_2 is C-closed and $(-C)$-lower continuous on Y,

where $G_1 : X \rightarrow 2^Z \setminus \{\emptyset\}$ and $G_2 : Y \rightarrow 2^Z \setminus \{\emptyset\}$, then F has at least one type (j) weak C-saddle point.

Theorem 4.9. (See [7].) Let X and Y be nonempty compact subsets of two real topological spaces, respectively, Z a real topological vector space with the partial ordering \leq_C, $k \in \text{int}C$, V' a nonempty subset of Z and $F : X \times Y \rightarrow 2^Z \setminus \{\emptyset\}$. For each $j = 4, 5$, if F satisfies that

(i) $F(x, y) := G_1(x) \cup G_2(y)$,
(ii) G_1 is $(-C)$-closed and C-lower continuous on X,
(iii) G_2 is $(-C)$-closed and $(-C)$-upper continuous on Y,

where $G_1 : X \rightarrow 2^Z \setminus \{\emptyset\}$ and $G_2 : Y \rightarrow 2^Z \setminus \{\emptyset\}$, then F has at least one type (j) weak C-saddle point.

References