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1 Introduction
The aim of this article is to announce that a conjecture made by Y. Edel is affirmatively
solved. In this section, let me roughly describe what is this conjecture and discuss
some effects of the affirmative solution to this conjecture. The precise definitions of the
undefined or roughly defined terminologies below (indicated by the bold face letters)
except semibiplanes and dimensional dual hyperovals will be given in the subsequent
sections. For semibiplanes and dimensional dual hyperovals, see e.g. [8] or [10].

Edel’s conjecture is concerning a class of functions on a finite field of even charac-
teristic with extremely high nonlinearity. It is called an APN function(almost perfect
nonlinear) and defined as a function whose differential at every nonzero element induces
a two to one map. APN functions are known to have strong resistance against standard
attacks to the cryptosystem, so that the main interest of researchers in cryptography is
to construct explicit APN functions. This tendency is accelerated since the discovery of
two APN functions which are not CCZ-equivalent to any power mappings by Y. Edel,
G. Kyureghyan and A. Pott in 2006.

There are two kinds of equivalence classes on functions on a finite field, one is called
the extended affine equivalence and the other the CCZ equivalence. If a function
is APN, then any functions CCZ or extended affine equivalent to it are APN as well.
Thus these equivalences automatically provide many APN functions from one. For two
functions, it is usually easier to examine whether they are extended affine equvalent than
to examine whether they are CCZ-equivalent, because the extended affine equivalence
is attained by just linear changes of variables but the CCZ-equivalence requires more
transformations. It turns out that if two APN functions are CCZ-equivaJent then they are
extended affine equivalent, but the converse is not true in general. However, through his
investigations on explicit examples with some help of computers, Y. Edel conjectured that
the converse is also true, if we restrict the class of APN functions to that of quadratic
APN functions. Here a function on a finite field is called quadratic if the differential at
any element is linear. Notice that the known infinite families of APN functions which
are CCZ-inequivalent to any power mappings consist of quadratic maps.

I have been investigating combinatorial structures associated with APN functions.
In fact, we can associate a graph with each APN function, which is the incidence graph
of a semibiplane. For a quadratic APN function, we can also associated the sec-
ond combinatorial structure, known as dimensional dual hyperoval (over the two
element field). It can be shown that two APN (resp. quadratic APN) functions are
CCZ-equivalent (resp. extended affine equivalent) if and only if the incidence graphs of
semibiplanes (resp. dimensional dual hyperovals) associated with them are isomorphic
as graphs (resp. as dimensional dual hyperovals). Based on these geometric interpre-
tations of equivalences, the last summer I succeeded in showing that Edel $s$ conjecture
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is true, by applying some basic techniques in group theory to the actions of groups of
translations on the incidence graphs of semibiplanes.

This may provide some contributions to the recent activities in constructing new APN
functions. Suppose one found a class of APN functions and would like to show that they
are new, in the sense that they are not CCZ-equivalent to the previously known APN
functions. If these functions are quadratic, the affirmative solution of Edel $s$ conjecture
reduces this task much. Let me explain this point. Notice that the known list of APN
functions consists of those CCZ-equivalent to power mappings, five infinite families of
quadratic functions (which are inequivalent to any power mappings), and some sporadic
examples (defined on small finite fields). Based on an observation that the automorphism
group of the associated graph of a power mapping has the multiplicative group of the
field, it is not extremely difficult to see that a given function is not CCZ-equivalent to a
power mapping, if it is in the case. Thus the main task is to show that a given quadratic
function is not CCZ-equivalent to any member of the known five infinite families of
quadratic APN functions. The afiirmative solution to Edel $d$ conjecture makes this task
easier: it is now enough to establish the extended affine inequivalence, which is in general
much easier to establish the CCZ-inequivalence.

2 APN functions and quadratic functions
Some researchers are interesting in functions on a finite filed which are as nonlinear
as possible, because such functions are useful in cryptograph. It is known that they
have strong resistance to known methods of attacks, such as the linear and differential
cryptanalysis. Recall that a function $f$ on a finite field $F\cong F_{p^{n}}$ is called linear (over
the prime field $F_{p}$ ) if and only if $f(x+y)=f(x)+f(y)$ for all $x,$ $y\in F$ . In terms of
differentials, this amounts to the following condition: for each $a\in F^{\cross}$ $:=F\backslash \{0\}$ , the
map sending each $x\in F$ to $f(x+a)-f(x)$ (the differential at a) takes just a single
value $f(a)$ . Thus one possible formulation of “nonlinear“ functions is to define them as
functions $f$ for which the differential $f(x+a)-f(x)$ takes as many values as possible,
when $a$ ranges over $F^{\cross}$ . Equivalently, a function $f$ on $F$ is regarded “as nonlinear as
possible“ if the differential map $F\ni x\mapsto f(x+a)-f(x)\in F$ is “as injective as possible”
for every $a\in F^{x}$ . The extremal case is formulated as follows:

Definition 1 A map $f$ on $F\cong F_{p^{n}}$ is called perfect nonlinear (abbreviated to PN) if
the equation $f(x+a)-f(x)=b$ (for variable x) has at most one solution $x$ in $F$ for
every $a\in F^{\cross}$ and every $b\in F$ .

If $f$ is PN, then the differential map at $a$ is a bijection for all $a\in F^{\cross}$ . The terminology
”perfect nonlinear” is commonly used by researchers working in cryptography, but for
the geometer, this function is known as a planar function. It was introduced first by
Dembowski and Ostrom, in order to construct projective planes with some symmetries.

However, a perfect nonlinear function on $F\cong F_{p^{n}}$ exists only when $p$ is an odd prime,
because $x$ and $x+a$ are sent to the same element $f(x+a)+f(x)$ by the differential
map at $a$ , if $F$ has characteristic 2. In this case, the most extremal case is formulated
as follows:
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Definition 2 A map $f$ on $F\cong F_{2^{n}}$ is called almost perfect nonlinear (abbreviated
to APN) if the equation $f(x+a)-f(x)=b$ (for variable x) has at most two solutions
$x$ in $F$ for every $a\in F^{\cross}$ and every $b\in F$ .

Table 1: Known APN power functions $x^{d}$ on $F\cong F_{2^{n}}$

Table 2: Known infinite families of APN maps CCZ-inequivalent to any power maps

Let me briefly introduce the known classes of APN functions. The first one is CCZ-
equivalent (for the precise definition, see Definition 5) to one of the power mappings
indicated in Table 1. As far as I know, at the present time there are five infinite classes
which are not CCZ-equivalent to any power mappings. They are indicated in Table 2.
There are several sporadic examples, in the sense that they are only defined on a specific
field (of size at most $2^{10}$ ) and not contained in one of the five known infinite families.
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Amongst them, the most remarkable one is the function $e(x)=x^{3}+ux^{36}$ on $F\cong F_{2^{10}}$

found by Edel, Kyureghyan and Pott in 2006 [5], where $u$ is any element lying in the
cosets $\omega K^{\cross}$ and $\omega^{2}K^{\cross}$ for an element. $\omega$ of $F$ of order 3 and a subfield $K\cong E5$ of $F$ .

Now I shall discuss another class of functions with a motivation from geometry. A
perfect nonlinear function $f$ on $F\cong F_{p^{n}}$ ($p$ an odd prime) is called Dembowski-Ostrom
if it is represented by a polynomial over $F$ of the following shape:

$a+ \sum_{i=0}^{n-1}a_{i}X^{2p^{i}}+\sum_{0\leq t<j\leq n-1}a_{ij}X^{p^{*}+\dot{d}}$.

This class of perfect nonlinear function is very much important, as it corresponds to the
commutative semifields structure on $F[4]$ . The corresponding notion on $F$ with even
characteristic is defined as follows:

Definition 3 A function $f$ on $F\cong$ En is called quadratic, if it is represented by a
polynomial over $F$ of the following shape:

$a+ \sum_{i=0}^{n-1}a_{i}X^{2^{i}}+\sum_{0\leq i<j\leq n-1}a_{ij}X^{2^{i}+2^{j}}$ .

This notion can be interpreted in the following way:

Proposition 1 A function $f$ on $F\cong En$ is quadmtric if and only if the map $B_{f}$ from
$F\cross F$ to $F$ defined by $B_{f}(x, y)$ $:=f(x+y)+f(x)+f(y)+f(0)(x, y\in F)$ is bilinear.

In the above example, in Table 1 the Gold function $g(x)=x^{2^{\epsilon}+1}$ with $e$ coprime to $n$ on
$F\cong F_{2^{n}}$ is quadratic, but none of the rest of power mappings $x^{d}$ in this table. In view of
the exponent $d$ , this is immediate from the definition. The five infinite families in Table
2 are all quadratic. Among sporadic examples, except two on En with $n\leq 7$ , all others
are quadratic [6].

3 Equivalences and Edel’s conjecture
Starting from a PN or APN function, how one can construct new PN or APN functions?
The standard way is to apply suitable transformations of variables. For example, if $f$ is
PN (resp. APN) on $F\cong F_{p^{n}}$ with $p$ an odd prime (resp. $p=2$), then $g=f+(\rho+c)$ for
an affine map $\rho+c$ (in which $\rho$ denotes the linear part and $c\in F$ denotes the constant
part) is also PN (resp. APN) as well, because the equation $b=g(x+a)-g(x)=$
$f(x+a)-f(x)+\rho(a)$ has exactly one (resp. zero or two) solution(s) $x$ in $F$ for every
$a\in F^{\cross}$ and every $b\in F$ . We can also consider the composition of a PN or APN function
with a bijective affine map: if $f$ is PN (resp. APN) on $F\cong F_{p^{n}}$ with $p$ an odd prime
(resp. $p=2$), then $g=fo(\rho+c)$ for any bijective affine map $\rho+c$ is again PN
(resp. APN), because there are exactly one (resp. zero or two) solution(s) $x\in F$ for the
equation $b=g(x+a)-g(x)=f(\rho(x)+\rho(a)+c)-f(\rho(x)+c)$ for every $a\in F^{\cross}$ and
every $b\in F$ . These observations lead us to the following notion of equivalence.
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Definition 4 Let $f$ and $g$ be functions on $F\cong F_{p^{n}}$ . We say that $f$ is extended affine
equivalent (abbreviated to EA-equivalent) to $g_{f}$ if there are bijective affine maps $\alpha+c$ and
$\delta+d$ on $F$ ($\alpha,$

$\delta$ are bijective linear maps on $F$ and $c,$ $d\in F$) such that go $(\alpha+c)-(\delta+d)\circ f$

is a linear map.

It can be verified that the EA-equivalence is an equivalence relation on a set of functions
on $F$ . We can easily verify the following facts:

Proposition 2 Assume that $f$ and $g$ are functions on $F\cong F_{p^{n}}$ which are EA-equivalent.

(1) Assume that $p$ is an odd prime. If $f$ is $PN$, then $g$ is $PN$ as well. If $f$ is Dembowski-
Ostrom, then $g$ is Dembowski-Ostrom as well.

(2) Assume that $p=2$ . If $f$ is $APN$, then $g$ is $APN$ as well. If $f$ is quadmtic, then $g$

is quadratic as well.

The transformations used to define EA-equivalence are just affine transformations
on $F$ . Carlet, Charpin and Zinoviev found more transformations on $F\oplus F$ $:=\{(x, y)|$

$x,$ $y\in F\}$ which yield new PN or APN functions [3].

Definition 5 Let $f$ and $g$ be functions on $F\cong F_{p^{n}}$ . We say that $f$ is CCZ-equivalent
to $g$ , if there exists a bijective affine map $\rho+(c, d)$ on $F\oplus F$ which sends the graph
$\Gamma(f):=\{(x, f(x))|x\in F\}$ of $f$ to the graph $\Gamma(g):=\{(x,g(x))|x\in F\}$ of $g$ .
Instead of “CCZ“-equivalence (after Carlet, Charpin and Zinoviev), sometimes the ter-
minology “graph”-equivalence is used. It is straightforward to see that this relation is in
fact an equivalence relation on the set of functions on a finite field $F$ . The fundamental
fact is the following:

Proposition 3 Assume that $f$ and $g$ are functions on $F$ which are CCZ-equivalent. If
$f$ is $PN$ (resp. $APN$), then $g$ is $PN$ (resp. $APN$).

Notice that there are many linear bijective maps on $F\oplus F$ , regarded as a 2n-
dimensional vector space over $F_{p}$ . In general, any linear map $\rho$ on $F\oplus F$ are determined
by a quadruple $(\alpha, \beta, \gamma, \delta)$ consisting of linear maps $\alpha,$

$\beta_{;}\gamma,$ $\delta$ on $F$ such that

$\rho((x, y))=(x, y)(\begin{array}{ll}\alpha \beta\gamma \delta\end{array})=(x^{\alpha}+y^{\gamma}, x^{\beta}+y^{\delta})$

for $x,$ $y\in F$ . In this case, we will denote $\rho=\rho(\alpha, \beta, \gamma, \delta)$ . Thus at the first sight CCZ-
equivalence seems to yield many more PN or APN functions than EA-equivalence. In
fact, as the following claim shows, EA-equivalence is a special case of CCZ-equivalence.

Proposition 4 For functions $f$ and $g$ on $F\cong F_{p^{n}},$ $f$ is EA-equivalent to $g$ if and only
if there is a bijective affine map $\rho+(c, d)$ on $F\oplus F$ with $\rho=\rho(\alpha, \beta, 0, \delta)$ which maps
$\Gamma(f)$ to $\Gamma(g)$ .

Observe that the above condition on $\rho$ (with $\gamma=0$) is equivalent to say that $\rho$ leaves
the subspace $Y:=\{(0, y)|y\in F\}$ of $F\oplus F$ invariant.

However, in the case of odd characteristic, it turns out that the notion of CCZ-
equivalence is identical to that of EA-equivalence.
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Proposition 5 For functions $f$ and $g$ on $F\cong F_{p^{n}}$ with $p$ an odd prtme, $f$ is CCZ-
equivalent to $g$ if and only if $f$ is EA-equivalent to $g$ .

On the other hand, for functions on $F\cong En$ the notion of CCZ-equivalence is properly
wider than that of EA-equivalence. For example, consider the cubic function $g(x)=x^{3}$

on $F\cong En$ . It is easy to see that $g$ is quadratic and APN. Assume that $n=2m+1>3$
is odd. In this case, $g$ is bijective. The inverse function $g^{-1}$ is given by the power
mapping $g^{-1}(x)=x^{1+2^{2}+\cdots+2^{2m}}$ . As $m>1$ , in view of the exponent, we conlude that
$g^{-1}$ is not quadratic. From the latter claim of Proposition 2(2), this implies that a
quadratic function $g$ is not EA-equivalent to a non-quadratic function $g^{-1}$ . However,
$g$ is CCZ-equivalent to $g^{-1}$ , because the linear map $(x, y)\mapsto(y, x)$ on $F\oplus F$ sends
$\Gamma(g)=\{(x_{\dot{J}}g(x))|x\in F\}$ to $\{(g(x), x)|x\in F\}=\{(y,g^{-1}(y))|y\in F\}=\Gamma(g^{-1})$ .
Thus $g^{-1}$ is a non-quadratic APN function which is CCZ-equivalent but EA-inequivalent
to a quadratic APN function $g$ . As this example shows, CCZ-equivalence does not
preserve the class of quadratic functions.

Thus CCZ-equivalence in general provides much more APN functions from an APN
function than EA-equivalence. However, through his attempt to classify all (quadratic)
APN functions on $F\cong En$ with $n\leq 6$ , Y. Edel observed that any CCZ-equivalence class
of a quadratic APN function on $F\cong En(n\leq 6)$ contains just one EA-equivalence class.
Namely, he observed the following: if two quadratic APN functions on $F\cong En(n\leq 6)$

are CCZ-equivalent, then they are in fact EA-equivalent. He conjectured that this holds
for any $F\cong E\hslash$ .

Notice that this conjecture is equivalent to the following claim.

For two quadratic APN functions $f$ and $g$ on $F\cong En$ , if there is a bijective
affine map $\rho+(c, d)$ on $F\oplus F$ which sends $\Gamma(f)$ to $\Gamma(g)$ , then we may arrange
$\rho$ to preserve $Y=\{(0, y)|y\in F\}$ .

I have been interesting in combinatorial objects related to APN functions, because
I found my favorite structure ”dimensional dual hyperovals” (but just a small part of
them) are such objects for quadratic APN functions [10], [11]. I established categori-
cal correspondence between quadratic APN functions up to EA-equivalence and some
class of dimensional dual hyperovals (dimensional dual hyperovals over $E$ covered by
the Huybrechts dual hyperoval in some specffic way) up to isomorphisms. This provides
useful automorphisms, called translations, to investigate a quadratic APN function. Fur-
thermore, my earlier investigation joint with A. Pasini of the affine expansions (which
are semibiplanes) of wider class of dimensional dual hyperovals [8],[9] alraedy suggested
the categorical correspondence between APN functions up to CCZ-equivalence and the
incidence graphs of semibiplanes with certain parameters up to graph isomorphism [12].
(Corresponding results in slightly weaker forms are also obtained in [7].) Based on these
preparations, I succeeded in showing the above conjecture of Edel by exploiting some
standard techniques in group theory and incidence geometry.

Theorem 1 Let $f$ and $g$ be two quadmtic $APN$ functions on En with $n\geq 2$ . Then $f$ is
CCZ-equivalent to $g$ if and only if $f$ is EA-equivalent to $g$ .

I am preparing a paper which includes the whole proof of this theorem [13]. The first
draft was carefully studied by Professor Nakagawa and his students, and they report me
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that they did not find any serious errors in the arguments. I heartly thank Professor
Nakagawa and his students for their efforts. I also thank Yve Edel for providing me
many useful informations on APN functions including his conjecture, especially when he
visited Japan in 2009.

4 Outline of the proof of the main theorem

4.1 Ingredients
We first define a graph associated with any function on $F\cong En$ [ $12$ , Definition 4].

Definition 6 For a function $f$ on $F\cong En_{f}$ define a gmph $\Gamma_{f}$ as follows; the set of
vertices is $F_{2}\oplus F\oplus F=\{(\epsilon;x, y)|\epsilon\in F_{2}, x, y\in F\}$ , where $(0;x, y)$ and $(1; x, y)$ are
called points and blocks; two vertices $(\epsilon_{1};x_{1}, y_{1})$ and $(\epsilon_{2};x_{2}, y_{2})$ are adjacent whenever
$\epsilon_{1}+\epsilon_{2}=1$ and $y_{1}+y_{2}=f(x_{1}+x_{2})+f(0)$ .

We denote by $\mathcal{P}$ $:=\{(0;x, y)|x, y\in F\}$ the set of points and by $\mathcal{B}$ $:=\{(1;x, y)|$

$x,$ $y\in F\}$ the set of blocks.

This graph has a geometric interpretation for a function to be APN, and also gives a
geometric interpretation of CCZ-equivalence [12, Proposition 1,2].

Proposition 6 Let $f$ and $g$ be functions on $F\cong F_{2^{n}}$ .
(1) $f$ is $APN$ iff the gmph $\Gamma_{f}$ is a connected gmph, in which two points (resp. blocks)

has exactly $0$ or 2 blocks (resp. points) adjacent to both of them.

(2) Assume that $f$ and $g$ are $APN$ functions. Then $f$ is CCZ-equivalent to $g$ if and
only if $\Gamma_{f}$ and $\Gamma_{g}$ are isomorphic as gmphs.

The next claim is very much important [12, Lemma 3]. Its proof implicitly uses a
standard semibiplane which covers $\Gamma_{f}$ for an APN function $f$ , appeared already in [8].
Here we denote a vertex $(\epsilon;x, y)$ of $\Gamma_{h}(h=f$ or g$)$ by $(\epsilon;x, y)_{h}$ in order to distinguish
to which graph it belongs.

Proposition 7 Assume that $\lambda$ is a gmph isomorpshism from $\Gamma_{f}$ to $\Gamma_{g}$ sending $(0;0,0)_{f}$

to $(0;0,0)_{g}$ . Then $\lambda$ is linear on $F_{2}\oplus F\oplus F$ .

Now we describe some automorphisms of the graph $\Gamma_{f}$ for a (quadratic) APN function
$f$ . The following maps for any $a,$ $b\in F$ are apparently automorphisms of $\Gamma_{f}$ :

$\iota:(\epsilon;x, y)\mapsto(\epsilon+1;x, y),$ $\tau(a, b)$ : $(\epsilon;x, y)\mapsto(\epsilon;x+a, y+b)$ .

If $f$ is a quadratic APN function, then the following map $t_{a}$ is an automorphism of $\Gamma_{f}$ ,
which we shall refer to as the translation along $a\in F$ :

$(\epsilon;x, y)\mapsto\epsilon(1;a, f(a)+f(0))+(0;x, y+B_{f}(a, x))$ ,
where $B_{f}(a, y)$ $:=f(x+a)+f(x)+f(a)+f(0)$ .

Here are informations about the action of a translation on the set of vertices.
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Lemma 1 If $f$ is a quadmtic $APN$ function on $F\cong En$ , the following hold for every
nonidentical tmnslation $t_{a}(a\in F^{\cross})$ :

(1) The group $T=\{t_{a}|a\in F\}$ of tmnslations acts regularly on the set of $2^{n}$ blocks
adjacent to $(0;0,0)$ .

(2) The commutator space $[\mathcal{P}, t_{a}]$ $:=\{x+x^{t_{a}}|x\in \mathcal{P}\}$ of $t_{a}$ on $\mathcal{P}$ is a subspace of
$Y:=\{(0;0, y)|y\in F\}$ of dimension $n-1$ .

(3) The centmlizer $C_{P}(t_{a})$ $:=\{x\in P|x^{t_{a}}=x\}$ of $t_{a}$ on $\mathcal{P}$ is a subspace of dimension
$n+1$ containing $Y$ .

Using the above informations, the next key lemma is obtained with notation in Lemma
1. Notice that $Y$ is one of the two subspaces in Lemma 2.

Lemma 2 For a nonidentity translation $t_{a}(a\in F^{\cross})_{f}$ there are exactly two subspaces
$X$ of $\mathcal{P}$ of dimension $n$ with the following two properties: $[\mathcal{P}, t_{a}]\subset X\subset C_{\mathcal{P}}(t_{a})$ , and $X$

does not conatin any point at distance 2 from $(0;0,0)$ .

4.2 Outline
In this last part of the article, I provide an outline of the proof. The notation introduced
in the previous subsection will be freely used.

We will first make some reduction. Assume that $f$ and $g$ are quadratic APN functions
on $F\cong En$ , which are CCZ-equivalent. By Proposition 6(2), this assumption is $equiva\ulcorner$

lent to the existence of a graph isomorphism between the graphs $\Gamma_{f}$ and $\Gamma_{g}$ defined on
$E\oplus F\oplus F$ . The existence of translations allows us to assume that such an isomorphism,
say $\rho$ , fixes a point $(0;0,0)$ and a block $(1; 0,0)$ .

Applying Sylow $s$ theorem and Proposition 7, we may assume that $\rho$ is a linear map
on $E\oplus F\oplus F$ such that a Sylow 2-subgroup $S_{f}$ of the stabilizer of $(0;0,0)_{f}$ in Aut $(\Gamma_{f})$

containing the group $T_{f}$ of translations for $\Gamma_{f}$ is sent to a Sylow 2-subgroup $S_{g}$ of the
stabilizer of $(0;0,0)_{g}$ in Aut $(\Gamma_{g})$ containing the group $T_{g}$ of translations for $\Gamma_{g}$ .

Next we shall investigate the centers of Sylow 2-groups. Based on an observation
that the center $Z(S_{h})$ of such a Sylow subgroup $S_{h}$ lies in $T_{h}$ for both $h=f$ and $g$ , we
can calculate the centralizer of $Z(S_{h})$ on the set of points of $\Gamma_{h}$ . If $|Z(S_{f})|\geq 4$ , they are
equal to the subspace $Y=\{(0;0, y)|y\in F\}$ of $E\oplus F\oplus F$ , whence $Y$ is stabilized by
$\rho$ . This implies that $\rho$ gives an EA-equivalence of $f$ with $g$ .

Hence we may assume that $|Z(S_{h})|=2(h=f, g)$ . In this case, from Lemma 2,
the image of $Y$ under $\rho$ is one of the two possible subspaces containing the subspace
consisting of $(0;0, y’)$ where $y’$ ranges over a hyperplane of $F$ . As we may assume that
$\rho$ does not preserve $Y$ , the image of $Y$ under $\rho$ is uniquely determined.

In particular, the values $(x+y)^{\pi}+x^{\pi}+y^{\pi}$ for $x,$ $y\in F$ lies in a l-dimensional subspace
spanned by a specific nonzero element $a’$ of $F$ , where $\pi$ is a permutation on $F$ such that
the image of a block $(1; x, \overline{f}(x))$ is mapped by $\rho$ to $(1; x^{\pi},\overline{g}(x^{\pi}))$ for every $x\in F$ .

Then we may introduce a form $\kappa$ on $F$ , which vanishes at $(x_{\dot{J}}y)$ exactly when
$B_{f}(x, y)=f(x+y)+f(x)+f(y)+f(O)$ lies in a certain hyperplane $H_{a}$ of $F$ . We
investigate this form to conclude that it is almost the zero form. This gives a final
contradiction.
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