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Generalizations of Burnside ring and their applications
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Muroran Institute of Technology
(BEIEKRE)

There are various generalizations of Burnside ring. Among others Boltje’s plus
construction is useful for finding explicit induction formulae. In this report, we apply
it to representation theory of the quantum double of a finite group.

1 Mackey functor and restriction functor

Let G be a finite group, and let k£ be a commutative ring. A restriction functor for
G is a triple A = (A, con, res) consisting of a family (A(H))u<c of k-modules A(H),
a family of k-module homomorphisms
cony; : A(H) — A(°H),

the conjugation maps, for H < G and g € G, and a family of k-module homomor-

phisms
res . A(H) = A(K),

the restriction maps, for K < H < G, satisfying the axioms

(G.1) conYy; o conly = con, con?y = id ),
(G.2) res¥ oresf = rest, rest = id a(zn),

g
(G.3) con¥ ores = resg o con,

forall LXK <HZG,g,7r€G,and h € H [3]. An algebra restriction functor for
G is a restriction functor A = (A4, con, res) for G such that A(H) with H < G are
k-algebras and con and res are k-algebra homomorphisms [3]. A Mackey functor for
G is a quadruple A = (A, con, res, ind) consisting of a restriction functor (A, con, res)
for G and a family of k~-module homomorphisms

indf : A(K) — A(H),
the induction maps, for K < H < G, satisfying the axioms
(G.4) ind% o ind¥ = ind¥, ind4 = idam),
(G.5) cony oindf = ind g o cond,
(G.6) (Mackey axiom)
h

. . h
resp o indf = E ind% ., ores Ko hy © COnY
KhUEK\H/U
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foral L< K< H<G,U < H,and g € G, where in (G.6), the sum is taken over all
(K, U)-double cosets KhU, h € H, of H. A Green functor for G is a Mackey functor
A = (A, con,res,ind) for G such that A = (A,con,res) is an algebra restriction
functor for G and

(G.7) (Frobenius axioms)
o -indE(7) = ind¥ (resf(0) - 7), ind%(7) -0 = indf (7 - rest (o))

forall K < H <G, o€ A(H), and 7 € A(K).

2 Plus construction

Let A be a restriction functor for G. Let H < (G, and set
MH) =[] AW).
U<H

We consider M (H) to be a left kH-module with the action given by

h.(yv)vu<a = (congs(yv)) ry<s

for all h € H and (yv)u<y € M(H). Let I(M(H)) be the smallest kH-submodule
of M(H) such that H acts trivially on M(H)/I(M(H)). We write d = d+ I(M(H))
for each d € M(H). For any K < H < G and o € A(K), define

(K, 0] = (zv)u<e € M(H)/I(M(H))

by
{o if U =K,
Ty =

0 otherwise.

Following [3], we define a Mackey functor A, = (A4,con,, res,, ind, ) for G by
Ay (H) = M(H)/I(M(H)),
con, % ([K,0]) = [¢K, conj(o)],

res, 7 ([K,0]) = Z LN ™K, resszhK o con’(0)],
LhKEL\H/K
ind, J([U,7]) = [U, o]

forall K < H<LG U<LL<H,oe€ AK),and 7 € A(U). If A is an algebra
restriction functor, then we view A, as a Green functor whose multiplication on the
elements [K, o] with K < H < G and 0 € A(K) of A.(H) is given by

(K,o]-[U,7] = Z [K N U, resk y(o) - res,h{(rj]hU o conl(7)].
KhUEK\H/U
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3 Burnside homomorphism

Let A be a restriction functor for G. Suppose that B = (B(H))g<c is a stable k-
basis of A, i.e., B(H) is a k-basis of A(H) for each H < G and con¥(B(H)) = B(°H)
for each H < G and for all g € G [3]. Let H < G, and set

Se(H) ={(K,0) | K<H and o€ B(K)}.
Given K < H and x € A(K), we define elements (x, o) with o € B(K) of k by
x= Y (x.0)0

' o€B(K)

A partially order < of Sg(H) is defined by
(U,7) < (K,0) <= U<K and (resfi(o),7)+#0.
View Sg(H) as a left H-set with the action given by
h.(K,0) = ("K, con’(a))

for all h € H and (K,0) € Sg(H), and denote by Rp(H) a complete set of represen-
tatives of H-orbits in Sg(H). The elements [K, o], (K,0) € Rg(H), form a k-basis
of A (H). Given (U,7) € Rg(H), we set

Ny(U,7) = {h € Ng(U) | cong(r) = 7},
Wu(U,7) = Ng(U,T)/U,

and
Ss(H)>w,r = {(K,0) € Sg(H) | (K,0) = (U,7)}.

Let CI(H) be a full set of nonconjugate subgroups of H. Set
Ga(H)= ] A,
KeCI(H)

where
AK)YNEE) = {5 € A(K) | con’,(c) = o for all h € Ny (K)}.

Given (K,0) € Rg(H), we set
(K,o)t = Z con’ (o).
hNH(K,U)ENH(K)/NH(K,O')
The elements (K,0)*, (K,0) € Rg(H), form a k-basis of Ga(H). A k-module homo-
morphism pa g : AL (H) — G4(H) defined by
pan(UT) = 3 > {res o confy(r), o) (K, 0)*
(K,0)€Rs(H) RUEH/U K<hU

for all (U, 7) € Rp(H) is called a Burnside homomorphism.
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Example 3.1 Define a k-algebra restriction functor k = (k, con, res) for G by

k(H) =k,
con}; = idy,
rest = id

for all K < H < G and g € G. Then the Green functor k, for G is isomorphic
to the Burnside ring functor k£ ®z Q [3]. If £ = Z, then Burnside homomorphisms
vz.u + UH) = [1kecin Z with H < G are ring monomorphisms.

4 Canonical induction formula

Let X be a Mackey functor for G, and suppose that A is a restriction subfunctor
of X. So A(H) C X(H) for each H < G, and the conjugation and restriction maps
of A are compatible with those of X. We define a morphism 6%4 : A, — X of

Mackey functors for G by
O3 *([K, 0]) = indi(0)

for all H < G and [K, 0] € A, (H). A morphism ¥ : X — A, of restriction functors
for G is called a canonical induction formula for X from A if

@X’A oV = idx
[3, 3.3. Definition].

Example 4.1 Assume that ¥ = Z. For each H < G, let R(H) be the character
ring of CH (see, e.g., [5, §9C]). The character ring functor for G is the Green functor
R = (R, con, res, ind) for G with usual conjugation, restriction, and induction. Given
H < G, let Lin(H) be the set of linear C-characters of H. We denote by R®" the
restriction subfunctor of the character ring functor for G such that R**(H), where
H < G, is the Z-span of Lin(H). Observe that BU" = (Lin(H))u<g is a stable Z-basis
of R?*. For each H < G, define a Z-module homomorphism ok* : R(H) — R**(H)
by
Lin X if X € Lin(H)a
o (x) = { 0 otherwise

for all irreducible C-characters x of H. Let p be the Mobius function of the poset
(S(G), <), S(G) the set of subgroups of G.

According to [3, 1.8.(a), 6.13.(2), 9.7. Example], there exists a canonical induction
formula UAR* for R from R®® defined by

ab
qjgﬁ (x) = Z m.(X)[U, 7],
(UvT)ERBLin (H)
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where

1_‘—"‘ n
00 = @] > p(U, K)(ai" o resi(x), 0),
H I (K’G)GSBLin(H)Z(U,T)

for all H < G and x € R(H). In particular, m.(x) € Z for all H < G, x € R(H),
and (U, 7) € Rgun(H). Consequently,

X = Z mr (X)indg(T)

(UsT)ERBLin (G)

for all x € R(G). This explicit Brauer induction formula is due to Boltje [2].

5 An induction formula for Mackey functors

Let X be a Mackey functor for G. Given H < G, we set

TX(H)= Y _{indf(y) | y € X(K)}

K<H

and
KX(H) = () {z € X(H) | resfi(z) = 0}.
K<H

A subgroup H of G is called primordial for X if 7X(H) # X (H) [10], and is called
coprimordial for X if KX (H) # {0} [3]. Let P(X) be the set of primordial subgroups
of G, and let C(X) be the set of coprimordial subgroups of G. If |G| is invertible in
k, then

X(H)=TX(H) o KX(H)

for all H < G, and thereby, P(X) = C(X) (see e.g., [3, 6.2 Proposition]).

We define a restriction functor X = (X, ¢on, tes) for G by

X(H) = X(H)/T*(H),
con () = con(z),

tesi(T) = resf(z)

forall K< H<G,z€ X(H),and g € G. Hereg =y + TX(L) for all L < G and
for each y € X (L).

The first assertion of the following proposition is due to Puig [9, Proposition
3.4(iii)] (see also [10]), and the second one is part of [3, 6.9 Example] (see also [10,
Proposition 7.7]), which is a generalization of Brauer’s explicit formula for Artin’s
induction theorem or Witherspoon’s explicit formula for Conlon’s induction theorem
(cf. [10, Section 7], [11, Proposition 3.7)).
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Proposition 5.1 Suppose that |G| is invertible in k. Let X be a Mackey functor for
G, and let H < G. Then there exists a k-module isomorphism

X(H) = H Y(K)NH(K)a Z = (feSK( Z)) K eCl(H)NP(X)-
KeCI(H)NP(X)

Moreover,

1 .
T = Z Nl Z \U|u(U, K)ind# o resfl ()

KeCl(H)NP(X) U<K

forallz € X(H).

6 Crossed Mackey functor

Let S be a finite G-monoid, i.e., a finite semigroup with identity on which G
acts as monoid homomorphisms. Given a restriction functor A for G, we define a
restriction functor Ags = (Ags, congg,resgg) for G by

Ags(H) = A(H) @ kCs(H),
conggf(z ® s) = conf(z) ® %,
resgs £ (z ® s) =resf(z) ® s

forall K < H<G,z€ A(H), s € Cs(H), and g € G. If A is an algebra restriction
functor, then we define multiplication on Ags(H) by

( > z(s)® )( > e ): > Y z(syt)er

s€Cs(H) teCs(H) r€Cs(H) (s,:t)ESXS, st=r

Let X be a Mackey functor for G. Following [8], we define a crossed Mackey
functor Xg = (Xg, cong, resg, indg) for G by

con; (z(s)) = z("s) for all h € H} ,

Xs(H) = {(a:(s))ses e [[ x#.)

s€S

cong f((z(s))ses) = (conf;, (2(5))) sses:

resg §((2(s))ses) = (resi’ (z(s)))ses:

indg 2 ((y(s))ses) = ( Z ind{{fK)a o con’kh_la (y( h'ls))) )
€S

H.hKeH\H/K
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where H, is the stabilizer of s in H, for all K < H < G and g €G. If X is a Green
functor, then we define multiplication on Xg(H) by

(2(5))ses (y(£)ees = > indy7 , (resyy?, (2(s)) - rest (y(1)) |

(s,t)EH\SXS, st=r res

where H,\S x S is a complete set of H,-orbits of the diagonal action on S x S.
The second assertion of the following theorem is a consequence of Proposition 5.1,
and is related to [12, Theorem 5.5].

Theorem 6.1 Suppose that |G| is invertible in k. Let S be a finite G-monoid, and
let X be a Mackey functor for G. Then

P(XS) = P(X)’
and there exists a k-module isomorphism

Xs(H) S [ Xes(K)Va¥),
KeCI{H)NP(X)

xS)seS'_’( Z T, Qs

s€Cs(K) ) KeCI(H)NP(X)

for all H < G. If X is a Green functor, then this is a k-algebra isomorphism.

7 Green ring functor

Hereafter we assume that £k = Z. For each H < G, let a(H) be the Green
ring of CH (see, e.g., [5, §80D]). The Green ring functor for G is the Green functor
a = (a,con, res, ind) for G with usual conjugation, restriction, and induction. The
character ring functor for G and the Green ring functor for G are isomorphic.

We view G as a G-monoid with the action given by conjugation g where r, g € G.
Let conj(G) be a full set of nonconjugate elements in G.

The next proposition is a consequence of Theorem 6.1, and is a special case of
Lusztig [6, 2.2(g)] (cf. [12, p. 316], Theorem 8.1).

Proposition 7.1 We have
Cac(G)= ] CZ(Cclg))

g€conj(G)

as C-algebras.
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8 The quantum double of a finite group

We denote by (CG)* the set of all linear mappings from CG to C, and view it as
the C-algebra with pointwise addition and multiplication. Suppose that (CG)* is the
left G-set with the action given by

%f(z) = f(g~'zg)

for all f € (CG)*, g € G, and z € CG. We set D(G) = CG ®¢ (CG)*. The quantum
double of G is the C-algebra D(G) with multiplication given by

(91 ® f1)(92 ® fo) = 192 ® f1 %[
for all g1, g» € G and fi, f> € (CG)* (see, e.g., [7, 12]). There is a basis {¢4 | g € G}

of (CG)* given by
1 ifs=yg,
¢(s) = { 0 otherwise.
Suppose that H < G, and define a subalgebra Dg(H) of D(G) by

Dg(H)= )_ Chgg,

s€G, heH

Let Dg(H)-mod be the set of finitely generated Dg(H )-modules. We define a tensor
product M; ® M, with M, M, € Dg(H)-mod by the left Dg(H)-module M; ®c M,
with the action of Dg(H) given by

(h®¢)(u@v) =) (A8 Gy-1)u® (h® ¢gs)v

9eG

for all h® ¢, € Dg(H) and u ® v € M; ®c Ma.

For each M € Dg(H)-mod, we denote by [M] the isomorphism class containing
M. Let Dg(H)-mod be the set of isomorphism classes [M] with M € Dg(H)-mod,
and denote by R(Dg(H)) the ring consisting of Z-linear combinations of isomor-
phism classes [M] € Dg(H)-mod with direct sum for addition and tensor product
for multiplication.

We now define a Green functor Rp, = (Rpg,Dcon, Dres, Dind) for G by

Rps(H) = R(Dg(H)),
Deonty([M]) = [g & M),
Dresﬁ([M]) = [MlDG(K)]’
Dindg([N]) = [De(H) ®pe(x) N]

forall K < H<G,g€ G, M€ Dg(H)-mod, and N € Dg(K)-mod, as usual

([1, 12]).
The following theorem is due to Oda and Yoshida [8, 5.5. Theorem)] (see also [4]):

Theorem 8.1 The Green functors Rp, and ac are isomorphic.
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9 An induction formula for the quantum double of a finite group

Let H < G, and let H\G be a complete set of representatives of H-orbits in
G. From Theorem 8.1, we know that Dg(H) is a semisimple algebra. The set of
isomorphism classes of irreducible Dg(H )-modules is

, (1 ® ¢s)M is an irreducible CH,-module
Irr(Dg(H)) == { [M] € Dg(H)-mod | for some s € H\G, and (1 ® ¢;)M =0
for any t € H\G with ¢ # s

Let R*®(Dg(H)) be the ring consisting of Z-linear combinations of isomorphism
classes [N] € Lin(Dg(H)), where

dim¢((1 ® ¢s)N) =1 for some s € H\G,
Lin(De(H)) = 4 [N] € Dg(H)-mod | and (1® ¢;)N = 0 for any t € H\G
with ¢ # s

Define a Z-module homomorphism Day : R(Dg(H)) — R®*®(Dg(H)) by

Denary= {1140 € (Dt

otherwise

for all [M] € Irr(Dg(H)).

We define a restriction subfunctor R%. of Rp, = (Rpg,Dcon, Dres, Dind) by
R (H) = R*®(Dg(H)) for all H < G. Observe that BPS := (Lin(Dg(H)))g<c is a
stable Z-basis of R3p .

We can now state an analogy of an explicit Brauer induction formula given in
Example 4.1.

Theorem 9.1 Let H < G, and let M € Dg(H)-mod. Then

M ~ Z mN(M) . DG(H) ®DG(U) N,
(U[N)€ER ;D (H)

where

1 ~
my (M) = > w(U, K){Dax o Dresg([M]), [N]).
(K, [ND€S,pe (H)>w. )
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