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Abstract

We give a summary account of the recent development on a partic-
ular theory of quantum vertex algebras and the association of quantum
affine algebras with quantum vertex algebras.

1 Introduction
In the general field of vertex algebras, a fundamental problem has been to
establish a theory of quantum vertex algebras so that quantum affine alge-
bras can be canonically associated with quantum vertex algebras (see [FJ];
cf. [EFK] $)$ . In the past, several notions of quantum vertex (operator) algebra
have been introduced and studied with various purposes (see $[eFR]$ , [EK], [B3],
[Li2], [AB], [Li7] $)$ . With solving the very problem as one of the main goals, in a
series of papers (see [Li2], [Li5], [Li6], [Li7]) we have developed certain theories
of (weak) quantum vertex algebras. Indeed, using some of such theories we
have obtained partial solutions while complete solutions are emerging.

The main theme of this series of studies is to investigate the algebraic struc-
tures that the generating functions of the generators in the Drinfeld realization
(see [Dr]) could possibly ”generate.” Let $W$ be a general vector space and set
$\mathcal{E}(W)=Hom(W, W((x)))$ . In [Li2], we studied certain vertex algebra-like
structures generated by various types of subsets of $\mathcal{E}(W)$ , where the most gen-
eral type consists of what we called quasi compatible subsets. It was proved
therein (cf. [Lil]) that any quasi compatible subset of $\mathcal{E}(W)$ generates a non-
local vertex algebra with $W$ as a quasi module in a certain sense (cf. [Li3]).
(Nonlocal vertex algebras are analogs of noncommutative associative algebras,
in contrast to that vertex algebras are analogs of commutative and associative
algebras.) It follows from this general result that a wide variety of algebras
can be associated with nonlocal vertex algebras. In particular, nonlocal ver-
tex algebras can be associated to quantum affine algebras by taking $W$ to be
a highest weight module for a quantum affine algebra and $U$ the set of the
generating functions.

We also formulated in [Li2] a notion of (weak) quantum vertex algebra,
which was mostly motivated by Etingof-Kazhdan $s$ notion of quantum vertex
operator algebra, especially by the S-locality axiom (see [EK]). A weak quan-
tum vertex algebra was defined to be a nonlocal vertex algebra that satisfies (a
small variation of) S-locality, while a quantum vertex algebra was defined to
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be a weak quantum vertex algebra equipped with a unitary rational quantum
Yang-Baxter operator governing the S-locality. This notion of quantum ver-
tex algebra came out as a variation of Etingof-Kazhdan $s$ notion of quantum
vertex operator algebra. What is more important is a conceptual result; we
studied a notion of “S-local subset” of $\mathcal{E}(W)$ (with $W$ a vector space), which
singles out a family of quasi compatible subsets, and we proved that every
S-local subset of $\mathcal{E}(W)$ generates a weak quantum vertex algebra with $W$ as
a canonical module. In a sequel [Li5] we have successfully associated quan-
tum vertex algebras to certain versions of double Yangians. This makes the
particular theory of quantum vertex algebras more interesting, though it was
still a question whether one can associate (weak) quantum vertex algebras to
quantum affine algebras.

An association of weak quantum vertex algebras to quantum affine algebras
was obtained later in [Li8], where a new construction of weak quantum vertex
algebras was established and a theory of what were called $\phi$-coordinated quasi
modules for weak quantum vertex algebras was developed. In this new theory,
the parameter $\phi$ is a formal series $\phi(x, z)\in \mathbb{C}((x))[[z]]$ satisfying

$\phi(x, 0)=x$ , $\phi(\phi(x, x_{0}), x_{2})=\phi(x, x_{0}+x_{2})$ .

Particular examples are $\phi(x, z)=x+z$ and $\phi(x, z)=xe^{z}$ . Given such a $\phi$ ,
for a nonlocal vertex algebra $V$ we defined a notion of $\phi$-coordinated quasi
V-module for which the main axiom is an associativity

$(Y(u, x_{1})Y(v, x_{2}))|_{x_{1}=\phi(x2,xo)}=Y(Y(u, x_{0})v, x_{2})$

(an unrigorous version). In the case $\phi(x, z)=x+z$ , this notion reduces to that
of an ordinary V-module. On the other hand, we generalized the conceptual
constmction in [Li2]. Given a general vector space $W$ , we defined a (partial)
vertex operation $Y_{\mathcal{E}}^{\phi}$ on $\mathcal{E}(W)$ by

$Y_{\mathcal{E}}^{\phi}(a(x), z)b(x)=(a(x_{1})b(x))|_{x_{1}=\phi(x,z)}$

(unrigorous) for $a(x),$ $b(x)\in \mathcal{E}(W)$ . It was proved that every quasi compatible
subset of $\mathcal{E}(W)$ generates under the vertex operation $Y_{\mathcal{E}}^{\phi}$ a nonlocal vertex
algebra with $W$ as a $\phi-$-coordinated quasi module. We furthermore formulated
a notion of quasi $S_{trig}$-locality, to capture the main features of the set of gen-
erating functions for quantum affine algebras. It was proved that every quasi
$S_{trig}$-local subset $U$ of $\mathcal{E}(W)$ generates a weak quantum vertex algebra with $W$

as a $\phi$-coordinated quasi module with $\phi(x, z)=xe^{z}$ . Take $W$ to be a highest
weight module for a quantum affine algebra and $U$ the set of the generating
functions. Then $U$ is a quasi $S_{trig}$-local subset of $\mathcal{E}(W)$ , and hence it generates
a weak quantum vertex algebra with $W$ as a $\phi$-coordinated quasi module.

Having associated weak quantum vertex algebras to quantum affine alge-
bras in a conceptual way, we have provided a rough solution to the aforemen-
tioned problem. Note that for the association of affine Lie algebras with vertex
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algebras, the underlying spaces of the associated vertex algebras are vacuum
modules for the affine Lie algebras (see [FZ]; cf. [LL]). To complete this so-
lution we shall have to construct the underlying spaces explicitly, preferably
as (vacuum) modules for certain algebras, and show that the associated weak
quantum vertex algebras are indeed quantum vertex algebras.

We mention that there are also two other closely related theories of quan-
tum vertex algebras. In [Li6], a theory of h-adic (weak) quantum vertex alge-
bras was developed and $\hslash$-adic quantum vertex algebras were associated to a
centrally extended double Yangian. In [Li7], a theory of (weak) quantum ver-
tex $\mathbb{C}((t))$ -algebras was developed and weak quantum vertex $\mathbb{C}((t))$-algebras
were associated to quantum affine algebras.

This research was partially supported by National Security Agency grant
H98230-11-1-0161. We would like to thank Professor Masahiko Miyamoto for
organizing this great conference.

2 Weak quantum vertex algebras and quan-
tum vertex algebras

In this section, following [Li2] we present the basic notions of weak quantum
vertex algebra and quantum vertex algebra, including a conceptual construc-
tion.

First of all, we work on the field $\mathbb{C}$ of complex numbers and we use the
formal variable notations and conventions as established in [FLM] and [FHL]
(cf. [LL]). Letters such as $x,$ $y,$ $z,$ $x_{0},$ $x_{1},$ $x_{2},$ $\ldots$ are mutually commuting inde-
pendent formal variables. For a positive integer $r$ , denote by $\mathbb{C}[[x_{1}, x_{2}, \ldots, x_{r}]]$

the algebra of formal nonnegative power series and by $\mathbb{C}((x_{1}, \ldots, x_{r}))$ the al-
gebra of formal Laurent series which are globally truncated with respect to
all the variables. Note that in the case $r=1,$ $\mathbb{C}((x))$ is in fact a field. By
$\mathbb{C}(x_{1}, x_{2}, \ldots, x_{r})$ we denote the field of rational functions.

For any permutation $(i_{1}, i_{2}, \ldots, i_{r})$ on $\{$ 1, $\ldots,$
$r\},$ $\mathbb{C}((x_{i_{1}}))\cdots((x_{i_{r}}))$ is a field

containing $\mathbb{C}[x_{1}, \ldots, x_{r}]$ as a subalgebra, so there exists an algebra embedding

$\iota_{x_{1},\ldots,x_{i_{r}}}$ : $\mathbb{C}(x_{1}, x_{2}, \ldots , x_{r})arrow \mathbb{C}((x_{i_{1}}))\cdots((x_{i_{f}}))$ , (2.1)

extending uniquely the identity endomorphism of $\mathbb{C}[x_{1}, \ldots, x_{r}]$ (cf. [FHL]).
Note that both $\mathbb{C}(x_{1}, \ldots, x_{r})$ and $\mathbb{C}((x_{i_{1}}))\cdots((x_{i_{r}}))$ contain $\mathbb{C}((x_{1}, \ldots, x_{r}))$ as
a subalgebra. We see that $\iota_{x_{i_{1}},\ldots,x_{i_{f}}}$ preserves $\mathbb{C}((x_{1}, \ldots, x_{r}))$ element-wise and
is $\mathbb{C}((x_{1}, \ldots , x_{r}))$-linear.

Definition 2.1. A nonlocal vertex algebra is a vector space $V$ , equipped with
a linear map

$Y(\cdot, x)$ : $Varrow Hom(V, V((x)))\subset$ (End$V$ ) $[[x, x^{-1}]]$ ,
$v\mapsto Y(v, x)$
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and a vector $1\in V$ , satisfying the conditions that $Y(1, x)=1$ ,

$Y(v, x)1\in V[[x]]$ and $\lim_{xarrow 0}Y(v, x)1=v$ for $v\in V$,

and that for $u,$ $v,$ $w\in V$ , there exists a nonnegative integer $l$ such that

$(x_{0}+x_{2})^{l}Y(u, x_{0}+x_{2})Y(v, x_{2})w=(x_{0}+x_{2})^{l}Y(Y(u, x_{0})v, x_{2})w$ . (2.2)

Let $V$ be a nonlocal vertex algebra. Define a linear operator $\mathcal{D}$ on $V$ by

$\mathcal{D}(v)=v_{-2}1$ for $v\in V$ (2.3)

Then

$[ \mathcal{D}, Y(v, x)]=Y(\mathcal{D}v, x)=\frac{d}{dx}Y(v, x)$ for $v\in V$ . (2.4)

The following notion singles out an important family of nonlocal vertex
algebras:

Definition 2.2. A weak quantum vertex algebm is a nonlocal vertex algebra
$V$ which satisfies S-locality in the sense that for $u,$ $v\in V$ , there exist

$u^{(i)},$ $v^{(i)}\in V$, $f_{i}(x)\in \mathbb{C}((x))(i=1, \ldots, r)$

(finitely many) such that

$(x_{1}-x_{2})^{k}Y(u, x_{1})Y(v, x_{2})=(x_{1}-x_{2})^{k} \sum_{i=1}^{r}f_{i}(x_{2}-x_{1})Y(v^{(i)}, x_{2})Y(u^{(i)}, x_{1}\int 2.5)$

for some nonnegative integer $k$ .

The notion of weak quantum vertex algebra naturally generalizes the notion
of vertex algebra and that of vertex superalgebra.

We have the following basic facts (see [Li2]):

Proposition 2.3. Let $V$ be a nonlocal vertex algebra and let

$u,$ $v,$ $u^{(i)},$ $v^{(i)}\in V$, $f_{i}(x)\in \mathbb{C}((x))(i=1, \ldots, r)$ .

Then the S-locality relation (2.5) is equivalent to

$x_{0}^{-1} \delta(\frac{x_{1}-x_{2}}{x_{0}})Y(u, x_{1})Y(v, x_{2})$

$-x_{0}^{-1} \delta(\frac{x_{2}-x_{1}}{-x_{0}})\sum_{i=1}^{r}f_{i}(-x_{0})Y(v^{(i)}, x_{2})Y(u^{(i)},x_{1})$

$=x_{2}^{-1} \delta(\frac{x_{1}-x_{0}}{x_{2}})Y(Y(u, x_{0})v, x_{2})$ (2.6)
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(the S-Jacobi identity), and is also equivalent to

$Y(u,x)v=e^{x\mathcal{D}} \sum_{i=1}^{r}f_{i}(-x)Y(v^{(i)}, -x)u^{(i)}$ (2.7)

(the S-skew symmetry).

Definition 2.4. Let $V$ be a nonlocal vertex algebra. A V-module is a vector
space $W$ , equipped with a linear map

$Y_{W}(\cdot, x)$ : $Varrow Hom(W, W((x)))\subset(EndW)[[x, x^{-1}]]$ ,
$v\mapsto Y_{W}(v, x)$ ,

satisfying the conditions that

$Y_{W}(1, x)=1_{W}$ (the identity operator on $W$)

and that for $u,$ $v\in V,$ $w\in W$ , there exists a nonnegative integer $l$ such that

$(x_{0}+x_{2})^{l}Y_{W}(u, x_{0}+x_{2})Y_{W}(v,x_{2})w=(x_{0}+x_{2})^{l}Y_{W}(Y(u, x_{0})v, x_{2})w$ .

We also define a quasi V-module by replacing the last condition with that for
$u,$ $v\in V,$ $w\in W$ , there exists a nonzero polynomial $p(x_{1}, x_{2})$ such that

$p(x_{0}+x_{2}, x_{2})Y_{W}(u, x_{0}+x_{2})Y_{W}(v, x_{2})w=p(x_{0}+x_{2}, x_{2})Y_{W}(Y(u, x_{0})v, x_{2})w$.

Proposition 2.5. Let $V$ be a weak quantum vertex algebm and let $(W, Y_{W})$ be
a module for $V$ viewed as a nonlocal vertex algebra. Assume

$u,$ $v,$
$u^{(i)},$ $v^{(i)}\in V$, $f_{i}(x)\in \mathbb{C}((x))$ $(i=1, \ldots, r)$

such that the S-locality relation (2.5) holds. Then

$x_{0}^{-1} \delta(\frac{x_{1}-x_{2}}{x_{0}})Y_{W}(u, x_{1})Y_{W}(v, x_{2})$

$-x_{0}^{-1} \delta(\frac{x_{2}-x_{1}}{-x_{0}})\sum_{i=1}^{r}f_{i}(-x_{0})Y_{W}(v^{(i)}, x_{2})Y_{W}(u^{(i)}, x_{1})$

$=x_{2}^{-1} \delta(\frac{x_{1}-x_{0}}{x_{2}})Y_{W}(Y(u, x_{0})v, x_{2})$ .

A mtional quantum Yang-Baxter operator on a vector space $U$ is a linear
operator

$S(x)$ : $U\otimes Uarrow U\otimes U\otimes \mathbb{C}((x))$

satisfying the quantum Yang-Baxter equation

$S^{12}(x)S^{13}(x+z)S^{23}(z)=S^{23}(z)S^{13}(x+z)S^{12}(x)$ .

It is said to be unitary if
$S(x)S^{21}(-x)=1$ ,

where $S^{21}(x)=\sigma S(x)\sigma$ with $\sigma$ denoting the flip operator on $U\otimes U$ .
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Definition 2.6. A quantum vertex algebm is a weak quantum vertex algebra
$V$ equipped with a unitary rational quantum Yang-Baxter operator $S(x)$ on
$V$ , satisfying

$S(x)(1\otimes v)=1\otimes v$ for $v\in V$, (2.8)

$[ \mathcal{D}\otimes 1, S(x)]=-\frac{d}{dx}S(x)$ , (2.9)

$Y(u, x)v=e^{x’D}Y(-x)S(-x)(v\otimes u)$ for $u,$ $v\in V$, (2.10)
$S(x_{1})(Y(x_{2})\otimes 1)=(Y(x_{2})\otimes 1)S^{23}(x_{1})S^{13}(x_{1}+x_{2})$ . (2.11)

We denote a quantum vertex algebra by a pair $(V, S)$ .

In the study of quantum vertex (operator) algebras, the notion of non-
degeneracy, which was introduced by Etingof-Kazhdan in [EK], has played a
very important role.

Definition 2.7. A nonlocal vertex algebra $V$ is said to be non-degenerate if
for every positive integer $n$ , the linear map

$Z_{n}:V^{\otimes n}\otimes \mathbb{C}((x_{1}))\cdots((x_{n}))arrow V((x_{1}))\cdots((x_{n}))$,

defined by

$Z_{n}(v^{(1)}\otimes\cdots\otimes v^{(n)}\otimes f)=fY(v^{(1)}, x_{1})\cdots Y(v^{(n)}, x_{n})1$

for $v^{(1)},$
$\ldots,$

$v^{(n)}\in V,$ $f\in \mathbb{C}((x_{1}))\cdots((x_{n}))$ , is injective.

It was proved in [Li2] (cf. [EK]).

Proposition 2.8. Let $V$ be a weak quantum vertex algebra. Assume that $V$ is
non-degenerate. Then there exists a linear map $S(x)$ : $V\otimes Varrow V\otimes V\otimes \mathbb{C}((x))$ ,
which is uniquely determined by

$Y(u, x)v=e^{xD}Y(-x)S(-x)(v\otimes u)$ for $u,$ $v\in V$,

and $(V, S)$ carries the structure of a quantum vertex algebm. Moreover, the
following relation holds

$[1 \otimes \mathcal{D}, S(x)]=\frac{d}{dx}S(x)$ . (2.12)

The following is a general result on non-degeneracy (see [Li7], cf. [Li4]):

Proposition 2.9. Let $V$ be a nonlocal vertex algebm such that $V$ as a V-
module is irreducible and of countable dimension (over $\mathbb{C}$). Then $V$ is non-
degenemte.
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Next, we discuss the conceptual construction of weak quantum vertex al-
gebras. Let $W$ be a general vector space. Set

$\mathcal{E}(W)=Hom(W, W((x)))\subset(EndW)[[x, x^{-1}]]$ . (2.13)

The identity operator on $W$ , denoted by $1_{W}$ , is a special element of $\mathcal{E}(W)$ .

Definition 2.10. A finite sequence $a_{1}(x),$
$\ldots$ , $a_{r}(x)$ in $\mathcal{E}(W)$ is said to be quasi

compatible if there exists a nonzero polynomial $p(x, y)$ such that

$( \prod_{1\leq i<j\leq r}p(x_{i}, x_{j}))a_{1}(x_{1})\cdots a_{r}(x_{r})\in Hom(W, W((x_{1}, \ldots, x_{r})))$. (2.14)

The sequence $a_{1}(x),$
$\ldots,$

$a_{r}(x)$ is said to be compatible if (2.14) holds with
$p(x_{1}, x_{2})=(x_{1}-x_{2})^{k}$ for some nonnegative integer $k$ . Furthermore, a subset
$T$ of $\mathcal{E}(W)$ is said to be quasi compatible (resp. compatible) if every finite
sequence in $T$ is quasi compatible (resp. compatible).

Let $(a(x), b(x))$ be a quasi compatible ordered pair in $\mathcal{E}(W)$ . That is, there
is a nonzero polynomial $p(x, y)$ such that

$p(x_{1},x_{2})a(x_{1})b(x_{2})\in Hom(W, W((x_{1}, x_{2})))$ . (2.15)

We define $Y_{\mathcal{E}}(a(x), x_{0})b(x)\in \mathcal{E}(W)((x_{0}))$ by

$Y_{\mathcal{E}}(a(x), x_{0})b(x)= \iota_{x,x_{0}}(\frac{1}{p(x+x_{0},x)}I(p(x_{1}, x)a(x_{1})b(x))|_{x_{1}=x+x_{0}}$ (2.16)

and we then define $a(x)_{n}b(x)\in \mathcal{E}(W)$ for $n\in \mathbb{Z}$ by

$Y_{\mathcal{E}}(a(x), x_{0})b(x)= \sum_{n\in Z}a(x)_{n}b(x)x_{0}^{-n-\prime}$
. (2.17)

One can show that this is well defined; the expression on the right-hand side
is independent of the choice of $p(x, y)$ . In this way we have defined partial
operations $(a(x), b(x))\mapsto a(x)_{n}b(x)$ for $n\in \mathbb{Z}$ on $\mathcal{E}(W)$ . We say that a quasi
compatible subspace $U$ of $\mathcal{E}(W)$ is $Y_{\mathcal{E}}$ -closed if

$a(x)_{n}b(x)\in U$ for $a(x),$ $b(x)\in U,$ $n\in \mathbb{Z}$ . (2.18)

We have the following conceptual results (see [Li2], cf. [Lil]):

Theorem 2.11. Let $W$ be a vector space and let $U$ be any (resp. quasi)
compatible subset of $\mathcal{E}(W)$ . Then there exists a (unique) smallest $Y_{\mathcal{E}}$ -closed
(resp. quasi) compatible subspace $\langle U\rangle$ that contains $U$ and $1_{W}$ . Furthermore,
$(\langle U\rangle, Y_{\mathcal{E}}, 1_{W})$ carries the structure of a nonlocal vertex algebm with $W$ as a
(resp. quasi) module where $Y_{W}(\alpha(x), x_{0})=\alpha(x_{0})$ for $\alpha(x)\in\langle U\rangle$ .
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Definition 2.12. Let $W$ be a vector space. A subset $U$ of $\mathcal{E}(W)$ is said to be
S-local if for any $a(x),$ $b(x)\in U$ , there exist

$c^{(i)}(x),$ $d^{(i)}(x)\in U,$ $f_{i}(x)\in \mathbb{C}((x))$ $(i=1, \ldots, r)$

(with $r$ finite) such that

$(x-z)^{k}a(x)b(z)=(x-z)^{k} \sum_{i=1}^{r}f_{i}(-z+x)c^{(i)}(z)d^{(i)}(x)$ (2.19)

for some nonnegative integer $k$ .

Every S-local subset was proved to be compatible. Furthermore, we have:

Theorem 2.13. For any S-local subset $U$ of $\mathcal{E}(W)_{f}\langle U\rangle$ is a weak quantum
vertex algebm with $W$ as a module.

3 $\phi$-coordinated modules for nonlocal vertex
algebras and quantum vertex algebras

In this section, we present the theory of $\phi$-coordinated quasi modules for non-
local vertex algebras and for weak quantum vertex algebras, which was estab-
lished in [Li8].

Set

$F_{a}(x, y)=x+y\in \mathbb{C}[x, y]$ , (3.1)

which is known as the one-dimensional additive formal group. The following
notion, introduced in [Li8], is an analog of the notion of G-set for a group $G$ :

Definition 3.1. An associate of $F_{a}(x, y)$ is a formal series $\phi(x, z)\in \mathbb{C}((x))[[z]]$ ,
satisfying

$\phi(x, 0)=x$ , $\phi(\phi(x, x_{0}), x_{2})=\phi(x, x_{0}+x_{2})$ . (3.2)

We have the following explicit construction of associates (see [Li8]):

Proposition 3.2. For $p(x)\in \mathbb{C}((x))$ , set

$\phi_{p(x)}(x, z)=e^{zp(x)\frac{d}{dx}}x=\sum_{n\geq 0}\frac{z^{n}}{n!}(p(x)\frac{d}{dx})^{n}x\in \mathbb{C}((x))[[z]]$ .

Then $\phi_{p(x)}(x, z)$ is an associate of $F_{a}$ . Furthermore, every associate of $F_{a}$ is
of this form with $p(x)$ uniquely determined.
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Using Proposition 3.2, we obtain particular associates of $F_{a}:\phi_{p(x)}(x, z)=x$

with $p(x)=0;\phi_{p(x)}(x, z)=x+z$ with $p(x)=1;\phi_{p(x)}(x, z)=xe^{z}$ with
$p(x)=x;\phi_{p(x)}(x, z)=x(1-zx)^{-1}$ with $p(x)=x^{2}$ .

Definition 3.3. Let $V$ be a nonlocal vertex algebra and let $\phi$ be an associate
of $F_{a}$ . A $\phi$ -coordinated quasi V-module is defined as in Definition 2.4 except
replacing the weak associativity axiom with the condition that for $u,$ $v\in V$ ,
there exists a (nonzero) polynomial $p(x, y)$ such that $p(\phi(x, z), x)\neq 0$ ,

$p(x_{1}, x_{2})Y_{W}(u, x_{1})Y_{W}(v, x_{2})\in Hom(W, W((x_{1}, x_{2})))$ , (3.3)

and

$p(\phi(x_{2}, x_{0}), x_{2})Y_{W}(Y(u, x_{0})v, x_{2})=(p(x_{1}, x_{2})Y_{W}(u, x_{1})Y_{W}(v, x_{2}))|_{x_{1}=\phi(x,xo)}2(3.4)$

A $\phi$ -coordinated V-module is defined as above except that $p(x_{1}, x_{2})$ is assumed
to be a polynomial of the form $(x_{1}-x_{2})^{k}$ with $k\in N$ .

Let $W$ be a vector space and let $\phi(x, z)$ be an associate of $F_{a}(x, y)$ , which
are both fixed for the moment. We define a notion of $\phi$ -quasi compatible subset
of $\mathcal{E}(W)$ as in Definition 2.10 but in addition assuming $p(\phi(x, z), x)\neq 0$ . For
a $\phi$-quasi compatible pair $(a(x), b(x))$ in $\mathcal{E}(W)$ , by definition there exists a
polynomial $p(x, y)$ such that $p(\phi(x, z), x)\neq 0$ and

$p(x_{1}, x_{2})a(x_{1})b(x_{2})\in Hom(W, W((x_{1}, x_{2})))$ . (3.5)

Definition 3.4. Let $a(x),$ $b(x)\in \mathcal{E}(W)$ be such that $(a(x), b(x))$ is $\phi\mapsto$-quasi
compatible. We define

$a(x)_{n}^{\phi}b(x)\in \mathcal{E}(W)$ for $n\in \mathbb{Z}$

in terms of the generating function

$Y_{\mathcal{E}}^{\phi}(a(x), z)b(x)= \sum_{n\in Z}a(x)_{n}^{\phi}b(x)z^{-n-1}$
(3.6)

by

$Y_{\mathcal{E}}^{\phi}(a(x), z)b(x)=p(\phi(x, z), x)^{-1}(p(x_{1}, x)a(x_{1})b(x))|_{x_{1}=\phi(x,z)}$ , (3.7)

which lies in $(Hom(W, W((x))))((z))=\mathcal{E}(W)((z))$ , where $p(x_{1}, x_{2})$ is any poly-
nomial with $p(\phi(x, z), x)\neq 0$ such that (3.5) holds and where $p(\phi(x, z), x)^{-1}$

stands for the inverse of $p(\phi(x, z), x)$ in $\mathbb{C}((x))((z))$ .

Let $U$ be a subspace of $\mathcal{E}(W)$ such that every ordered pair in $U$ is $\phi$-quasi
compatible. We say that $U$ is $Y_{\mathcal{E}}^{\phi}$ -closed if

$a(x)_{n}^{\phi}b(x)\in U$ for $a(x),$ $b(x)\in U,$ $n\in \mathbb{Z}$ . (3.8)

We have (see $[$Li8])$\cdot$ :
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Theorem 3.5. Let $W$ be a vector space, $\phi(x, z)$ an associate of $F_{a}(x, y)$ , and
$U$ a $\phi$-quasi compatible subset of $\mathcal{E}(W)$ . There exists a $Y_{\mathcal{E}}^{\phi}$-closed $\phi$ -quasi
compatible subspace of $\mathcal{E}(W)$ , that contains $U$ and $1_{W}$ . Denote by $\langle U\rangle_{\phi}$ the
smalfest such subspace. Then $(\langle U\rangle_{\phi}, Y_{\mathcal{E}}^{\phi}, 1_{W})$ carries the structure of a nonlocal
vertex algebm and $W$ is a $\phi$-coordinated quasi $\langle U\rangle_{\phi}$ -module with $Y_{W}(\alpha(x), z)=$

$\alpha(z)$ for $\alpha(x)\in\langle U\rangle_{\phi}$ .

Definition 3.6. Let $W$ be a vector space. A subset $U$ of $\mathcal{E}(W)$ is said to be
quasi $S_{trig}$ -local if for any $a(x),$ $b(x)\in U$ , there exist finitely many

$u^{(i)}(x),$ $v^{(i)}(x)\in U$, $f_{i}(x)\in \mathbb{C}(x)(i=1, \ldots , r)$

such that

$p(x_{1}, x_{2})a(x_{1})b(x_{2})= \sum_{i=1}^{r}p(x_{1}, x_{2})\iota_{x_{2},x_{1}}(f_{i}(x_{1}/x_{2}))u^{(i)}(x_{2})v^{(i)}(x_{1})$ (3.9)

for some nonzero polynomial $p(x_{1}, x_{2})$ , depending on $a(x)$ and $b(x)$ . We define
$S_{trig}$ -locality by strengthening (3.9) as

$(x_{1}-x_{2})^{k}a(x_{1})b(x_{2})=(x_{1}-x_{2})^{k} \sum_{i=1}^{r}\iota_{x_{2},x_{1}}(f_{i}(x_{1}/x_{2}))u^{(i)}(x_{2})v^{(i)}(x_{1})(3.10)$

for some nonnegative integer $k$ .

The fact is that quasi $S_{trig}$-local subsets of $\mathcal{E}(W)$ are quasi compatible
whereas $S_{trig}$-local subsets are compatible. Furthermore, we have (see [Li8]):

Theorem 3.7. Let $W$ be a vector space and let $U$ be any (resp. quasi) $S_{trig^{-}}$

local subset of $\mathcal{E}(W)$ . Set $\phi(x, z)=xe^{z}$ . Then the nonlocal vertex algebm
$\langle U\rangle_{\phi}$ genemted by $U$ is a weak quantum vertex algebm and $(W, Y_{W})$ is a (resp.
quasi) $\phi$-coordinated module for $\langle U\rangle_{\phi}$ , where

$Y_{W}(\alpha(x), x_{0})=\alpha(x_{0})$ for $\alpha(x)\in\langle U\rangle_{\phi}$ .

4 Quantum affine algebras and weak quantum
vertex algebras

In this section we show how to associate weak quantum vertex algebras to
quantum affine algebras by using the conceptual construction of weak quantum
vertex algebras and their $\phi$-coordinated quasi modules.

First, we follow [FJ] (cf. [Dr]) to present the quantum affine algebras. Let
$\mathfrak{g}$ be a finite-dimensional simple Lie algebra of rank $l$ of type $A,$ $D$ , or $E$ and
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let $A=(a_{ij})$ be the Cartan matrix. Let $q$ be a nonzero complex number. For
$1\leq i,j\leq l$ , set

$f_{ij}(x)=(q^{aij}x-1)/(x-q^{aij})\in \mathbb{C}(x)$ . (4.1)

Then we set

$g_{ij}(x)^{\pm 1}=\iota_{x,0}f_{ij}(x)^{\pm 1}\in \mathbb{C}[[x]]$ , (4.2)

where $\iota_{x,0}f_{ij}(x)^{\pm 1}$ are the formal Taylor series expansions of $f_{ij}(x)^{\pm 1}$ at $0$ . Let
$\mathbb{Z}_{+}$ denote the set of positive integers. The quantum affine algebra $U_{q}(\hat{g})$ is
(isomorphic to) the associative algebra with identity 1 with generators

$X_{ik}^{\pm}$ , $\phi_{im}$ , $\psi_{in}$ , $\gamma^{1/2}$ , $\gamma^{-1/2}$ (4.3)

for $1\leq i\leq l,$ $k\in \mathbb{Z},$ $m\in-\mathbb{Z}_{+},$ $n\in \mathbb{Z}_{+}$ , where $\gamma^{\pm 1/2}$ are central, satisfying
the relations below, written in terms of the following generating functions in
a formal variable $z$ :

$X_{i}^{\pm}(z)= \sum_{k\in Z}X_{ik}^{\pm}z^{-k}$
,

$\phi_{i}(z)=\sum_{m\in-Z_{+}}\phi_{im}z^{-m}$
,

$\psi_{i}(z)=\sum_{n\in Z_{+}}\psi_{in}z^{-n}$
. $(4.4)$

The relations are
$\gamma^{1/2}\gamma^{-1/2}=\gamma^{-1/2}\gamma^{1/2}=1$ ,
$\phi_{i0}\psi_{i0}=\psi_{i0}\phi_{i0}=1$ ,
$[\phi_{i}(z), \phi_{j}(w)]=0$ , $[\psi_{i}(z), \psi_{j}(w)]=0$ ,
$\phi_{i}(z)\psi_{j}(w)\phi_{i}(z)^{-1}\psi_{j}(w)^{-1}=g_{ij}(z/w\gamma)/g_{ij}(z\gamma/w)$ ,
$\phi_{i}(z)X_{j}^{\pm}(w)\phi_{i}(z)^{-1}=g_{ij}(z/w\gamma^{\pm 1/2})^{\pm 1}X_{j}^{\pm}(w)$,
$\psi_{i}(z)X_{j}^{\pm}(w)\psi_{i}(z)^{-1}=g_{ij}(w/z\gamma^{\pm 1/2})^{\mp 1}X_{j}^{\pm}(w)$ ,
$(z-q^{\pm 4aij}w)X_{i}^{\pm}(z)X_{j}^{\pm}(w)=(q^{\pm 4a_{ij}}z-w)X_{j}^{\pm}(w)X_{i}^{\pm}(z)$ ,

$[X_{i}^{+}(z), X_{j}^{-}(w)]= \frac{\delta_{ij}}{q-q^{-1}}(\delta(\frac{z}{w\gamma})\psi_{i}(w\gamma^{1/2})-\delta(\frac{z\gamma}{w})\phi_{i}(z\gamma^{1/2}))$ ,

and there is one more set of relations of Serre type.
A $U_{q}(\hat{\mathfrak{g}})$ -module $W$ is said to be restricted if for any $w\in W,$ $X_{ik}^{\pm}w=0$ and

$\psi_{ik}w=0$ for $1\leq i\leq l$ and for $k$ sufficiently large. We say $W$ is of level $p\in \mathbb{C}$

if $\gamma^{\pm 1/2}$ act on $W$ as scalars $q^{\pm\ell/4}$ . (Rigorously speaking, one needs to choose
a branch of log $q.$ ) We have (see [Li8]; cf. [Li2], Proposition 4.9):

Proposition 4.1. Let $q$ and $\ell$ be complex numbers with $q\neq 0$ and let $W$ be a
restricted $U_{q}(\hat{\mathfrak{g}})$ -module of level $p$ . Set

$U_{W}=\{\phi_{i}(x), \psi_{i}(x), X_{i}^{\pm}(x)|1\leq i\leq l\}$ .

Then $U_{W}$ is a quasi $S_{trig}$ -local subset of $\mathcal{E}(W)$ and $\langle U_{W}\rangle_{\phi}$ is a weak quantum
vertex algebm with $W$ as a $\phi$-coordinated quasi module, where $\phi(x, z)=xe^{z}$ .
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With Proposition 4.1 on hand, the remaining problem is to determine the
weak quantum vertex algebras $\langle U_{W}\rangle_{\phi}$ explicitly and to show that they are
quantum vertex algebras, sufficiently by establishing the non-degeneracy. We
expect that these weak quantum vertex algebras are vacuum modules for cer-
tain associative algebras derived from quantum affine algebras.
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