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1 Introduction
The notion of $C_{2}$-cofiniteness was introduced by Zhu in [Z] and the structure
of vertex operator algebra (VOA shortly) satisfying this condition has been
studied by many researchers (see [M], [Ar] for example). However, the verfica-
tion of the condition is very difficult in general, and it is a task when we treat
a VOA which is expected to be $C_{2}$-cofinite.

There are some conjectures on the $C_{2}$-cofimiteness condition of VOAs, and
as one of them, the $C_{2}$-cofiniteness of an orbifold model of a $C_{2}$-cofinite VOA
has been believed to be tme for many years. A permutation orbifold model is
an orbifold model of a VOA given as a tensor product of d-copies of a VOA
$V$ by a natural action of a permutation group $\Omega$ in $S_{d}$ , which is denoted by
$Vl\Omega$ . We try to prove that if $V$ is a simple $C_{2}$-cofinite VOA, then $Vl\Omega$ is
$C_{2}$-cofinite for any pemutation group $\Omega$ . We show that this is true for $d=2$

in this report. A part of the results are in [Ab] in which we consider for the
Virasoro VOAs in the case $d=2$ .

2 VOA and related notions
A vertex operator algebra (VOA) $V$ is a N-graded vector space $V=\oplus_{n=0}^{\infty}V_{n}$

over $\mathbb{C}$ equipped with bilinear maps $V\cross V\ni(a, b)\mapsto a_{(m)}b\in V$ called m-th
product, and there are distinguished vectors $1\in V_{0}$ and $\omega\in V_{2}$ called the
vacuum vector and the Virasoro vector of $V$ rexpectively. These products
satisfy the following axioms:

(1) For any $a,$ $b\in V,$ $a_{(n)}b=0$ for sufficiently large integer $n$ .

(2) (Borcherds identity) For any $a,$ $b\in V$ ,

$\sum_{i=0}^{\infty}(\begin{array}{l}qi\end{array})(a_{(p+i)}b)_{(q+r-i)}c$

(2.1)
$= \sum_{i=0}^{\infty}(-1)^{i}(\begin{array}{l}pi\end{array})(a_{(p+q-i)}b_{(r+i)}c-(-1)^{p}b_{(p+r-i)}a_{(q+i)}c)$.
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(3) $1_{(n)}=\delta_{n,-1}$ id$v$ for $n\in \mathbb{Z}$ .

If we set $p=0$ , we have Commutativity formula; for any $q,$ $r\in \mathbb{Z},$ $a,$ $b,$ $c\in V$ ,

$\sum_{i=0}^{\infty}(\begin{array}{l}qi\end{array})(a_{(\dot{0})}b)_{(q+r-i)}c=a_{(q)}b_{(r)}c-b_{(r)}a_{(q)}c$. (2.2)

If we set $q=0$, we have Associativity formula: For any $p,$ $r\in \mathbb{Z},$ $a,$ $b,$ $c\in V$ ,

$(ab)c= \sum_{i=0}^{\infty}(-1)^{i}(\begin{array}{l}pi_{i}\end{array})(a_{(p-i)}b_{(z^{}+i)}c-(-1)^{p}b_{(p+r-i)}a_{(i)}c)$. (2.3)

It is known that Associativity formula and Comutativity formula impliy the
Borcherds identity.

The Virasoro vector $\omega$ satisfies the following axioms when we denote $\omega(m)$

by $L_{m-1}$ for $m\in \mathbb{Z}$ :

$[L_{m}, L_{n}]:=(m-n)L_{m+n}+ \frac{m^{3}-m}{12}c_{V}\delta_{m+n,0}$

for some $c_{V}\in \mathbb{C}$ called the central charge of $V$ , and

$L_{-1}a=a_{(-2)}1$ for $a\in V$, $L_{0}a=ka$ for $a\in V_{k}$ , $\dim V_{k}<\infty$ .

An automorphism of a VOA $V$ is a linear isomorphim $g$ satisfying that
$g(a_{(m)}b)=g(a)_{(m)}g(b)$ for $a,$ $b\in V,$ $g(1)=1$ and $g(\omega)=\omega$ . For a finite
automorphism group $G,$ $V^{G}=\{a\in V|g(a)=a\}$ has naturally a VOA
structure. This VOA is called an orbifold model of $V$ .

Now we recall the notion of $C_{2}$-cofiniteness. Let $C_{2}(V)$ be a subspace of $V$

defined by
$C_{A}(V)=\langle a_{(-2)}b|a,$ $b\in V\rangle_{\mathbb{C}}$ .

A VOA $V$ is called $C_{2}$ -cofinite if $R(V):=V/C_{2}(V)$ is finite dimensional. The
following theorem Is useful to verify the $C_{2}$-cofiniteness.

Theorem 2.1. Let $V$ be a $VOA$ and $U$ $a$ its subVOA with same Virasoro
vector. If $Ui_{i}sC_{2^{-}}\omega finite$ then so is $V$ .

It is well known that -l-th product induces a commutative associative
algebra structure on $R(V)$ and 0-th product indiuces a Lie algebra structure
on it. By these two algebra sturctures, $R(V)$ becomes a Poisson algebra. We
write $\overline{a}=a+C_{2}(V),$ $\overline{a}\cdot\overline{b}=\overline{a_{(-1)}b}$ and $[\overline{a},\overline{b}]=\overline{a_{(0)}b}$ for $a,$ $b\in V$ .

Let $S$ be a set of $V$ . If $V=\langle a_{()}^{1_{-n1}}\cdots a_{(-n_{r})}^{r}1|a^{i}\in S,n_{i}\in \mathbb{Z}_{>0}\rangle_{\mathbb{C}}$ , then $V$

is called to be strongly generated by $S$ (see [Ar] for more properties). If
$V$ is strongly generated by a subset $S,$ $R(V)$ is generated by $\{\overline{a}|a\in S\}$ as an
algebra.
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3 Permutation orbifold models
Let $V$ be a VOA of central charge $c_{V}$ and $V^{\Phi d}$ the tensor product of d-copies
of the vector spaoe $V$ . Then $V^{\Phi d}$ cannonically has a VOA structure: For
$a^{1},$

$\cdots,$
$a^{d},$ $b^{1},$

$\cdots,$
$b^{d}\in V$ and $m\in \mathbb{Z}$,

$(a^{1} \otimes\cdots\otimes a^{d})_{(m)}(b^{1}\otimes\cdots\otimes b^{d})=,\sum_{i_{1},\cdotsiota\in Z,\Sigma i_{j}=m-d+1}a_{(i_{1})}^{1}b^{1}\otimes\cdots\otimes a_{(i_{d})}^{d}b^{d}$
.

The vaccum vector and the Virasoro vecotor are given by $1^{\otimes d}$ and

$\sum_{i=1}^{d}1^{\otimes(i-1)}\otimes\omega\otimes 1^{\otimes(d-i)}$ ,

where $1^{@k}$ denotes the tensor product of $k$ copies of the vacuum 1. The central
charge of $V^{\otimes d}$ is $dc_{V}$ .

The symmetric group $S_{d}$ of degree $d$ acts on $V^{\Phi d}$ as pemutations of tensor
factors; for each permutation $\sigma\in S_{d},$ $\sigma(\otimes_{1=1}^{d}a^{i})=\otimes_{i=1}^{d}a^{\sigma^{-1}(i)}$ for $a^{i}\in V$ . For
any subgroup $\Omega\subset S_{d}$ , we define

$Vl\Omega$ $:=(V^{@d})^{\Omega}=\{u\in V^{\Phi d}|\sigma(u)=u$ , for $\sigma\in S_{d}\}$ .

Then $Vl\Omega$ is a subVOA of $V^{@d}$ with same Virasoro vector.
Here we introduce a linear map $\eta:Varrow VlS_{d}$ defined by

$\eta(a)=\sum_{:=1}^{d}1^{\emptyset i-1}\otimes a\otimes 1^{\emptyset d-i}$

for $a\in V$ . We see that $\eta(\omega)$ is the Virasoro vector of $VlS_{d}$ . Since $Vl\Omega$ has
$\eta(\omega)$ as its Virasoro vector and $VlS_{d}\subset Vl\Omega$ , Theorem 2.1 shows that $Vl\Omega$ Is
$C_{2}$-cofinite if $VlS_{d}$ is $C_{2^{-}}\infty fi\dot{m}te$ . Therefore we only consider the permutation
orbifold model $V1S_{d}$ .

We also have

$\eta(a)_{(i)}\eta(b)=\eta(a_{(i)}b)$ for $i\in \mathbb{Z}_{\geq 0}$ ,
$\eta(a)_{(-1)}\eta(b)=\eta(a_{(-1)}b)+\phi_{2}(a, b)$ for $i\in \mathbb{Z}_{\geq 0}$ ,

where we define $\phi_{k}$ : $V^{k}arrow VlS_{d}$ by

$\phi_{k}(a^{1}, \cdots, a^{k})=\frac{1}{(d-k)!}\sum_{\sigma\in S_{d}}\sigma(a^{1}\otimes\cdots\otimes a^{k}\otimes 1\otimes\cdots\otimes 1)$

for $a^{:}\in V$ . For $k\geq 1,$ $\phi_{k}(a^{1}, \cdots, a^{k})$ can be expressed as a sum $of-1$-th
products of vectors in ${\rm Im}\eta$ and ${\rm Im}\phi_{k-1}$ . This implies the following proposition.
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Proposition 3.1. $VlS_{d}$ is strongly generated by ${\rm Im}\eta$ . Hence $R(VlS_{d})$ is
genemted by $\{\eta(a)+C_{2}(VlS_{d})|a\in V\}$ .

Now we denote the images of $\eta(a)$ and $\phi_{k}(a^{1}, \cdots, a^{k})$ in $R(VlS_{d})$ by

$\overline{\eta}(a)=\eta(a)+C_{2}(V1S_{d})$ ,
$\overline{\phi}_{k}(a^{1}, \cdots, a^{k})=\phi_{k}(a^{1}, \cdots, a^{k})+C_{1}(VlS_{d})$

for $a,$ $a^{i}\in V$ and $k\geq 2$ . Then we can show that the following theorem.
Theorem 3.2. $R(V1S_{d})$ is finite dimensionat if and only if ${\rm Im}\overline{\eta}$ is finite
dimensional.

Theorem 3.2 in the case $d=2$ can be refer in [Ab]. Consequently it suffices
to show the $C_{2}$-cofiniteness of $V1S_{d}$ that $Ker\overline{\eta}$ is finite codimensional. It is
easy to see that $L_{-1}V\subset Ker\overline{\eta}$ and

$\overline{\phi}_{2}(a_{(-n)}u, v)=-\overline{\phi}_{2}(u, a_{(-n)}v)-\overline{\phi}_{8}(a_{(-n)}1, u, v)$ (3.1)

for any $a,$ $u,$ $v\in V$ and $n\geq 2$ . This identitiy plays an essential role in the $d=2$
case because the scond term in the right hand side need not to be considered.

4 $C_{2}$-cofiniteness of $VlS_{2}$

We consider the case $d=2$ . In this case we have
$\overline{\eta}(a)\overline{\eta}(b)=\tilde{\eta}(a_{(-1)}b)$

if $a$ or $b$ are in $Ker\overline{\eta}$ . By using this fact and a slightly long argument, we have
Theorem 4.1. Let $V$ be a $C_{2}$ -cofinite $VOA$ with $V_{0}=\mathbb{C}1$ . Suppose that $V$ is
strongly generated by a (finite) set S. Then ${\rm Im}\overline{\eta}$ is finite dimensional if and
only if the subspace $\langle\overline{\eta}(x_{(-n)}y)|x,$ $y\in S,$ $n\geq 0\rangle_{\mathbb{C}}\dot{u}$ finite dimensoional.

We now set
$D(x, y):=\langle\overline{\eta}(x_{(-n)}y)|n\geq 0\rangle_{\mathbb{C}}$

for any $x,y\in V$ . By Theorems 3.2 and 4.1, we have the $f_{0}nowing$ thorem.
Theorem 4.2. Let $V$ be a $C_{2}$ -cofinite $VOA$ with $V_{0}=\mathbb{C}1$ . Suppose that $V$ is
strongly genemted by S. Then $V1S_{2}$ is $C_{2}$ -cofinite if and only if the subspace
$D(x, y)$ is finite dimensoional for each $x,$ $y\in S$ .

In fact we can show the following lemma (in the case $d=2$).

Lemma4.3. If $V$ is a (not necessarily $C_{2^{-}}\omega finite$) simple $VOA$ with $V_{0}=\mathbb{C}1$ ,
then $\dim D(x, y)<\infty$ for any $x,$ $y\in V$ .

Therefore we have the desired result.
Theorem 4.4. Let $V$ be a $C_{2}$ -cofinite, simple $VOA$ ntth $V_{0}=\mathbb{C}1$ . Then $VlS_{2}$

is $C_{2}$ -cofinite.
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5 Proof of Lemma 4.3
The proof of Lemm 4.3 is given by complicated calculations. So we can not
write the detail of them in this report. Hence we explain how to show Lemma
4.3 by dividing 4-steps .

Firstly we have the foUowing lemma with respect to the Virasoro vector $\omega$ :

Lemma 5.1. ([Ab]) $\dim D(\omega,\omega)\leq 14$ .

To get the lemma, we show $\overline{\eta}(L_{(-n)}\omega)=0$ if $n\geq 30$ because $\overline{\eta}(L_{-n}\omega)=0$ if
$n$ is a positive odd integer. To prove thIs we calculate the difference of vectors

$\overline{\eta}((L_{-m}L_{-n}1)_{(-1)}L_{-p}L_{-q}1)$ (5.1)

and

$\overline{\eta}((L_{-m}L_{-p}1)_{(-1)}L_{-n}L_{-q}1)$ . (5.2)

By Associativity fomula, (5.2) is equal to a sum of $(L_{-m}L_{-p}L_{-n}L_{-q}1)$ and
lower lengh tems, where we say a vector of the form $\overline{7/}(L_{-m_{1}}\cdots L_{-m_{k}}1)$ to be
a lenght $k$ . But we see that

$\overline{\eta}(L_{-m}L_{-p}L_{-n}L_{-q}1)=\overline{\eta}(L_{-m}L_{-n}L_{-p}L_{-q}1)+(p-n)\overline{\eta}(L_{-m}L_{-p-n}L_{-q}1)$ .

Thus the difference of (5.1) and (5.2) is a sum of terms of length 2 and length
3.

On the other hand, the vectors $(5.1)-(5.2)$ are related to teo products
$\overline{\eta}(L_{-m}L_{-n}1)\cdot\overline{\eta}(L_{-p}L_{-q}1)$ and $\overline{\eta}(L_{-m}L_{-p}1)\cdot\overline{\eta}(L_{-n}L_{-q}1)$ respectively. We here
note that $\overline{\eta}(L_{-k}L_{-l}1)=0$ if $k,$ $l\geq 3$ and $k+l$ is odd. Hence if $m+p$ and $m+n$ is
odd, then we have $\overline{\eta}(L_{-m}L_{-n}1)\cdot\overline{\eta}(L_{-p}L_{-q}1)=\overline{\eta}(L_{-m}L_{-p}1)\cdot\overline{\eta}(L_{-n}L_{-q}1)=0$ .
This fact, the difference of (5.1) and (5.2) and Identity (3.1) give us identities
among terms of length 2 and length 3. Actually we can get enough identities
to show $\overline{\eta}(L_{-\epsilon}\omega)=0$ for $s=m+n+p+q\geq 30$ .

Secondly we show Lemma 4.3 when $x,$ $y\in V_{1}$ .
Lemma 5.2. Suppose that $Vl’S$ simple. For $x,y\in V_{1},$ $\dim D(x,y)<\infty$ .

The argument is very similar as Lemma 5.1 but the caluculations are more
easier. Thirdly we show the following lemma.

Lemma 5.3. For $x\in V,$ $\dim D(\omega,x)<\infty$ .

Tow show this lemma, we use induction on weight of $x$ . The case $x\in V_{1}$ ,
we use the same argument of Lemma 5.2. For the case of higer weight, we use
the similar calculation of the proof Lemma 5.1. In both calculations we use
the result in Lemmas 5.2 and 5.3.
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Finally we can show Lemma 4.3 by using Lie algebra structure of $R(V’ S_{2})$ .
By Lemma 5.3, for any $y\in V$ , there exists $N$ such that $L_{-n}y\in Ker\overline{\eta}$ for
$r\iota\geq N$ . Therefore for any $x\in V$ , we have

$0=[\overline{\eta}(x),\overline{\eta}(L_{-n}y)]=\overline{\eta(x)_{(0)}\eta(L_{-n}y)}=\overline{\eta}(x_{(0)}L_{-n}y)$.
Thus we see that $x_{(0)}L_{-n}y\in Ker\vec{\eta}$. Here we see that

$x_{(0)}L_{-n}y$

$=L_{-n}x_{(0)}y+(n-1)(|x|-1)x_{(-n)}y- \sum_{i=2}^{\infty}(\begin{array}{ll}-n +1 i\end{array})(L_{i-1}x)_{(-n-i+1)}y$ .

Therefore by using induction on $x$ and Lemmas 5.2-5.3, we have $x_{(-n)}y\in Ker\overline{\eta}$

for sufficiently large $n$ .

6 Conclusions and Considerations for general $d$

In this report we have shown that $VlS_{2}$ is $C_{2}$-cofinite if $V$ is simple and $C_{2^{-}}$

cofinite. To show this we use Lemma 4.3, i.e., the fact that $D(x, y)$ is finite
dimensional for any $x,$ $y\in V$ .

Our next aim is to prove the $C_{2}$-cofimiteness of $VlS_{d}$ for a simple $C_{2}-$

cofinite VOA $V$ and $d\geq 3$ . In this case Lemma 4.3 is a weaker one for the
$C_{2}$-cofiniteness of $V1S_{d}$ as explain below. We consider a subspace $C_{N}(V)$ $:=$

$\langle a_{(-N)}b|a,$ $b\in V\rangle_{\mathbb{C}}$ of $V$ . A VOA $V$ is called $C_{N}$-cofinite If $\dim V/C_{N}(V)<\infty$ .
It is well known that $V$ is $C_{2}$-cofinite then $V$ is $C_{N}$-cofinite for any $N\geq 2$ .

Now we consider the case $d$ is general. We see that under the assumption
that $V$ is $C_{N}$-cofinite, $C_{N}(V)\subset Ker\overline{\eta}$ implies dimIm $\overline{\eta}<\infty$ . Conversely if
${\rm Im}\overline{\eta}$ is finite dimensional and $V$ is $C_{2}$-confinite then $C_{N}(V)\subset Ker\overline{\eta}$ fo some
$N\geq 2$ because both $C_{N}(V)$ and $Ker\overline{\eta}$ are graded subspaces of $V$ . Hnece
by Theorem 4.1, $VlS_{2}$ is $C_{2}$-cofinite if and only if $C_{N}(V)\subset Ker$ fi for some
$N\geq 2$ . We here note that $\dim D(x,y)\leq N$ for any $x,$ $y\in V$ if $C_{N}(V)\subset$

$Ker\overline{\eta}$ . Therefore Lemma 4.3 is a weaker condition than the $C_{2}$-cofiniteness
of $V1S_{d}$ , and they are equivalent in the case $d=2$. To prove Lemma 4.3 in
general case and Theorem 4.1 seems to be very hard problem. We expect that
$C_{N}(V)\subset Ker\overline{\eta}$ for some $N$ is true in general and can be shown by another
way.
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