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Abstract

Let $V$ be a vertex operator algebra and $T$ a V-module. We show that if there
are $C_{2}$ -cofinite V-modules $U$ and $W$ and a surjective (logarithmic) intertwining
operator $\mathcal{Y}$ of type $(U T W)$ , then $T$ is also $C_{2}$-cofinite. So, when $V$ is simple and
$V’\cong V$ , then if one of V-modules is $C_{2}$-cofinite, then so is $V$ .

1 Introduction
A vertex algebra was introduced by axiomatizing the concept of a Chiral algebra in
conformal field theory by Borcherds [1]. It is a triple $(V, Y, 1)$ satisfying the several
axioms, where $V$ is a graded vector space $V=\oplus_{i\in \mathbb{Z}}V_{i}$ over the complex number field $\mathbb{C}$ ,
$Y(v, z)=\sum_{m\in \mathbb{Z}}v_{m}z^{-m-1}\in$ End $(V)[[z, z^{-1}]]$ denotes a vertex operator of $v\in V$ on $V$ ,
$1\in V_{0}$ is a specified element called the vacuum. When $V$ has another specified element
$\omega\in V_{2}$ and $V$ has a lower bound of weights and all homogeneous subspaces are of finite
dimensional, then we call $V$ a vertex operator algebra. We set $Y( \omega, z)=\sum_{n\in \mathbb{Z}}L(n)z^{-n-1}$ .

For a VOA V-module $W$ , we define $C_{2}(W)=\{v_{-2}u|v, u\in V, wt(v) \geq 1\}$ . When
$C_{2}(W)$ has a finite co-dimension in $W,$ $W$ is called to be $C_{2}$-cofinite. A concept of
$C_{2}$-cofiniteness is originally introduced by Zhu [8] as a technical assumption to prove a
modular invariance property of the space of the trace functions on modules. However, we
are now recognizing the real meaning and the importance of $C_{2}$-cofiniteness. For example,
$V$ is $C_{2}$-cofinite if and only if all V-modules are N-gradable. (See [2] and [7] for the proof.)
We will use this fact frequently in this paper.

Our main result in this paper is the following:

Theorem 1 Let $U$ be a vertex operator algebra of CFT-type. Let $A,$ $B,$ $C$ be simple N-
graded U-modules and $\mathcal{I}$ a surjective (formal power series) intertwining opemtor of type
$(A c B)$ . If both of $A$ and $B$ are $C_{h}$ -cofinite as U-modules for $h=1,2$ , then so is $C$ .
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2 Preliminary
From the axiom of VOAs, for $v\in V_{r}$ and $u\in V_{n}$ , we have $v_{m}u\in V_{r-m-1+n}$ . Hence there
is an integer $N$ such that $v_{s}u=0$ for any $s>N$ . This property is called a truncation
property. In this paper, we will say that $v$ is truncated at $u$

“ to simplify the terminology,
Set $V^{*}=Hom(V, \mathbb{C})$ and define a pairing $\langle\cdot,$ $\cdot\rangle$ on $V^{*}\cross V$ by $\langle\xi,$ $v\rangle=\xi(v)$ for $\xi\in V^{*}$

and $v\in V$ . For $T\subseteq V$ , Annh $(T)$ denotes an annihilator of $T$ , that is, Annh $(T)=\{\xi\in$

$V^{*}|\langle\xi,$ $t\rangle=0$ for all $t\in T$}. For $v\in V$ and $m\in \mathbb{Z}$ , an action $v_{m}^{*}$ on $V^{*}$ is defined by

$\langle(\sum_{m\in Z}v_{m}^{*}z^{-m-1})\xi,$

$w\rangle=\langle\xi,$ $Y(e^{L(1)z}(-z^{-2})^{L(0)}v, z^{-1})w\rangle$

for $w\in V$ and $\xi\in Hom(V, \mathbb{C})$ , where $Y^{*}(v, z)= \sum_{m\in Z}v_{m}^{*}z^{-m-1}$ is called an adjoint
operator of $v$ . An important fact is that $(\oplus_{m\in Z}Hom(V_{m}, \mathbb{C}), Y^{*})$ becomes a V-module as
they proved in [3]. This module is called a restricted dual of $V$ and denoted by $V’$ . In
particular, $Y^{*}(\cdot, z)$ satisfy the Borcherds identity:

$\sum_{i=0}^{\infty}(\begin{array}{l}mi\end{array})(u_{r+i}^{*}v^{*})_{m+n-i}\xi=\sum_{i=0}^{\infty}(-1)^{i}(\begin{array}{l}ri\end{array})\{u_{r+m-i}^{*}v_{n+i}^{*}\xi-(-1)^{r}v_{\tau+n-i}^{*}u_{m+i}^{*}\xi\}$ (2.1)

for any $m,$ $n,$ $r\in \mathbb{Z},$ $v,$ $u\in V,$ $\xi\in V’$ . We note $V‘=\oplus_{n\in Z}V_{n}$ and $V”= \prod_{n\in Z}V_{n}$ .
Therefore we can express $\xi\in V^{*}$ by $\prod_{n}\xi_{n}$ with $\xi_{n}\in Hom(V_{n}, \mathbb{C})$ . We call that $\xi\in V^{*}$

is $L(O)$ -free” if $\dim \mathbb{C}[L(0)]\xi=\infty$ , that is, $\xi_{m}\neq 0$ for infinitely many $m$ . We note that
any N-gradable module does not contain any $L(O)$ -free elements.

Let go back to (2.1). If $\xi\in Hom(V_{t}, \mathbb{C})$ , then all terms in (2.1) have the same weight
wt $(a)+$ wt$(b)-r-m-n-2+t$ and so the Borcherds’ identity is also well-defined on
$V^{*}$ , as Li has pointed out in [5]. However, $V^{*}$ is not a V-module because of failure of
truncation properties. In order to find a V-module in $V^{*}$ , we will start our arguments
from one point $\xi$ in $V^{*}$ .

Lemma 2 If $u$ and $v$ are truncated at $\xi$ , then $v_{m}u$ is also truncated at $\xi$ for any $m$ .
In particular, if all elements in $\Omega$ of $V$ are truncated at $\xi$ $and<\Omega>VA=V$ , then all
elements in $V$ are truncated at $\xi$ , where $\langle\Omega\rangle_{VA}$ denotes a vertex subalgebra genemted by

$\Omega$ .

[Proof] By the assumption, there is an integer $N$ such that $u_{n}\xi=v_{n}\xi=u_{n}v=0$

for $n\geq N$ . We assert that for $s\in N$ and $n\geq 2N+s$ , we have $(u_{N-s}v)_{n}\xi=0$ . Suppose
false and let $s$ be a minimal counterexample. Substituting $r=N-s,$ $n=N+s+p$,
$m=N+q$ in (2.1) with $p,$ $q\geq 0$ , we have

[LeftSide] $=$ $\sum_{i=0}^{\infty}(\begin{array}{l}N+qi\end{array})(u_{N-s+i}v)_{2N+q+s+p-i}\xi=\sum_{i=0}^{s}(\begin{array}{l}N+qi\end{array})(u_{N-(s-i)}v)_{2N+s-i+p+q}\xi$

$=$ $(u_{N-s}v)_{2N+s+p+q}\xi$

by the minimality of $s$ . On the other hand, we have:

[RightSide] $=$ $\sum_{i=0}^{\infty}(-1)^{i}(\begin{array}{l}N-si\end{array})(u_{2N-s+q-i}v_{N+s+p+i}\xi-(-1)^{N-s}v_{2N-s+p-i}u_{N+q+i}\xi=0$,
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which contradicts the choice of $s$ . 1

Since $v_{n}u_{m} \xi=u_{m}v_{n}\xi+\sum_{i=0}^{\infty}(\begin{array}{l}ni\end{array})(v_{i}u)_{n+m-i}\xi$, the above lemma also implies:

Lemma 3 If $v$ and $u$ are truncated at $\xi$ , then $v$ is truncated at $u_{m}\xi$ for any $m$ . In
particular, if all elements of $V$ are truncated at $\xi$ , $then<u_{m_{1}}^{1}\cdots u_{m_{k}}^{k}\xi|u^{i}\in V,$ $m_{i}\in \mathbb{Z}>\mathbb{C}$

is a V-module.

As Buhl has shown in [2], if $V$ is $C_{2}$-cofinite, then all V-modules are N-gradable and
so there are no $L(O)$ -free elements at which all elements in $V$ are truncated. Namely, we
have proved the following, which we will frequently use.

Lemma 4 Let $V$ be a $C_{2}$ -cofinite vertex operator algebra and $\xi\in V^{*}$ . If $\Omega\subseteq V$ generates
$V$ as a vertex subalgebra and all elements of $\Omega$ are truncated on $\xi$ , then $\xi$ is not $L(O)$ -free.

For $A,$ $B\subseteq V$ , we will often use the notation $A_{(m)}B$ to denote a subspace spanned by
$\{a_{m}b|a\in A, b\in B\}$ . We note that if $A$ is a $\mathbb{C}[L(-1)]$-module, then $A_{(-2-m)}B\subseteq A_{(-2)}B$

for $m\in \mathbb{N}$ since $(L(-1)a)_{-m}b=ma_{-m-1}b$ for $a\in A$ and $b\in B$ . Not only $V$ , we use
this notation for a pair $(U, W)$ of a VOA $U$ and its module $W$ . For example, we set
$C_{2}(W)=U_{(-2)}^{+}W$ , where $U^{+}=\oplus_{k=1}^{\infty}U_{k}$ . We also set $C_{1}(W)=U_{(-1)}^{+}W$ . We say that $W$ is
$C_{h}$-cofinite as a U-module if $\dim W/C_{h}(W)<\infty$ for $h=1,2$ . We note any VOA $U$ is $C_{1^{-}}$

cofinite as a U-module and so this definition is not equal to the ordinary $C_{1}$ -cofiniteness.

We start the proof of Theorem 1. Namely, we will prove:

Theorem 1 Let $U$ be a vertex operator algebra of CFT-type. Let $A,$ $B,$ $C$ be simple
$\mathbb{N}$-graded U-modules and $\mathcal{I}$ a surjective (formal power series) intertwining operator of type
$(A c B)$ . If both of $A$ and $B$ are $C_{h}$ -cofinite as U-modules for $h=1,2$, then so is $C$ .

We note that if $U$ is of CFT-type and an N-graded U-module $A=\oplus_{k=0}^{\infty}A_{r+k}$ is $C_{1^{-}}$

cofinite, then $\dim A_{r+k}<\infty$ for any $k$ since $A_{r+k} \cap C_{1}(A)=\sum_{s=1}^{k-1}(U_{s})_{-1}A_{r+k-s}$ has a
finite codimension in $A_{r+k}$ .

In the remainder part of this section, we assume the hypotheses of Theorem 1. Since
$A$ and $B$ are $C_{h}$-cofinite, there are finite dimensional subspaces $F^{1}\subseteq A$ and $F^{2}\subseteq B$

such that $A=U_{(-h)}^{+}A+F^{1}$ and $B=U_{(-h)}^{+}B+F^{2}$ . Let $c_{A}$ and $c_{B}$ be conformal
weights of $A$ and $B$ , respectively. We may assume that there is an integer $N$ such that
$F^{1}=\oplus_{k=0}^{N}A_{c_{A}+k}$ and $F^{2}=\oplus_{k=0}^{N}B_{c_{B}+k}$ . Fix bases $\{p^{i}|i\in I\}$ of $F^{1}$ and $\{q^{j}|j\in J\}$ of
$F^{2}$ . In order to prove Theorem 1, we prove the following lemma by applying an idea in
[4] to $(C/U_{(-h)}^{+}C)^{*}$ .

Lemma 5 For $p\in A,$ $q\in B$ and $\theta\in$ Annh $(U_{(-h)}^{+}C)\cap C’$ ,

$F(\theta,p, q;z):=\langle\theta,\mathcal{I}(p, z)q\rangle$

is a linear combination of $\{F(\theta,p^{i}, q^{j};z)|i\in I, j\in J\}$ with coefficients in $\mathbb{C}[z, z^{-1}]$ and
we may choose these coefficients independentlly of the choice of $\theta$ .
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[Proof] We will prove the assertion by the induction on the total weight wt $(p)+wt(q)$ .
If wt $(p)>N+c_{B}$ , then $p= \sum_{k}u_{-h}^{k}a^{k}$ for some $u^{k}\in U$ and $a^{k}\in A$ . We note this
expression does not depend on the choice of $\theta$ . So we may assume $p=u_{-h}a$ with $u\in U$

and $a\in A$ . Then for $\theta\in$ Annh $(U_{(-h)}^{+}C)$ , we have:

$\langle\theta,\mathcal{I}(p, z)q\rangle=$ $\langle\theta,\mathcal{I}(u_{-h}a, z)q\rangle$

$=$ $\langle\theta,$ $Y^{-}(L(-1)^{h-1}u, z)\mathcal{I}(a, z)q+\mathcal{I}(a, z)Y^{+}(L(-1)^{h-1}u, z)q\rangle$

$=$ $\langle\theta,\mathcal{I}(a, z)Y^{+}(L(-1)^{h-1}u, z)q\rangle$ ,

where $Y^{-}(v, z)= \sum_{m<0}v_{m}z^{-m-1}$ and $Y^{+}(v, z)=\sum_{m\geq 0}v_{m}z^{-m-1}$ . This is a reduction on
the sum of weights because $Y^{+}(L(-1)^{h-1}u, z)q$ is a sum of finite terms and all weights of
the coefficients are less than wt$(u)+$ wt $(q)$ .

Similarly, if wt$(q)>N+c_{B}$ , then we may assume $q=u_{-h}b$ with $u\in U$ and $b\in B$

and
$\langle\theta,\mathcal{I}(p, z)q\rangle=$ $\langle\theta,\mathcal{I}(p, z)u_{-h}b$

$=$ $\langle\theta,$ $u_{-h} \mathcal{I}(p, z)b\rangle+\sum_{i=0}^{\infty}(\begin{array}{l}-hi\end{array})z^{-h-i}\mathcal{I}(u_{i}p, z)b\rangle$

$=$ $\sum_{2=0}^{\infty}(\begin{array}{l}-hi\end{array})z^{-h-i}\langle\theta,\mathcal{I}(u_{i}p, z)b\rangle$ .
Again, these process do not depend on the choice of $\theta$ and this is also a reduction on the
weights because wt $(u_{i}p)+$ wt $(b)<$ wt $(u_{-h}b)+$ wt $(p)$ for $i\geq 0$ . Therefore, $\langle\theta,\mathcal{I}(p, z)q\rangle$ is
a linear combination of $\{\langle\theta,\mathcal{I}(p^{i}, z)q^{j}\rangle|i\in I,j\in J\}$ with coefficients in $\mathbb{C}[z, z^{-1}]$ . We
note the coefficients do not depend on the choice of $\theta$ . 1

Now we are able to prove Theorem 1. By the proof of the above lemma,

$\frac{d}{dz}F(\theta,p^{8}, q^{t};z)=F(\theta, L(-1)p^{s}, q^{t};z)$

is a linear combination of $\{F(\theta,p^{i}, q^{j};z)|i\in I,j\in J\}$ with coefficients in $\mathbb{C}[z, z^{-1}]$ for
any $s\in I,$ $t\in J$ and all coefficients do not depend on the choice of $\theta$ . Therefore, there
is a differential linear equation such that $F(\theta,p^{s}, q^{t})$ are all its solutions for any $s\in I$ ,
$t\in J$ and $\theta$ . Furthermore, since $\{\mathcal{I}(p, z)q|p\in A, q\in B, z\in \mathbb{Z}\}$ spans $C$ modulo
$U_{(-h)}^{+}C$ and $\langle\theta,$ $\mathcal{Y}(p, z)q\rangle$ are a linear sum of $\langle\theta,\mathcal{I}(p^{i}, z)\phi\rangle,$ $\theta\in C’$ $\cap$ Annh $(U_{(-2)}^{+}C)arrow$

$\prod_{i\in I,j\in J}\langle\theta,\mathcal{I}(p^{i}, z)q^{j}\rangle$ is injective. Therefore, we have $\dim C/U_{(-h)}C<\infty$ .
This completes the proof of Theorem 1.

References
[1] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster,

Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.
[2] G. Buhl, A spanning set for VOA modules, J. Algebra. 254 (2002), no. 1,125-151.
[3] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator

algebras and modules, Mem. Amer. Math. Soc. 104 (1993).
[4] Y.-Z. Huang, Differential equations, duality and modular invariance, Commun. Con-

temp. Math. 7 (2005), no. 5, 649-706.

104



[5] H. Li, Some finiteness properties of regular vertex opemtor algebms, J. Algebra 212
(1999), 495-514.

[6] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J.
Algebra. 179, (1996) 523-548.

[7] M. Miyamoto, Modular invariance of vertex operator algebm satisfying $C_{2^{-}}$

cofiniteness, Duke Math. J. 122 (2004), no. 1, 51-91.
[8] Y. Zhu, Modular invariance of characters of vertex operator algebms, J. Amer. Math.

Soc., 9 (1996), 237-302.

105


