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1 Introduction
Apparently, Normal distribution has played a central role for the modeling of the financial
data. However, it is well known that many actual financial data are skewed and heavy-
tailed, which cannot be described by Normal distribution. For this reason, there has been
increasing interest in the theory of skewed and heavy-tailed distributions over several
decades.

One of the most important classes of skewed and heavy-tailed distributions is that
of stable distributions. Since Mandelbrot (1963) and Fama (1965) suggested to use
the stable distributions for analyzing financial data, many authors have paid attention
to them. The main difficulties in dealing with stable distributions are that they do not
have simple explicit forms of the densities except a few special cases, and that they do not
necessarily have the first or/and second moments. These properties of stable distributions
make us difficult to use ordinary maximum likelihood estimator (MLE) and method
of moments. Despite of such difficulties, estimation methods of the parameters of the
univariate stable distribution have been well investigated so far. For example, DuMouchel
(1973) discusses the asymptotic normality of maximum likelihood estimation, McCulloch
(1986) considered consistent estimators from five pre-determined sample quantiles and
Kunitomo and Owada (2006) applies empirical likelihood method for the estimation.

Compared to the univariate case, not much is known about the estimation of the
parameters of multivariate stable distributions. Yet, we can raise a few articles dealing
with the estimation problems for multivariate stable distributions such as $R_{\mathfrak{X}}hev$ and
Xin (1993), Cheng and Rachev (1995), Nolan et. al. (2001), etc. They investigated
estimation theory especially of the spectral measure.

In this paper, motivated by Nolan et. al. (2001), we consider the joint estimation
of the all parameters of stable distribution (characteristic exponent, spectral measure
and location). For this purpose, we make use of the estimating function constructed by
the empirical and theoretical characteristic functions. Using the estimating function, we
obtain the estimators of the parameters by the generalized empirical likelihood (GEL)
method. GEL method is a generalization of the empirical likelihood (EL) method and
EL method can be considered as a generalization of generalized method of moments
(GMM). The theory of GEL method is well investigated by Newey and Smith (2004) in
which they mention that the asymptotic bias of the EL estimator does not grow with
the number of moment restrictions, while the bias of GMM often does.
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After describing the theory of the estimating method, we provide two Monte Carlo
studies. They show that our estimating method works properly.

This article is organized as follows. Section 2 provides a review of the multivariate
stable distribution and the estimating function for our estimation. In Section 3, we
explain about GEL and give the asymptotic theory. Monte Carlo simulations are given
in Section 4. Section 5 concludes.

2 Multivariate Stable Distributions
At the beginning of this section, we introduce the definition of the multivariate stable
random vector. The following definition and corollary are due to Samorodnitsky and
Taqqu (1994, pp. 57-58).

Definition 1 A random vector $X=$ $(X_{1}, \ldots , X_{d})^{T}$ is said to be a stable mndom vector
in $\mathbb{R}^{d}$ if for any positive numbers $A$ and $B$ there is a positive number $C$ and a vector
$D\in \mathbb{R}^{d}$ such that

$AX^{(1)}+BX^{(2)}=dCX+D$ ,

where $X^{(1)}$ and $X^{(2)}$ are independent copies of $X$ .

Corollary 1 A random vector $X$ is stable if and only if for any $n\geq 2$ , there is an
$\alpha\in(0,2]$ and a vector $D_{n}$ such that

$X+X+\ldots+X=n^{1/\alpha}X+D_{n}$ , (1)

where $X^{(1)},$ $X^{(2)},$
$\ldots,$

$X^{(n)}$ are independent copies of $X$ .
The index $\alpha$ in (1) is called the index of stability or the characteristic exponent of the
vector $X$ . It represents a tail thickness or a kurtosis of the distribution.

The characteristic function of multivariate stable distribution is known as follows.

$\phi(\nu)=E[\exp\{i\langle X, \nu\rangle\}]=\exp\{-I(\nu)\}$

where the exponent function is

$I( \nu)=\int_{S_{d}}\psi(\langle s, \nu\rangle)\Gamma(ds)+i\langle\nu,$ $\mu\rangle$ .

Here $S_{d}=\{s : 1 s\Vert=1\}$ is the unit sphere in $\mathbb{R}^{d}$ , the symbol $\langle\cdot,$ $\cdot\rangle$ shows the inner
product, $\Gamma$ is the finite spectral measure on $S_{d},$ $\mu=(\mu_{1}, \ldots, \mu_{d})\in \mathbb{R}^{d}$ is the location
vector and

$\psi(u)=\{\begin{array}{ll}|u|^{\alpha} (1-i sign (u)\tan\frac{\pi\alpha}{2}) (\alpha\neq 1)|u| (1+i\frac{2}{\pi} sign (u)\ln|u|) (\alpha=1),\end{array}$
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where $\alpha\in(0,2]$ is the characteristic exponent. We denote this d-dimensional stable
distribution by $S^{d}(\alpha, \Gamma, \mu)$ .

The purpose of this paper is to estimate the spectral measure $\Gamma$ , the location vector
$\mu$ and the characteristic exponent $\alpha$ , given an i.i. $d$ . sample $X_{1},$

$\ldots,$
$X_{n}$ of d-dimensional

random vectors drawn from this distribution. However, we encounter several difficulties
even for the case of univariate stable distribution. One is the complexity of their density
functions. Except a few cases, we do not have a simple explicit form of the densities and
this makes us difficult to use the usual MLE method. Moreover, the stable distributions
do not necessarily have the second or even first moment. This means that we cannot use
the ordinary method of moments.

One remedy for this difficulty is to use the empirical characteristic function

$\hat{\phi}_{n}(\nu)=\frac{1}{n}\sum_{j=1}^{n}\exp\{i\langle X_{j}, \nu\rangle\}$

Nolan et. al. (2001) proposed the estimation method of spectral measure $\Gamma$ with the em-
pirical characteristic function as follows. First, they considered a discrete approximation

$\Gamma^{*}=\sum_{t=1}^{L}\gamma_{\ell}\delta_{S\ell}$ (2)

where $\gamma_{\ell}=\Gamma(A_{1}),$ $\ell=1,$
$\ldots,$

$L$ , are the weights and $\delta_{\epsilon_{\ell}}$ are point masses at the point $s_{\ell}\in$

$S_{d}$ . Here $A_{\ell}$ are patches that partition the sphere $S_{d}$ , with some “ center” $s_{\ell}$ . Next, choose
arbitrary frequencies $\nu_{1},$ $\ldots,$

$\nu_{L}\in \mathbb{R}^{d}$ and define $L\cross L$ matrix $\Psi$ whose $(k, P)-$th element
is $\psi(\langle\nu_{k}, s_{\ell}\rangle)$ . After eliminating the location parameter $\mu$ by usual sample mean, we can
obtain the expression $I=\Psi\gamma$ where $\gamma=(\gamma_{1}, \ldots, \gamma_{L})^{T}$ and $I=(I(\nu_{1}), \ldots, I(\nu_{L}))^{T}$ . By
choosing $\nu_{1},$

$\ldots,$
$\nu_{L}\in \mathbb{R}^{d}$ so that $\Psi^{-1}$ exists, and substituting $\hat{I}=(\hat{I}(\nu_{1}), ..\hat{I}(\nu_{L}))^{T}\wedge\cdot$,

into $I$ where $\hat{I}(\nu)=-\ln\hat{\phi}_{n}(\nu)$ , we obtain the discretized estimator $\hat{\gamma}=\Psi^{-1}I$ of spectral
measure $\Gamma$ . This method is simple and easy to implement but we have to know $\alpha$ , or at
least, to obtain the estimator $\hat{\alpha}$ in order to compute the $\Psi$ . In their paper, they calculate
the estimator $\hat{\alpha}_{j}(j=1, \ldots, d)$ for each of the coordinates of the d-dimensional data set,
and define the ultimate estimator as $\hat{\alpha}=(\sum_{i=1}^{d}\hat{\alpha}_{i})/d$ . However, this method is of course
a last resort.

In this paper, we consider to estimate the parameters jointly based on the estimat-
ing function constructed by the empirical and theoretical characteristic functions. The
method of empirical characteristic function estimation was investigated by many au-
thors. For details, see Yu (2004), which gives the summary and many references. of this
procedure. Suppose that $\{X_{j}\}_{j=1}^{n}$ is an i.i. $d$ . sequence from $S^{d}(\alpha, \Gamma^{*}, \mu)$ where $\Gamma^{*}$ is a
discrete spectral measure defined in (2). Denote the parameters by $\theta=(\alpha, \gamma^{T}, \mu^{T})^{T}\in$

$(0,2]\cross \mathbb{R}_{+}^{L}\cross \mathbb{R}^{d}$ and define the estimating function as

$h(\nu, X_{j}, \theta)=\exp\{i\langle\nu, X_{j}\rangle\}-\phi_{\theta}(\nu)$

where $\phi_{\theta}$ is the theoretical characteristic function with a parameter $\theta$ . When we denote
the true parameter value by $\theta_{0}$ , it is obviously $E[h(\nu, X_{j}, \theta_{0})]=0$ for any frequency
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$\nu\in \mathbb{R}^{d}$ . Choose arbitrary frequencies $\nu_{1},$
$\ldots,$

$\nu_{K}\in \mathbb{R}^{d}$ , and to avoid the calculation of
complex numbers, we redefine the estimating function as

$g(X_{j}, \theta)$ $=$ $(\Re e[h(\nu_{1}, X_{j}, \theta)],$
$\ldots,$

$\Re \mathfrak{e}[h(\nu_{K}, X_{j}, \theta)]$ ,
$iI\mathfrak{m}[h(\nu_{1}, X_{j}, \theta)],$

$\ldots,$
$\prime J\mathfrak{m}[h(\nu_{K}, X_{j}, \theta)])^{T}$ , (3)

where $\Re e[\cdot]$ and $\prime J\mathfrak{m}[\cdot]$ are the real and imaginary parts of a complex number. Obviously,
we can see $E[g(X_{j}, \theta_{0})]=0$ . Using this estimating function, we consider to estimate
the parameters with GEL method in the following section.

3 Generalized Empirical Likelihood
This section provides the theory of GEL method and its application to the estimation
problem of multivariate stable distributions. GEL method can be considered as a gen-
eralization of GMM. One advantage of using GEL method is that GEL estimator has
smaller bias than GMM estimator in overidentified cases. Before describing the GEL
method, we start with the review of the EL method.

EL method was originally introduced by Owen (1988) for the nonparametric confi-
dence interval. It was investigated by many authors because of its generality and effec-
tiveness. Among many studies of empirical likelihood method, Qin and Lawless (1994)
considered to link estimating functions and empirical likelihood. Empirical likelihood
and estimating function methods are well suited each other. Using estimating function,
they defined the maximum EL estimator and gave its asymptotic property.

The empirical likelihood ratio function for $\theta$ is defined as

$\mathcal{R}(\theta)=\max_{(p_{1},\ldots,p_{n})}\{\prod_{j=1}^{n}np_{j}|\sum_{j=1}^{n}p_{j}g(X_{j}, \theta)=0,$ $\sum_{j=1}^{n}p_{j}=1,p_{j}\geq 0\}$ , (4)

where $g(X_{j}, \theta)$ is estimating function defined in (3) and $p_{j}$ is a probability mass on
$g(X_{j}, \theta)$ . An explicit form of $\mathcal{R}(\theta)$ is derived by a Lagrange multiplier argument: the
maximum of $\prod_{j=1}^{n}np_{j}$ subject to the constrains in (4) is attained when

$p_{j}=p_{j}( \theta)=\frac{1}{n}\frac{1}{1+\lambda^{T}g(X_{j},\theta)}$ (5)

where $\lambda=\lambda(\theta)\in \mathbb{R}^{2K}$ is Lagrange multiplier given as the solution to

$\sum_{j=1}^{n}\frac{g(X_{j},\theta)}{1+\lambda^{T}g(X_{j},\theta)}=0$ . (6)

Then, from (5), the minus of empirical log-likelihood ratio is given by

$l( \theta)=-\log(\prod_{j=1}^{n}np_{j})=\sum_{j=1}^{n}\log(1+\lambda^{T}g(X_{j}, \theta))$
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and maximum EL estimator is defined by

$\hat{\theta}_{EL}=\arg\min_{\theta}\sum_{j=1}^{n}\log(1+\lambda^{T}g(X_{j}, \theta))$

where $\lambda$ satisfies (6), or, equivalently, it can be written as

$\hat{\theta}_{EL}=\arg^{_{\theta}}n\sup_{\lambda}\sum_{j=1}^{n}\log(1+\lambda^{T}g(X_{j}, \theta))$. (7)

Smith (1997, 2001) generalized above EL estimator. Let $\rho(v)$ be a concave function
on its domain, an open interval $V\subset \mathbb{R}$ containing zero. Then, GEL estimator is defined
by

$\hat{\theta}_{GEL}=\arg\min_{\theta}\sup\sum_{j\lambda\in\hat{\Lambda}_{n}(\theta)=1}^{n}\rho(\lambda^{T}g(X_{j}, \theta))$

where $\hat{\Lambda}_{n}(\theta)=\{\lambda : \lambda^{T}g(X_{j}, \theta)\in \mathcal{V},j=1, \ldots, n\}$ . EL estimator (7) is a special case
with $\rho(v)=\log(1+v)$ and $V=(-1, \infty)$ . Besides, we can obtain the exponential tilting
(ET) estimator in Kitamura and Stutzer (1997) and Smith (1997) by setting $\rho(v)=-e^{v}$ ,
and continuous updating estimator (CUE) of Hansen et al. (1996) by setting $\rho(v)$ as
quadratic.

Let $\Omega=E[g(X_{j}, \theta)g(X_{j}, \theta)^{T}]$ and $G=E[\partial g(X_{j}, \theta)/\partial\theta]$ . For the consistency and
the asymptotic normality of GEL estimator, we impose the following assumptions.

Assumption 1

1. $\theta_{0}\in$ int $(\Theta)$ where $\Theta=[\epsilon, 1-\epsilon]\cup[1+\epsilon, 2-\epsilon]\cross[\epsilon, M]^{L}\cross[-M, M]^{d}$ for sufficiently
small $\epsilon>0$ and sufficiently large $M>0$ .

2. $\theta_{0}\in\Theta$ is the unique solution to $E[g(X_{j}, \theta)]=0$ .

3. $\Omega$ is nonsingular.

4. $p(v)$ is twice continuously differentiable in a neighborhood of zero.

5. rank$(G)=1+L+d$.

Then, we obtain the following theorem.

Theorem 1 If Assumption 1 holds, then $\hat{\theta}_{GEL}arrow p\theta_{0}$ and

$\sqrt{}(\hat{\theta}_{GEL}-\theta_{0})arrow d\mathcal{N}(0,$ $(G^{T}\Omega^{-1}G)^{-1})$ .

Proof. See Theorems 3.1 and 3.2 of Newey and Smith (2004).
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GEL estimator is affected by the choice of the frequencies $\nu_{1},$ $\ldots$ , $\nu_{K}$ . In Section 2.1 of
Yu (2004), we can find the statement about this issue. Saying from the viewpoint of
the minimum asymptotic variance, many and fine frequencies will be fine. Feuerverger
and McDunnough (1981) shows that the asymptotic variance can be made arbitrarily
close to the Cram\’er-Rao lower bound if the number of frequencies $K$ is sufficiently large
and the grid is sufficiently fine and extended. On the other hand, Carrasco and Florens
(2002) insists that too fine frequencies lead to a singular asymptotic variance matrix and
we can not calculate its inverse.

4 Monte Carlo Studies
This section provides two Monte Carlo studies of stable parameters estimation based on
Theorem 1. In both cases, we consider bivariate stable distributions. For generating
the multivariate stable samples, we rely on the STABLE programs developed by John
Nolan (see Nolan (1997)). For calculating the GEL estimator, we use the $R$ package gmm
produced by Pierre Chauss\’e (see Chauss\’e (2010)). The program calculates several GEL
estimators such as EL, ET and CUE. We simulate 100 draws of 2,000 observations in
each case.

Example 1 Data was simulated from the characteristic exponent $\alpha=1.5$ , the discrete
spectral measure (2) with $L=3,\gamma_{\ell}=1/3,$ $s_{\ell}=(\cos\theta_{\ell}, \sin\theta_{\ell})^{T},$ $\ell=1,$

$\ldots,$
$3$ for $\theta_{1}=\pi/3$ ,

$\theta_{2}=\pi,$ $\theta_{3}=3\pi/2$ , and the location vector $\mu=(0,0)^{T}$ . The estimation result with GEL
is in Table 1. We use three estimators, EL, ET and CUE. For constructing estimating
function (3), we use four frequencies, $\nu_{1}=(0.1,0.2)^{T},$ $\nu_{2}=(0.3,0.4)^{T},$ $\nu_{3}=(0.5,0.6)^{T}$

and $\nu_{4}=(0.7,0.8)^{T}$ .

[TABLE 1 ABOUT HERE]

EL gives the best estimate for the characteristic exponent among the three methods.
However, for the spectral measure and the location, estimation results of ET and CUE
are better than those of EL. Although almost all estimations have slightly upward biases,
they are well estimated by each method. Regarding the RMSE, ET and CUE give smaller
values than EL for almost all parameters. Roughly speaking, results of ET and CUE are
similar.

Example 2 Data was simulated from the characteristic exponent $\alpha=1.75$ , the discrete
spectral measure (2) with $L=4,$ $\gamma_{l}=1/4,$ $s_{l}=(\cos\theta_{l}, \sin\theta_{l})^{T},$ $l=1,$ $\ldots,$

$4$ for $\theta_{1}=0$ ,
$\theta_{2}=\pi/2,$ $\theta_{3}=\pi,$ $\theta_{4}=3\pi/2$ and the location vector $\mu=(0,0)^{T}$ . The estimation result
with GEL is in Table 2. We use three estimators, EL, ET and CUE. For constructing
estimating function (3), we use five frequencies $\nu_{1}=(0.1,0.2)^{T},$ $\nu_{2}=(0.3,0.4)^{T},$ $\nu_{3}=$

$(0.5,0.6)^{T},$ $\nu_{4}=(0.7,0.8)^{T}$ and $\nu_{5}=(0.9,1.0)^{T}$ .

[TABLE 2 ABOUT HERE]
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Regarding the characteristic exponent, estimation results are almost same among
three methods, but RMSE is decreasing in order of EL-ET-CUE. Although there are
differences in the estimation results of the spectral measure, we cannot find out the best
method by means of both bias and RMSE. About the estimation of the location, both
bias and RMSE of ET and CUE are smaller than those of EL. Although almost all
estimations have slightly upward biases, they are well estimated by each method.

5 Conclusions
In this article we deal with the estimation problem of the multivariate stable distribu-
tions. In principle, estimation is based on the estimating function. Since stable distri-
butions do not have explicit forms of density functions except a few cases, and do not
necessarily have the second or even first moment, estimating function is constructed by
matching the empirical and theoretical characteristic functions. The main advantage of
using the estimating functions is that we can simultaneously estimate all parameters of
multivariate stable distributions. Given the estimating functions, we obtain the estima-
tor by GEL method. GEL estimator is a very wide class of estimators and is known
as a generalization of GMM. The Monte Carlo studies show that GEL estimators for
multivariate stable distributions are reasonable. Extension to the time series model is
possible.$\cdot$
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Tables

Table 1: Monte Carlo Study: Example 1

$\overline{\overline{EL}}$ET CUE
mean RMSE mean RMSE mean RMSE

$\alpha$ 1.515 0.037 1.523 0.036 1.524 0.039
$\gamma_{1}$ 0.344 0.028 0.347 0.021 0.346 0.025
$\gamma_{2}$ 0.356 0.049 0.344 0.040 0.339 0.038
$\gamma_{3}$ 0.345 0.043 0.320 0.035 0.321 0.030
$\mu_{1}$ 0.037 0.062 0.035 0.049 0.039 0.053
$\mu_{2}$ 0.032 0.054 0.004 0.037 0.001 0.038

Table 2: Monte Carlo Study: Example 2

$\overline{\overline{EL}}$ET CUE
mean RMSE mean RMSE mean RMSE

$\alpha$ 1.790 0.063 1.790 0.051 1.789 0.048
$\gamma_{1}$ 0.268 0.065 0.275 0.045 0.279 0.047
$\gamma_{2}$ 0.248 0.061 0.249 0.039 0.252 0.036
$\gamma_{3}$ 0.284 0.059 0.273 0.053 0.275 0.044
$\gamma_{4}$ 0.258 0.052 0.242 0.040 0.223 0.050
$\mu_{1}$ 0.023 0.064 0.013 0.039 0.011 0.033
$\mu_{2}$ 0.026 0.060 0.012 0.033 0.010 0.033
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