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SOMMERFELD RADIATION CONDITION AT THRESHOLD

E. SKIBSTED

Dedicated to Hiroshi Isozaki on the occasion of his Siztieth Birthday.

1. INTRODUCTION

We give an account of various recent results [Sk1]. These include Besov space
bounds of the resolvent at low energies in any dimension for a class of potentials that
are negative and obey a virial condition with these conditions imposed at infinity
only. We do not require spherical symmetry. There are two boundary values of
the resolvent at zero energy which we characterize by radiation conditions. These
radiation conditions are zero energy versions of the well-known Sommerfeld radiation
condition.

We study low-energy spectral theory for the Schrodinger operator H = —A +V
on # = L%(R%), d >'1, where the potential V obeys the following condition. We
use the notation (z) = vz2+1, Ng = NU {0}, and for u € (0,2) the notation
So = 1/2 + /.L/4

Condition 1.1. Let V = V4 + V; be a real-valued function defined on R%; d > 1.
There exists p € (0,2) such that the following conditions (1)—(5) hold.

(1) There exists €¢; > 0 such that Vi(z) < —er{z) ™.
(2) V4 € C®(R?). For all o € N¢ there exists C, > 0 such that

(2)#*110° Vs ()] < Ca

(3) There exists & > 0 such that —|z|~2 (z - V(|z|*W1)) > - V.
(4) There exists 4, C, R > 0 such that

|Va()| < Cla| ™07,

for |z| > R.
(5) Vo € L3 (RY) for d = 1,2,3, V3 € L} _(RY) for some p > 2 if d = 4 while
Vo € LY*(R?) for d > 5.

loc

Due to (4) and (5) the operator V3(—A +4)~! is a compact operator on L(R?),
see for example [RS, Theorems X.20 and X.21] for the case d > 4. Whence H
is self-adjoint. The Schrédinger operator with an attractive Coulomb potential in
dimension d > 3 is a particular example.

While low-energy spectral asymptotics for Schrodinger operators is a Well studied
subject for classes of potentials of fast decay the literature is more sparse for classes
of potentials with decay O(r~2) or slower. We refer to [Ya, Na, FS, SW] and ref-
erences therein. We remark that Condition 1.1 is closely related to the conditions
used in [FS], in fact our goal is to present more precise resolvent bounds than ap-
pearing in [FS] (Besov space bounds), and characterize boundary values R(0 = i0)
of the resolvent at zero energy. The latter is achived in terms of certain microlocal
estimates traditionally referred to as Sommerfeld radiation conditions. For positive
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energies the limiting absorption principle (LAP) and Sommerfeld radiation condi-
tions are fundamental for stationary scattering theory and they are used at many
places in the literature, see for example [Sa, AH, GY] and [H61, Section 30.2] (two-
body problems), [Is, Va] (many-body problems) and [Mg] (abstract framework).
Moreover radiation conditions are an integral part of for one of the oldest method
of proving LAP, cf. for example [Sa]. We consider them as interesting of their own
right, in particular including the case of zero energy cf. [DS1].

Neither [FS] nor the present work deal with scattering theory. On the other hand
there are indeed applications to scattering theory at low energies as demonstrated
in the recent works [DS1, DS2]. However this is for a smaller class of potentials
(essentially radially symmetric potentials). We plan in a future publication [Sk2] to
study scattering theory at low energies for a larger class than the ones of [DS1, DS2]
however within the one defined by Condition 1.1. For this study Besov space bounds
and uniqueness induced by versions of the Sommerfeld radiation condition will be
useful. We remark that these results are also present in some form in [DS1] although,
as indicated above, this is under stronger conditions on the potentials. Besides the
Besov space bounds are not obtained in the strongest form as done here and they
are shown somewhat indirectly (in fact only the imaginary part of the boundary
value of the resolvent is estimated). We present our results in Section 2. They are
all under Condition 1.1.

2. RESULTS

2.1. Resolvent bounds. Let us recall a main result from [FS|. Let § € (0,n),
Ao > 0 and define

Iy = {z € C\ {0}|argz € (0,6), || < Ao} (2.1)

In [FS] Xo is exclusively taken equal to one although this is only for convenience

of presentation. We fix any A¢ > 0 at this point and suppress henceforth any

dependence of this constant (as done in the notation (2.1)). At this point we also fix

6 € (0,7), but keep (somewhat inconsistently) the dependence of # of the set (2.1).
For p € (0,2), K > 0and A > 0 let

f=hE)= 0+ K@) V% s e RY (2.2)

Here A\ will be taken as |z| for z in the closure of T’y and K can for parts of our
presentation be taken arbitrary. More precisely the latter is true for Theorems 2.1
and 2.2 (presented below). Consequently we take, for convenience, K = 1 in these
theorems. As for Theorems 2.3 and 2.5 we choose a different value of K, see (2.5).

For a Hilbert space H (which in our case will be L?(R?%)) we denote by B(H)
the space of bounded linear operators on # (a similar notation will be used for
Banach spaces). A B(#)-valued function T'(-) on I'y is said to be uniformly Hélder
continuous in I'y if there exist C,v > 0 such that

“T(Zl) - T(Zz)“ _<_ C|21 - Zzlpy for all 21,29 € Fg.

We consider the Schrédinger operator H = —A + V on L?(R%) under Condition
1.1. The resolvent is denoted by R(z) = (H — z)~*. In the statement below of
(a version of) [FS, Theorem 1.1] some conditions on the potential V are slightly
changed. Comments at this point are given after the statement.
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Theorem 2.1 (LAP). Suppose Condition 1.1. For all s > sg the family of operators
T(2) = (z)~*R(z){x)~* is uniformly Holder continuous in T'g. In particular the limits

T(0+i0) = (x)°R(0+10)(z)™* = lim T(2),

T(0-i0) = (x)"°R(0—1i0) (z)™°* = lim_T(2)
2—0,2€Ty
ezist in B(L(R9)).
For all s > 1/2 there ezists C > 0 such that for all z € T'g

)= ffPR(2) f (@)l < C. (2.3)

We have already noted that due to (4) and (5) the operator Vo(—A +4)7! is a
compact, which occurs as a separate condition in [FS, Theorem 1.1] (the condition
(5) is a new condition compared to [FS, Theorem. 1.1]). Another condition from
[FS, Theorem 1.1] that we omitted above is a version of unique continuation at
infinity. This version, [FS, Assumption 2.1], is automatically satisfied, given (5),
due to results of [FH] (for d < 3) and [JK] (for d > 3). Applying it with V — V — A
for any A > 0 in conjunction With [FS, Theorem 2.4] we have opp(H) N [0,00) = 0
(for d = 1,2, 3 absence of strictly positive eigenvalues follows alternatively from [FH,
Corollary 1.4]). The absence of non-negative eigenvalues is of course a consequence
of (2.3), however this property is part of the proof of the latter bound.

We note that imposing the conditions (1) and (3) only near infinity may seem,
with the other conditions of Condition 1.1, to weaken the assumptions. However
this is not the case cf. a discussion in [FS, Section 3]. On the other hand it suffices
to have the bounds (2) for |a| < 2. More precisely this is the case for Theorems 2.1
and 2.2. For Theorems 2.3 and 2.5 we need V] to be a “symbol” and all bounds of
(2) are then needed.

Notice also that (2.3) is stronger than boundedness of the family T'(-) (which is a
consequence of the uniform Hoélder continuity).

A new result presented here is the following improvement of (2.3) in terms of
Besov spaces defined as follows (abstractly):

Let A be a self-adjoint operator on a Hilbert space H. Let Ry = 0 and R; = 277!
for 7 € N. We define correspondingly characteristic functions F; = F(R;-1 < |-| <
R;) and the space

B=B(A)={ueH| Y R|F(Au| = |luls < oo}.
jeN
We can identify (using the embeddings (A)~'H C B C H C B*, (A) := VA% +1)
the dual space B* as
B* = B(A)* = {u € (A)H| sup R;YV?|| Fy(A)ul| =: |luf|p- < o0}
2

Alternatively, the elements u of B* are those sequences u = (u;) € H with u; €

Ran(F;(A)) and supjen R; "/ |lusl| < oo.
We use these constr uctlons with the operator A being given as multiplication by
|| on the complex Hilbert space H = L*(R2).

Theorem 2.2 (Besov space bound). There ezists C > 0 such that for all z € I'y
15347 R(2) £ mim e By < C (2.4)
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The proof of Theorem 2.2 is partly based on Theorem 2.1 and various ideas of
[AH, Mol, Mo2, JP, FS§].

2.2. Sommerfeld radiation condition. We shall give an outline of some microlo-
cal estimates and characterization of solutions to the equation Hu = v. In particular
we estimate and characterize the particular solution provided by Theorems 2.1 and
2.2. This particular solution is constructed as follows in terms of Besov spaces. First
note that the relevant Besov space at zero energy is B* := B({z)*¢) = (z)"*/4B(|z|),
cf. Theorem 2.2 (recall s := 1/2 4+ pu/4). We have the following characterization of
the corresponding dual space

u € (B*)* & ue L (RY and sup R™*||F(|z] < R)u|| < oo.
R>1

A slightly smaller space is given by
u€ (B e ue Ll (RY and }%im R™||F(|z] < R)ul = 0.

Now suppose v € B¥. Then due to Theorems 2.1 and 2.2 there exists the weak-star
limit
u = R(0+i0)v = w*-lim R(z)v € (B*)".
2—0,z€ly
Note that indeed this u is a (distributional) solution to the equation Hu = v.
Let us state a microlocal property of this solution. We shall use (2.2) with

K =e&/(2 - p), (2.5)
where the €’s come from Condition 1.1. In terms of f; we then introduce symbols
& § =z

=R T RE @

Qo

and we prove that

OP(x-(a0)X- (b0))u € (B); for all x- € C2(R) and %- € C((~o0,1)). (2.63)
Here we use Weyl quantization (although this is not the only choice). These esti-
mates are accompanied by “high energy estimates”, stated as follows: Let us note
that

f!'z‘lz(z)lVl(a:) ~ z| £ C§ := max(Cy/K, 1),

where Cp is given in Condition 1.1 (2) (i.e. the constant with a = 0). Consider
real-valued x- € C*(R) such that x_(¢) = 1 in a neighbourhood of [0, Cj], and let
X+ =1 — x_-. We prove that for all such functions x.

OP"(x+(a0))u € (B*)q. (2.6b)

The support property of ¥_ in (2.6a) mirrors that the particular solution studied
is “outgoing”, and we refer to (2.6a) as a Sommerfeld radiation condition. This
condition (in fact a weaker version) suffices for a characterization as expresssed in
the following result. Here and henceforth L? := (z)~*L*(R?).

Theorem 2.3 (Uniqueness of outgoing solution, data in B*). Suppose v € B*.
Suppose u is a distributional solution to the equation Hu = v belonging to the space
L? for some s € R, and suppose that there there exists o € (0, 1] such that

OF(x_(00)%(bo))u € (BX); for all x € C*(R) and % € C=((~00,0)). (27
Then u = R(0+i0)v. In particular (2.6a) and (2.6b) hold.
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Corollary 2.4. Suppose u € (B*); solves the equation Hu = 0. Then u = 0.

We have another version of uniqueness of the outgoing solution (with é > 0 as in
Condition 1.1).

Theorem 2.5 (Uniqueness of outgoing solution, data in L2). Suppose v € L2 for
some s > sq.

i) Suppose u is a distributional solution to the equation Hu = v belonging to
the space L? and suppose that there there exists o > 0 such that

—s9=4>

Op*(x-(ao0)x-(bo))u € L2, for all x_ € C®(R) and x- € C((—o00,0-1)). (2.8)

-850

Then u = R(0 +i0)wv.
i) Moreover the state u = R(0 + i0)v obeys: For all t < min(s — s9,6) — 5o

OP"(x-(a0)X- (bo))u € L} for all x- € CZ(R) and X- € C°((~00,0)), (2.9a)
OP"(x+(a0))u € L? for all functions x. as in (2.6b). (2.9b)
In particular we can take t = —sp in (2.9a) and (2.9b).

The proof of the uniqueness statements of Theorems 2.3 and 2.5 relies partly on a
“propagation of singularities” result in the spirit of [H62, Me, Va, DS1]. For example
it follows that (2.8) is valid for all ¢ < 2 if it is valid for some o > 0, and consequently
Theorem 2.5 i) follows from Theorem 2.3. The bounds (2.9a) and (2.9b) essentially
follow from [FS]. We note that the “incoming” solution v = R(0 — i0)v can be
characterized similarly. Our results generalize [DS1, Proposition 4.10] at zero energy.
For similar results for positive energies and for larger classes of potentials see [H61,
Theorem 30.2.10] and [GY].

Remark 2.6. Define under Condition 1.1 the operator
6(0) = (27i)~'(R(0 +1i0) — R(0 —i0)) = 7~ Im (R(0 +i0)) € B(B*, (B*)*),
and note that its range
Ran(8(0)) C € := {u € (B*)*| Hu = 0}.

Under some stronger conditions it follows from [DS1, Theorem 8.2] that Ran(4(0)) =
& (proved in terms of wave matrices at zero energy). Equality is an open problem
under Condition 1.1, in fact it is only known [F'S] that §(0) # 0. More generally
“scattering theory at zero energy” in the spirit of [DS1, Theorem 8.2] is an open
problem under Condition 1.1.
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