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Dynamics of the fluid balancer

Mikael A. Langthjem}, Tomomichi Nakamurai

1Faculty of Engineering, Yamagata University,
Jonan 4-chome, Yonezawa, 992-8510 Japan

i Department of Mechanical Engineering, Osaka Sangyo University,
3-1-1 Nakagaito, Daito-shi, Osaka, 574-853001 Japan

Abstract

The paper is concerned with the dynamics of a so-called fluid balancer; a hula hoop ring-
like structure containing a small amount of liquid which, during rotation, is spun out to
form a thin liguid layer on the inner surface of the ring. The liquid is able to counteract
unbalance mass in an elastically mounted rotor. The paper derives the equations of motion
for the coupled fluid-structure system, with the flutd equations based on shallow water theory.
An analytical solution to a simplified version of the shallow water equations, describing a
hydraulic jump, is discussed in detasl.

1 Introduction

A fluid balancer is used on rotating machinery to eliminate the undesirable effects of unbalance
mass. It has become a standard feature on most household washing machines, but is also used
on heavy industrial rotating machinery. Taking the washing machine fluid balancer as example,
it consists of a hollow ring, like a hula hoop ring but typically with rectangular cross sections,
which contains a small amount of liquid. When the ring is rotating at a high angular velocity Q
the liquid will form a thin liquid layer on the inner surface of the outermost wall, as sketched in
Fig. 1. Consider the situation where an unbalance mass m is present; for example the clothes
in a washing machine. The rotor has a critical angular velocity €., where the centripetal forces
are in balance with the forces due to the restoring springs. Below this velocity (2 < Q) the
mass center of the fluid will be located ‘on the same side’ as the unbalance mass, as shown in
the left part of Fig. 1. [Here M indicates the mass of the empty rotor and M the mass of the
contained liquid.] At a certain supercritical angular velocity (2 > Q) the mass center of the
liquid will move to the ‘opposite side’ of the unbalance mass, as shown in the right part of Fig.
1, resulting in ‘mass balance’ and thus in a reduced oscillation amplitude of the rotor.
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Figure 1: Working principle of the fluid balancer.

This is the working principle of the fluid balancer, which has been verified experimentally
[1]; but no conclusive explanation has been given so far. It is the aim of the present project to
attempt giving an analytical explanation.



The present work builds upon a large number of studies into the dynamics and stability of
rotors partially filled with liquid [2, 3]. Non-linear studies have been carried out by Berman et
al. [4], Colding-Jorgensen (5], Kasahara et al. [6], and Yoshizumi [7]. Berman et al. 4] found,
both by numerical analysis and by experiment, that non-linear surfaces can exist in the form
of hydraulic jumps, undular bores, and solitary waves. [An undular bore is a relatively weak
hydraulic jump, with undulations behind it.] Colding-Jorgensen [5] studied solely a hydraulic
jump solution, in the spirit of the analysis of [4] . On the contrary to [4] and [5] the studies of
Kasahara et al. [6] and Yoshizumi [7] are purely numerical.

To the best of our knowledge, the effect of an unbalance mass has not been studied before.
The system (with an unbalance mass) is however closely related to the so-called automatic
dynamic balancer [8] where a number of balls running in a circular groove play the sam role as
the liquid layer in the present study.

As [5] the present study is based largely on the approach of Berman et al. [4]. However,
contrary to the one-degree-of-freedom assumption in [4, 5], the present work considers a rotor
with two degrees of freedom.

2 Rotor equation

Consider a rotating vessel (rotating fluid chamber) of mass M equipped with a small unbalance
mass m located a distance s from the geometric center, and containing a small amount of liquid,
as sketched in Fig. 2. The inner radius of the vessel is R. The rotor is supported by springs,
with spring constant K, in the X and Y directions. The structural damping forces in these
directions are proportional to the parameter C. Let the coordinate system (Z,7) rotate with
the constant angular velocity 2 about the fixed system (X,Y).

Figure 2: Definition of coordinate systems and some of the symbols used.

In terms of the fixed coordinate system the equation of motion of the rotor is given by
M+m 0 X, C o X,
- B @
Kz 0 X,- _ 2 cos St FX

[T g [ e { S b { B
Here X, and Y, are the deflections of the rotor and Fy, Fy are the fluid force components acting

thereon. An ‘overdot’ denotes differentiation with respect to time ¢. The first term on the right
hand side shows that, in a fixed coordinate system, the unbalance mass introduces a periodic

forcing.
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It will, however, be more convenient to consider the coupled fluid-rotor motion in terms of
the rotating coordinate system (Z,%). The deflections in the two coordinate systems are related
by the transformations

yr J | —sinQt cos Y, [’ Y, J 7 [ sinQ cos w J
Applying (2) to (1) we obtain the equation of motion in terms of rotating coordinates as
[ M+m 0 B ), c —2M+mQ ][ &
0 M+m |\ 2M +m)Q c ir

[ ()

(" g}

It is seen that, in this coordinate system, the unbalance mass introduces a force, proportional
to 92, acting in the Z-direction.

In order to evaluate the body force acting on the fluid, the acceleration vector expressed in
the rotating coordinate system will be needed; it is given by

(10 s )=z} o

3 Fluid equations

3.1 The shallow water equations

The fluid motion in the rotating vessel will be described by a shallow water approximation of
the Navier-Stokes equations, and in terms of a coordinate system (z,y) attached to the wall of
the rotor, as shown in Fig. 2. This coordinate system is related to a polar coordinate system
(r,0) attached to the rotor (such that Z = rcos8, §j = rsin6) in the following way:

z=RO, y=R-r, (5)

where R is the radius of the vessel; see again Fig. 2. z,y are rectangular (Cartesian) coordi-
nates, indicating that curvature effects will be ignored. This is permissable when the fluid layer
thickness A(t, z) is sufficiently small in comparison with the vessel radius R, i.e., |h(¢,z)|/R < 1
for all z,t.

Under these assumptions the fluid equations of motion can be written as [4, 9]

. ug—‘; + %, sin(z/R) - B. cos(a/R), (6)
] = 1%
Et'+29“+m2“"pay' ™

Here » and v are the fluid velocity components in the z and y directions, p is the fluid pressure,
p is the fluid density, and v the kinematic viscosity of the fluid.
The continuity equation is
o v

.51‘_+.3_y-=0' (8)



The boundary conditions are
u(0) =0, v(0)=0, 9)
oh 8h)
— tu— =wy(h), p(h)=0,
(8t 0z ) o,

where, again, h(t,z) specifies the free surface of the fluid layer.
In the shallow water approximation it is assumed that

y Oh

v(t,z,y) = he BC (10)
where ho is the mean fluid depth. Then (7) can be written as
y & 2 _10p 1
hoat2+2ﬂu+RQ =28y (11)
This equation can be integrated, to give
1 1 .5 o &h /h 2
— TN e—— — ——— - . 2
pp(y) T (hs - ¥°) 5 +20 ; u dy+ R*(h—y) (12)
Inserting (12) into (6) we get
3u a'u Su zah 8h 1 2_ .2 aah 820
% Y5 +'v6y ~RQ F +2Qat o(ho y)amatz ayz"'%" (13)
where, here and in the following,
§ = %, sin(z/R) - 9, cos(z/R). (14)
Let -
U==< / u dy (15)
h Jo
denote the mean flow velocity in the z-direction. Applying this ‘operator’ to (13) we get
oUu 3U ho 83h 28h oh 2 U
where
u
Ut o - [ ] : 17
n ho I a7
U 2
Vev"a";f =+ az ho / (v —U)dy

are models for dissipation due to wall friction and internal fluid friction, respectively [4, 9]. In
the first equation 7 is a friction coefficient (known from head loss in pipe flow) and vey in the
second equation is a so-called eddy viscosity coefficient. In (16) and (17) it has been used that

» h
-’1;/ ug—u-dy+71;/ v%d ~ (18)

2
ath/ (v-U) dy+hOU/ - dy.
v
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Applying (15) to the continuity equation (8), the latter can be written as

oh 8(hU
%o (19)
At this point we introduce the ‘traveling wave’ variable
§€=z/R+(Q-w)t (20)

Here w is the angular whirling velocity of the vessel, which is assumed to be close, but not equal,
to the imposed angular velocity 2. Writing

U=U(), h=ho+H(§), (21)
(16) can be written as

ok! U
-Q(Q - 20.))-8-2- +@Q- W)E = (22)
82 ho (€ — w)? 8K
gg’g g g -t ( Rw) g + Ersin(z/R) - Dr cos(a/B)
The continuity equation (19) can be written as
hodU _ UBK 1,80
Q- gt 7w~ Frae B % (23)

It is noted that the left sides of (22) and (23) are linear in the unknown variables U and A/,
while the right sides are non-linear. In the following we consider the linearized equations. In
order for them to have a non-trivial solution, the determinant must be equal to zero,

-QQ-2w) Q-w
l Q-w ho/R' 0. @4
The possible whirling frequencies are thus
_aliyhey [ (1, B\
w-ﬂ[l+—§i{§(l+R)}}. (25)
As the speed of the cylinder is RS2, the possible speeds of a traveling surface wave are
1
_pal|h[h(  h\\?
ci—-—RQ[Rd:{R(H-R)}]. (26)

3.2 Non-dimensionalization

In order to recast the governing fluid differential equations into non-dimensional form the fol-
lowing parameters are introduced:

1 p2 /
BeRL b K e, R g @
, 0= R, K= R, Wy = w’J Ws = M’ Q. = Wg’ (27)
/ Ir =¥
t‘—-f‘) CO m R, z.—‘ho’ y#—hoi

__P _v M
= pcg eU.—cO, 7 = Ry, v,-ue,,KRz.



The parameter co corresponds to the shallow water wave speed (gho)'zl', but here the gravity
acceleration g is the centrifugal acceleration RQ2.

The parameter € expresses, except for a factor 2, the ratio between fluid mass and the
mass of the (empty) rotor. It is assumed to be small and is used in (27) and the following as a
‘bookkeeping parameter’, in order to compare the magnitude of the individual terms.

A non-dimensional version of (22) can now be obtained as follows

N -OU.
—(1—20))-3? +4 3(1-—(4})—62— = (28)
aU# 62U* 2 1 ~\2 (1 635'4)
U, % + e, % +enUs - 636(1 @) T
e [e%62! — 2¢5%y), - z.] sin% — ¢ [0y + 2e8% ] — 3 cos

where @ = w/Q = w, /€. A dash refers to differentiation with respect to t,.
The continuity equation (23) can be written as

z
R

10 OU, A
(1) 2-é-£-+-3§———e{U*a£+n8§} (29)

3.3 Perturbation analyis
The variables which are functions of the ‘traveling wave parameter’ ¢ are expanded as follows:
K=Kot+ermy+--+, U=Up+elri+-+, w=@p+ed+-. (30)

Collecting the coefficients of € we obtain the non-dimensional versions of the left hand sides of
(22) and (23),

_a- 2«::0)%%9 +aa-anZ2 =0 (31)
651 —a;o)%’%+ 9{% =0. (32)

The determinant equation,

:(1 = 2io) 541 —ao) | _ 0, (33)
651~ @) 1
then gives the non-dimensional version of (25),
Go=1+0%(8+8)h. (34)

The non-dimensional version of the wave number equation (26) is
e =co{st £ (1+0)t}, (35)

In (35) the + solution corresponds to progressive waves and the — solution to a retrograde
wave. Experiments show that only the latter type exists; accordingly the — solution is used in
the following. The continuity equation (32) now gives

c- 1 1) Ok
Uo="Tro = {ar ~-(1 +5)a} ‘5&2' (36)
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Employing this expression, the terms proportional to ¢! in the expansion of (28) can be written
as

dro Oro ko %Ko

0 20 _o0. 2N pediida ] 2 _ iné —
where
. Vo+ _ofc- 2 1l ofc 2
m=-w T p=3(2), a=1#(Z), 59)

2
c-
D, =Vrcc§, Ey =1, (E;) .

In (37) it has been assumed that sin¢ ~ sinz/R and cos{ =~ cosz/R.

The non-dimensional version of the pressure equation (12), evaluated on the vessel surface
y = 0, takes the form

pu(0) = ¢ {52 (fc-;-)2 %ﬂ'+ 2 (1 + 25%%;—) no} +0(&). (39)

4 Fluid-structure coupling

4.1 Non-dimensionalization of the rotor equation

In order to put the rotor equation (3) into non-dimensional form a number of additional variables
are introduced:

F, F, 8

=h0K’ F!I*= =7 (40)

y
» Fae hoK’ R

Applying these to (3) under the assumption that the rotor undergoes steady whirl with frequency
&, we obtain

dl-a[tr o] af, ] e
[ ()

.2 [50'6_% Fz*
= € { 0 } + €{ Fyt }9
where @y = wy/N.

4.2 Fluid forces

The fluid force components F; and F;, on the right hand side of (3) can be split up into pressure-
and friction-related parts, indicated by subscripts p and f respectively, as follows:

o Fe _ (™ 0)si 2
| p0escie, 72 = [7 pio)singa, (42)

2%

]

Bl &y

27
o0 singde, T = [ 0% eostet, (#3)



where L is the length (height) of the vessel. In the following only the pressure-related terms will
be considered. The non-dimensional version of these terms - to be inserted into (41) - take the
simple forms

27 2
F = / p*(ga 0) cos§ d¢, F‘y* = / p*(g’o) siné dé. (44)
0 0

5 Hydraulic jump solution

The first three terms on the left hand side of (37) represent a Korteweg-de Vries-type equation,
while the first, second, and fourth term represent a Burgers-type equation. The homogeneous
Korteweg-de Vries equation is known to have analytical solutions in forms of solitary and cnoidal
waves, depending on the boundary conditions. Analytical solutions to homogeneous and non-
homogeneous Burgers equations are also known [9, 10]. On the other hand, analytical solutions
to non-homogeneous Korteweg-de Vries equations are known only for a few special cases, e.g.
[11]. In whatever way, the forced Korteweg-de Vries-Burgers equation (37) is expected to have
a variety of interesting solutions.

We seek a solution which can ‘extinguish’ the forcing effect of the unbalance mass and it
is instructive to obtain a simple, analytical solution, even if one has to ‘oversimplify’ the basic
equations, that is, to make assumptions that are not fully physical sound. The solution obtained
in this way should then be assessed by comparison with analytical or numerical solutions of the
(physically sound) basic equations.

Such a solution of (37) can be obtained if one assumes:

e no dispersion = 8%k, /9¢3 = 0;

e no friction = v, =7, = 0.

Then it reduces to Bko o .
A5 = Biro g’ = zusing — g o8, (45)
Integration gives
Arko — %Bmg = —z,co8f — y.5iné + A, (46)
where A is an integration constant. Solving (46) with respect to o gives
A A\? 2 . d
,go(g):—B-l-:lz{(E) +B—1(x,.cos§+y*sm£~.4)} . (47)

The change of sign (+) in (47) gives a discontinuity which represents a hydraulic jump, as
illustrated in Fig. 3. Let the jump be located at ¢ = T, 0 < T < 27, in terms of the rotating
polar coordinate system discussed in the beginning of Section 3. Assuming that it is not located
at £ = 0 or 27 (i.e. at the same location as the unbalance mass) gives the following ‘smoothness
condition’ at this point:

Ko(0) = ro(27). (48)
The constant .4 can be determined from this condition, which gives
B; [ Ar1\?
==L . 49
2 (£) += (49)

The solution of (45) is then given by

ol§) = ra(€) = B & (-,_E;’;) (2 (oot — 1) + gusing}E. (50)
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Figure 3: Sketch of the hydraulic jump solution, eqn. (50).

Let p+(€,0) be the fluid pressure corresponding to the depth perturbation x4 (£¢). The fluid
forces are then given by

2r
th = / p.(ﬁ,O)oosfdf (51)
0
T o
- f p_(6,0) cost d£ + / P4+(6,0) cost d£,
0 T

é’ﬂ
I

27
/0 pu(€,0)sin € de
T 2x
- / p_(¢,0)sing de + / p4(€,0)sin€ de.
0 T

The condition for mass conservation can be expressed as

2% T 2x
/ no(e)de=o=>/ ~_(s)de+/ ke (6) dE =0. (52)
0 0 T

The integrals in (51) and (52) are of elliptic types and cannot be evaluated in closed form. In
order to obtain simple closed-form expressions we seek to approximate the square root in (50).
As both terms under the square root are of the same order of magnitude a Taylor expansion
does not exist.

But by assuming that z.,y. < 1, Lanczos’s tau method [12] can be used. Logarithmic
differentiation of the function f(z) = v/Z gives the differential equation f'(z) — 41 f(z) = 0.
The initial condition f(0) = O assures the solution f(z) = /z. The tau method however
approximates the solution via expansion in Chebyshev polynomials. Retaining only the linear
part of this expansion, we obtain

VE R .;-(1 +2z). (53)

Equation (50) can thus be approximated as

:
k@) = ral) = 5+ 3 (57) {120 cong 1) + 29 in}. 59

Using this expression the integrals in (51) and (52) can be evaluated in closed form. Doing this
we obtain the coupled fluid-structure equation system

{"“3[1’5” 13#]*’%[2(5‘-—?“) —z(gla:“)] (55)

—g - (1 +”’)93 -CQ* [ Szz szy ] { T» }
* [ ¢S x@§ — (1+ p) * T Sw Yo



where Fzz,...,Frz,... are functions of the jump location T, given by

Szz
Szy
By
Fyy
Fra
Fry

Herein

]

i

—2K1{Po(~cos TsinT + 2sin T — T+ x) + Pi(cos Tsin T+ T — 7)},  (56)
—2K1(Po ~ P1)(cos® T — 1),

~2K1 {Po(cos® T —2cos T + 1) + Py (1 — 2¢cos? 1)},

—2K1(Po — Py)(cos Tsin Y + T — ),

—2K1Pysin T,

—2K1Po(1 — cos T).

2
= 2(1 26“—"), = 2(5:) , 57
Po <+ 260 PL=¢ o (57
1
_ A _ 1/2\2

The mass conservation equation (52) takes the form

2K {(T —sin T — m)z, + (cos T — 1)y, } + Kom + K1(7 — T) = 0. (58)

For a given angular velocity 2., (55) and (58) contain three equations for the three unknowns
%+, Y», 8d T, which can be solved together numerically. [Here, K is set equal to zero in (58).]
In the numerical example to follow we set § = 0.125, u = 0.25, ¢ =13.0, 0 =04, and x = 1.0.
In Fig. 4, part (a) shows the rotor amplitudes z. and y,, while part (b) shows the jump location
(with T in radians). It is noted that the value of the damping parameter ( is large, which implies
the ‘smooth’ form of the z, and y, curves.

Part (b) shows that the jump is located at T & 7 for small values of the angular velocity
€. and that T increases smoothly with increasing value of €., up to T = 4.6 rad. This is not
the way the fluid balancer is expected to work (see Section 1). The results appear to indicate,
then, that mechanism of the fluid balancer must be one or more solitary waves (solitons). This
remains to be verified.

Txy Ys
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~— s

‘.60

e r
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M L 3.2 —
1 1.5 z 2.8 3 0 0.8 1 1.5 2 a8 3

(a) (b)

Figure 4: (a) Deflections x, and y. Lower curve: z.; upper curve: y,. (b) Jump location T.

6 Concluding remarks

The fluid balancer has been modeled as a rotor partially filled with fluid. The rotor has two
degrees of freedom, and the fluid forces acting on it are evaluated in terms of shallow water theory.
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A simplified analysis, giving a solution resembling a hydraulic jump, has been discussed in detail.
It appears that this solution cannot represent the mechanism of the fluid balancer. Future work
should thus consider soliton-type solutions of the Korteweg-de Vries-Burgers equation (37).
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